sum_var.c
14.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
/*
* sum_var.c
*
* Created on: 14/03/2017
* Author: pedro
*/
#ifndef __OPENCL_VERSION__
#include <stddef.h>
#include <stdio.h>
#include "sum_var.h"
#include "../bitmaps.h"
#include "../config.h"
#include "../variables.h"
#endif
#include "../kernels/cl_aux_functions.h"
#if CL_D_TYPE == CL_BITMAP
#include "../kernels/cl_bitmaps.h"
#elif CL_D_TYPE == CL_INTERVAL
#include "../kernels/cl_intervals.h"
#endif
#include "../kernels/cl_constraints.h"
#include "../kernels/cl_variables.h"
#include "../kernels/cl_ttl.h"
#ifndef __OPENCL_VERSION__
/*
* Creates a new constraint of the sum_var_ type and return the constraint ID
* sum(X, y)
* X_ids - vector with the ID of the variables that may contain the value of y
* n_vs - maximum number of variables in X vector
* y_id - ID of the variable that contains the sum of all the variables in X
*/
unsigned int c_sum_var(unsigned int* X_ids, unsigned int n_vs, unsigned int y_id) {
unsigned int i;
// set to include in kernel compilation
USE_CS[SUM_VAR] = 1;
USE_NON_CS_REIFI[SUM_VAR] = 1;
REV = 1;
unsigned int* c_vs = malloc((n_vs + 1) * sizeof(unsigned int));
for (i = 0; i < n_vs; i++) {
c_vs[i] = X_ids[i];
}
c_vs[n_vs] = y_id;
// creates a new generic constraint
unsigned int c_id = c_new(c_vs, n_vs + 1, NULL, 0, -1);
// pointers to this type of constraint functions
CS[c_id].kind = SUM_VAR;
CS[c_id].check_sol_f = &sum_var_check;
CS[c_id].constant_val = 0;
CS[c_id].boolean = true;
for (i = 0; i < n_vs; i++) {
if (!VS[c_vs[i]].boolean) {
CS[c_id].boolean = false;
}
}
free(c_vs);
return c_id;
}
/*
* Creates a new reified constraint of the sum_var_ type and return the constraint ID
* sum(X, y)
* X_ids - vector with the ID of the variables that may contain the value of y
* n_vs - maximum number of variables in X vector
* y_id - ID of the variable that contains the sum of all the variables in X
* reif_v_id - ID of the reification variable
*/
unsigned int c_sum_var_reif(unsigned int* X_ids, unsigned int n_vs, unsigned int y_id, int reif_v_id) {
unsigned int i;
if (VS[reif_v_id].max > 1) {
v_del_gt(&VS[reif_v_id], 1);
if (VS[reif_v_id].n_vals == 0) {
fprintf(stderr, "\nError: Constraint SUM_VAR_REIF makes model inconsistent at creation:\n");
exit(-1);
}
}
// set to include in kernel compilation
USE_CS[SUM_VAR] = 1;
USE_CS_REIFI[SUM_VAR] = 1;
REV = 1;
unsigned int* c_vs = malloc((n_vs + 1) * sizeof(unsigned int));
for (i = 0; i < n_vs; i++) {
c_vs[i] = X_ids[i];
}
c_vs[n_vs] = y_id;
// creates a new generic constraint
unsigned int c_id = c_new(c_vs, n_vs + 1, NULL, 0, reif_v_id);
// pointers to this type of constraint functions
CS[c_id].kind = SUM_VAR;
CS[c_id].check_sol_f = &sum_var_check;
CS[c_id].constant_val = 0;
free(c_vs);
return c_id;
}
/*
* Return true if the sum_var_ constraint is respected or false if not
* sum(X, y)
* c - constraint to check if is respected
* explored - if the CSP was already explored, which mean that all the variables must already be singletons
* */
bool sum_var_check(constr* c, bool explored) {
var** X = c->c_vs;
var* y = c->c_vs[c->n_c_vs - 1];
var* x;
int sum = 0;
int i;
for (i = 0; i < c->n_c_vs - 1; i++) {
x = X[i];
#if CHECK_SOL_N_VALS
if (x->to_label && x->n_vals != 1) {
if (explored) {
fprintf(stderr, "\nError: Constraint SUM_VAR (%d) not respected:\n", c->c_id);
for (i = 0; i < c->n_c_vs; i++) {
fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[i]->v_id, b_get_min_val(&c->c_vs[i]->domain_b),
b_get_max_val(&c->c_vs[i]->domain_b), b_cnt_vals(&c->c_vs[i]->domain_b));
}
}
return false;
}
#endif
sum += x->min;
}
if (
#if CHECK_SOL_N_VALS
(y->to_label && y->n_vals != 1) ||
#endif
sum != y->min) {
if (explored) {
fprintf(stderr, "\nError: Constraint SUM_VAR (%d) not respected:\n", c->c_id);
for (i = 0; i < c->n_c_vs; i++) {
fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[i]->v_id, b_get_min_val(&c->c_vs[i]->domain_b),
b_get_max_val(&c->c_vs[i]->domain_b), b_cnt_vals(&c->c_vs[i]->domain_b));
}
}
return false;
}
return true;
}
#endif
#if CS_SUM_VAR == 1
/*
* Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID sum_var constraint
* sum(X, y)
* prop_ok will be set to 1 if success or to 0 if any domain became empty
* vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order
* vs_prop_ - all CSP variables with current step values
* prop_v_id - variable ID to propagate
* current_cs - constraint that should be propagated for the variable with prop_v_id ID
* vs_id_to_prop_ - circular vector with the ids of the variables to propagate
*/
CUDA_FUNC void sum_var_prop(CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_,
bool* prop_ok, __global int* terms_mem CS_IGNORE_FUNC TTL_CTR) {
int y_idx = current_cs->n_c_vs - 1;
int y_id = vs_per_c_idx[y_idx];
int x_id;
__global int* mins = terms_mem;
__global int* maxs = &terms_mem[current_cs->n_c_vs];
int min, max;
int val_to_rmv;
bool changed = 0;
int i;
mins[y_idx] = V_MIN(vs_prop_[y_id]);
maxs[y_idx] = V_MAX(vs_prop_[y_id]);
// if the sum of the minimums of x is greater than maximum of y
// if the sum of the maximums of x is lesser than the minimum of y
min = 0;
max = 0;
for (i = 0; i < y_idx; i++) {
CHECK_TTL(ttl_ctr, 96)
x_id = vs_per_c_idx[i];
min += mins[i] = V_MIN(vs_prop_[x_id]);
max += maxs[i] = V_MAX(vs_prop_[x_id]);
}
if (min > maxs[y_idx] || max < mins[y_idx]) {
*prop_ok = 0;
return;
}
// set all X because their min values sum is equal to the y max
if (min == maxs[y_idx]) {
for (i = 0; i < y_idx; i++) {
CHECK_TTL(ttl_ctr, 167)
x_id = vs_per_c_idx[i];
if (V_N_VALS(vs_prop_[x_id]) > 1) {
cl_v_del_all_except_val_m(&changed, &vs_prop_[x_id], mins[i] TTL_CTR_V);
v_add_to_prop(vs_id_to_prop_, vs_prop_, x_id);
}
}
if (V_N_VALS(vs_prop_[y_id]) > 1) {
cl_v_del_all_except_val_m(&changed, &vs_prop_[y_id], maxs[y_idx] TTL_CTR_V);
v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id);
}
#if CL_CS_IGNORE
cs_ignore[current_cs->c_id] = 1;
#endif
return;
}
// set all X because their max values sum is equal to the y min
if (max == mins[y_idx]) {
for (i = 0; i < y_idx; ++i) {
CHECK_TTL(ttl_ctr, 168)
x_id = vs_per_c_idx[i];
if (V_N_VALS(vs_prop_[x_id]) > 1) {
cl_v_del_all_except_val_m(&changed, &vs_prop_[x_id], maxs[i] TTL_CTR_V);
v_add_to_prop(vs_id_to_prop_, vs_prop_, x_id);
}
}
if (V_N_VALS(vs_prop_[y_id]) > 1) {
cl_v_del_all_except_val_m(&changed, &vs_prop_[y_id], mins[y_idx] TTL_CTR_V);
v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id);
}
#if CL_CS_IGNORE
cs_ignore[current_cs->c_id] = 1;
#endif
return;
}
// remove bounds from all x
#if CL_BOOLEAN_VS
if (current_cs->boolean == 0) { // not all X are boolean
#endif
for (i = 0; i < y_idx; i++) {
CHECK_TTL(ttl_ctr, 98)
x_id = vs_per_c_idx[i];
changed = 0;
if (V_N_VALS(vs_prop_[x_id]) > 1) {
val_to_rmv = mins[i] + maxs[y_idx] - min;
if (val_to_rmv < maxs[i]) {
min -= mins[i];
max -= maxs[i];
cl_v_del_gt_m(&changed, &vs_prop_[x_id], val_to_rmv TTL_CTR_V);
if (V_IS_EMPTY(vs_prop_[x_id])) {
*prop_ok = 0;
return;
}
v_add_to_prop(vs_id_to_prop_, vs_prop_, x_id);
min += mins[i] = V_MIN(vs_prop_[x_id]);
max += maxs[i] = V_MAX(vs_prop_[x_id]);
}
val_to_rmv = maxs[i] - (max - mins[y_idx]);
if (val_to_rmv > mins[i]) {
min -= mins[i];
max -= maxs[i];
cl_v_del_lt_m(&changed, &vs_prop_[x_id], val_to_rmv TTL_CTR_V);
if (V_IS_EMPTY(vs_prop_[x_id])) {
*prop_ok = 0;
return;
}
v_add_to_prop(vs_id_to_prop_, vs_prop_, x_id);
min += mins[i] = V_MIN(vs_prop_[x_id]);
max += maxs[i] = V_MAX(vs_prop_[x_id]);
}
}
}
#if CL_BOOLEAN_VS
}
#endif
if (min > mins[y_idx]) {
cl_v_del_lt_m(&changed, &vs_prop_[y_id], min TTL_CTR_V);
if (V_IS_EMPTY(vs_prop_[y_id])) {
*prop_ok = 0;
return;
}
v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id);
}
if (max < maxs[y_idx]) {
cl_v_del_gt_m(&changed, &vs_prop_[y_id], max TTL_CTR_V);
if (V_IS_EMPTY(vs_prop_[y_id])) {
*prop_ok = 0;
return;
}
v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id);
}
}
#if CS_R_SUM_VAR == 1
/*
* Validate sum_var constraint to be normally propagated, when reified
* sum(X, y)
* vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order
* vs_prop_ - all CSP variables with current step values
* current_cs - constraint that should be propagated for the variable with prop_v_id ID
* vs_id_to_prop_ - circular vector with the ids of the variables to propagate
*/
CUDA_FUNC void sum_var_reif( CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_,
__global int* terms_mem CS_IGNORE_FUNC TTL_CTR) {
int sum = current_cs->n_c_vs - 1;
int y_id = vs_per_c_idx[sum];
VARS_PROP y;
int x_id;
VARS_PROP x;
__global int* mins = terms_mem;
__global int* maxs = &terms_mem[current_cs->n_c_vs];
int min, max;
bool changed = 0;
bool all_singl = true;
int i;
mins[sum] = V_MIN(vs_prop_[y_id]);
maxs[sum] = V_MAX(vs_prop_[y_id]);
// if the sum of the minimums of x is greater than maximum of y
min = 0;
for (i = 0; i < sum; i++) {
CHECK_TTL(ttl_ctr, 99)
min += mins[i] = V_MIN(vs_prop_[i]);
if (V_N_VALS(vs_prop_[i]) != 1) {
all_singl = false;
}
if (min > maxs[sum]) {
cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V);
v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id));
#if CL_CS_IGNORE
cs_ignore[current_cs->c_id] = 1;
#endif
return;
}
}
if (V_N_VALS(vs_prop_[y_id]) == 1 && all_singl && min == V_MIN(vs_prop_[y_id])) {
cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 0 TTL_CTR_V);
v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id));
#if CL_CS_IGNORE
cs_ignore[current_cs->c_id] = 1;
#endif
return;
}
// if the sum of the maximums of x is lesser than the minimum of y
max = 0;
for (i = 0; i < sum; i++) {
CHECK_TTL(ttl_ctr, 100)
max += maxs[i] = V_MAX(vs_prop_[i]);
}
if (max < mins[sum]) {
cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V);
v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id));
#if CL_CS_IGNORE
cs_ignore[current_cs->c_id] = 1;
#endif
return;
}
// remove bounds from all x
#if CL_BOOLEAN_VS
if (current_cs->boolean == 0) { // not all X are boolean
#endif
for (i = 0; i < sum; i++) {
CHECK_TTL(ttl_ctr, 101)
x_id = vs_per_c_idx[i];
cl_v_copy_pm(&x, &vs_prop_[x_id] TTL_CTR_V);
changed = 0;
if (V_N_VALS(vs_prop_[x_id]) > 1) {
if (mins[i] + maxs[sum] - min < maxs[i]) {
cl_v_del_gt_n(&changed, &x, mins[i] + maxs[sum] - min TTL_CTR_V);
changed = 1;
}
if (maxs[i] - (max - mins[sum]) > mins[i]) {
cl_v_del_lt_n(&changed, &x, maxs[i] - (max - mins[sum]) TTL_CTR_V);
changed = 1;
}
if (V_IS_EMPTY(x)) {
cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V);
v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id));
return;
}
}
}
#if CL_BOOLEAN_VS
}
#endif
cl_v_copy_pm(&y, &vs_prop_[y_id] TTL_CTR_V);
if (min > mins[sum]) {
cl_v_del_lt_n(&changed, &y, min TTL_CTR_V);
if (V_IS_EMPTY(y)) {
cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V);
v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id));
return;
}
}
if (max < maxs[sum]) {
cl_v_del_gt_n(&changed, &y, max TTL_CTR_V);
if (V_IS_EMPTY(y)) {
cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V);
v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id));
}
}
}
/*
* Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID sum_var opposite constraint
* !sum(X, y)
* vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order
* vs_prop_ - all CSP variables with current step values
* prop_v_id - variable ID to propagate
* current_cs - constraint that should be propagated for the variable with prop_v_id ID
* vs_id_to_prop_ - circular vector with the ids of the variables to propagate
*/
CUDA_FUNC void sum_var_prop_opposite(CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, CL_CS_MEM cl_constr* current_cs, bool* prop_ok, __global int* terms_mem TTL_CTR) {
int sum = current_cs->n_c_vs - 1;
int y_id = vs_per_c_idx[sum];
__global int* mins = terms_mem;
int min, max;
int i;
mins[sum] = V_MIN(vs_prop_[y_id]);
// if the sum of the minimums of x is equal to y
min = 0;
max = 0;
for (i = 0; i < sum; i++) {
CHECK_TTL(ttl_ctr, 228)
min += V_MIN(vs_prop_[i]);
max += V_MAX(vs_prop_[i]);
}
if (min == max && min == mins[sum] && V_N_VALS(vs_prop_[y_id]) == 1) {
*prop_ok = 0;
return;
}
}
#endif
CUDA_FUNC void sum_var_propagate(CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_,
bool* prop_ok, __global int* terms_mem PROPAGATED_FUNC CS_IGNORE_FUNC TTL_CTR) {
#if CS_R_SUM_VAR == 0
sum_var_prop(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok, terms_mem CS_IGNORE_CALL TTL_CTR_V);
#if CL_STATS == 1
*propagated = true;
#endif
#elif CS_R_SUM_VAR == 1
if (current_cs->reified == 1) {
if (V_N_VALS(vs_prop_[current_cs->reif_var_id]) > 1) {
sum_var_reif(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, terms_mem CS_IGNORE_CALL TTL_CTR_V);
} else {
if (V_MIN(vs_prop_[current_cs->reif_var_id]) == 1) {
sum_var_prop(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok, terms_mem CS_IGNORE_CALL TTL_CTR_V);
} else {
sum_var_prop_opposite(vs_per_c_idx, vs_prop_, current_cs, prop_ok, terms_mem TTL_CTR_V);
}
#if CL_STATS == 1
*propagated = true;
#endif
}
} else {
sum_var_prop(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok, terms_mem CS_IGNORE_CALL TTL_CTR_V);
#if CL_STATS == 1
*propagated = true;
#endif
}
#endif
}
#endif