/* * sum_var.c * * Created on: 14/03/2017 * Author: pedro */ #ifndef __OPENCL_VERSION__ #include #include #include "sum_var.h" #include "../bitmaps.h" #include "../config.h" #include "../variables.h" #endif #include "../kernels/cl_aux_functions.h" #if CL_D_TYPE == CL_BITMAP #include "../kernels/cl_bitmaps.h" #elif CL_D_TYPE == CL_INTERVAL #include "../kernels/cl_intervals.h" #endif #include "../kernels/cl_constraints.h" #include "../kernels/cl_variables.h" #include "../kernels/cl_ttl.h" #ifndef __OPENCL_VERSION__ /* * Creates a new constraint of the sum_var_ type and return the constraint ID * sum(X, y) * X_ids - vector with the ID of the variables that may contain the value of y * n_vs - maximum number of variables in X vector * y_id - ID of the variable that contains the sum of all the variables in X */ unsigned int c_sum_var(unsigned int* X_ids, unsigned int n_vs, unsigned int y_id) { unsigned int i; // set to include in kernel compilation USE_CS[SUM_VAR] = 1; USE_NON_CS_REIFI[SUM_VAR] = 1; REV = 1; unsigned int* c_vs = malloc((n_vs + 1) * sizeof(unsigned int)); for (i = 0; i < n_vs; i++) { c_vs[i] = X_ids[i]; } c_vs[n_vs] = y_id; // creates a new generic constraint unsigned int c_id = c_new(c_vs, n_vs + 1, NULL, 0, -1); // pointers to this type of constraint functions CS[c_id].kind = SUM_VAR; CS[c_id].check_sol_f = &sum_var_check; CS[c_id].constant_val = 0; CS[c_id].boolean = true; for (i = 0; i < n_vs; i++) { if (!VS[c_vs[i]].boolean) { CS[c_id].boolean = false; } } free(c_vs); return c_id; } /* * Creates a new reified constraint of the sum_var_ type and return the constraint ID * sum(X, y) * X_ids - vector with the ID of the variables that may contain the value of y * n_vs - maximum number of variables in X vector * y_id - ID of the variable that contains the sum of all the variables in X * reif_v_id - ID of the reification variable */ unsigned int c_sum_var_reif(unsigned int* X_ids, unsigned int n_vs, unsigned int y_id, int reif_v_id) { unsigned int i; if (VS[reif_v_id].max > 1) { v_del_gt(&VS[reif_v_id], 1); if (VS[reif_v_id].n_vals == 0) { fprintf(stderr, "\nError: Constraint SUM_VAR_REIF makes model inconsistent at creation:\n"); exit(-1); } } // set to include in kernel compilation USE_CS[SUM_VAR] = 1; USE_CS_REIFI[SUM_VAR] = 1; REV = 1; unsigned int* c_vs = malloc((n_vs + 1) * sizeof(unsigned int)); for (i = 0; i < n_vs; i++) { c_vs[i] = X_ids[i]; } c_vs[n_vs] = y_id; // creates a new generic constraint unsigned int c_id = c_new(c_vs, n_vs + 1, NULL, 0, reif_v_id); // pointers to this type of constraint functions CS[c_id].kind = SUM_VAR; CS[c_id].check_sol_f = &sum_var_check; CS[c_id].constant_val = 0; free(c_vs); return c_id; } /* * Return true if the sum_var_ constraint is respected or false if not * sum(X, y) * c - constraint to check if is respected * explored - if the CSP was already explored, which mean that all the variables must already be singletons * */ bool sum_var_check(constr* c, bool explored) { var** X = c->c_vs; var* y = c->c_vs[c->n_c_vs - 1]; var* x; int sum = 0; int i; for (i = 0; i < c->n_c_vs - 1; i++) { x = X[i]; #if CHECK_SOL_N_VALS if (x->to_label && x->n_vals != 1) { if (explored) { fprintf(stderr, "\nError: Constraint SUM_VAR (%d) not respected:\n", c->c_id); for (i = 0; i < c->n_c_vs; i++) { fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[i]->v_id, b_get_min_val(&c->c_vs[i]->domain_b), b_get_max_val(&c->c_vs[i]->domain_b), b_cnt_vals(&c->c_vs[i]->domain_b)); } } return false; } #endif sum += x->min; } if ( #if CHECK_SOL_N_VALS (y->to_label && y->n_vals != 1) || #endif sum != y->min) { if (explored) { fprintf(stderr, "\nError: Constraint SUM_VAR (%d) not respected:\n", c->c_id); for (i = 0; i < c->n_c_vs; i++) { fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[i]->v_id, b_get_min_val(&c->c_vs[i]->domain_b), b_get_max_val(&c->c_vs[i]->domain_b), b_cnt_vals(&c->c_vs[i]->domain_b)); } } return false; } return true; } #endif #if CS_SUM_VAR == 1 /* * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID sum_var constraint * sum(X, y) * prop_ok will be set to 1 if success or to 0 if any domain became empty * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * prop_v_id - variable ID to propagate * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate */ CUDA_FUNC void sum_var_prop(CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_, bool* prop_ok, __global int* terms_mem CS_IGNORE_FUNC TTL_CTR) { int y_idx = current_cs->n_c_vs - 1; int y_id = vs_per_c_idx[y_idx]; int x_id; __global int* mins = terms_mem; __global int* maxs = &terms_mem[current_cs->n_c_vs]; int min, max; int val_to_rmv; bool changed = 0; int i; mins[y_idx] = V_MIN(vs_prop_[y_id]); maxs[y_idx] = V_MAX(vs_prop_[y_id]); // if the sum of the minimums of x is greater than maximum of y // if the sum of the maximums of x is lesser than the minimum of y min = 0; max = 0; for (i = 0; i < y_idx; i++) { CHECK_TTL(ttl_ctr, 96) x_id = vs_per_c_idx[i]; min += mins[i] = V_MIN(vs_prop_[x_id]); max += maxs[i] = V_MAX(vs_prop_[x_id]); } if (min > maxs[y_idx] || max < mins[y_idx]) { *prop_ok = 0; return; } // set all X because their min values sum is equal to the y max if (min == maxs[y_idx]) { for (i = 0; i < y_idx; i++) { CHECK_TTL(ttl_ctr, 167) x_id = vs_per_c_idx[i]; if (V_N_VALS(vs_prop_[x_id]) > 1) { cl_v_del_all_except_val_m(&changed, &vs_prop_[x_id], mins[i] TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, x_id); } } if (V_N_VALS(vs_prop_[y_id]) > 1) { cl_v_del_all_except_val_m(&changed, &vs_prop_[y_id], maxs[y_idx] TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } // set all X because their max values sum is equal to the y min if (max == mins[y_idx]) { for (i = 0; i < y_idx; ++i) { CHECK_TTL(ttl_ctr, 168) x_id = vs_per_c_idx[i]; if (V_N_VALS(vs_prop_[x_id]) > 1) { cl_v_del_all_except_val_m(&changed, &vs_prop_[x_id], maxs[i] TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, x_id); } } if (V_N_VALS(vs_prop_[y_id]) > 1) { cl_v_del_all_except_val_m(&changed, &vs_prop_[y_id], mins[y_idx] TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } // remove bounds from all x #if CL_BOOLEAN_VS if (current_cs->boolean == 0) { // not all X are boolean #endif for (i = 0; i < y_idx; i++) { CHECK_TTL(ttl_ctr, 98) x_id = vs_per_c_idx[i]; changed = 0; if (V_N_VALS(vs_prop_[x_id]) > 1) { val_to_rmv = mins[i] + maxs[y_idx] - min; if (val_to_rmv < maxs[i]) { min -= mins[i]; max -= maxs[i]; cl_v_del_gt_m(&changed, &vs_prop_[x_id], val_to_rmv TTL_CTR_V); if (V_IS_EMPTY(vs_prop_[x_id])) { *prop_ok = 0; return; } v_add_to_prop(vs_id_to_prop_, vs_prop_, x_id); min += mins[i] = V_MIN(vs_prop_[x_id]); max += maxs[i] = V_MAX(vs_prop_[x_id]); } val_to_rmv = maxs[i] - (max - mins[y_idx]); if (val_to_rmv > mins[i]) { min -= mins[i]; max -= maxs[i]; cl_v_del_lt_m(&changed, &vs_prop_[x_id], val_to_rmv TTL_CTR_V); if (V_IS_EMPTY(vs_prop_[x_id])) { *prop_ok = 0; return; } v_add_to_prop(vs_id_to_prop_, vs_prop_, x_id); min += mins[i] = V_MIN(vs_prop_[x_id]); max += maxs[i] = V_MAX(vs_prop_[x_id]); } } } #if CL_BOOLEAN_VS } #endif if (min > mins[y_idx]) { cl_v_del_lt_m(&changed, &vs_prop_[y_id], min TTL_CTR_V); if (V_IS_EMPTY(vs_prop_[y_id])) { *prop_ok = 0; return; } v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } if (max < maxs[y_idx]) { cl_v_del_gt_m(&changed, &vs_prop_[y_id], max TTL_CTR_V); if (V_IS_EMPTY(vs_prop_[y_id])) { *prop_ok = 0; return; } v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } } #if CS_R_SUM_VAR == 1 /* * Validate sum_var constraint to be normally propagated, when reified * sum(X, y) * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate */ CUDA_FUNC void sum_var_reif( CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_, __global int* terms_mem CS_IGNORE_FUNC TTL_CTR) { int sum = current_cs->n_c_vs - 1; int y_id = vs_per_c_idx[sum]; VARS_PROP y; int x_id; VARS_PROP x; __global int* mins = terms_mem; __global int* maxs = &terms_mem[current_cs->n_c_vs]; int min, max; bool changed = 0; bool all_singl = true; int i; mins[sum] = V_MIN(vs_prop_[y_id]); maxs[sum] = V_MAX(vs_prop_[y_id]); // if the sum of the minimums of x is greater than maximum of y min = 0; for (i = 0; i < sum; i++) { CHECK_TTL(ttl_ctr, 99) min += mins[i] = V_MIN(vs_prop_[i]); if (V_N_VALS(vs_prop_[i]) != 1) { all_singl = false; } if (min > maxs[sum]) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } } if (V_N_VALS(vs_prop_[y_id]) == 1 && all_singl && min == V_MIN(vs_prop_[y_id])) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 0 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } // if the sum of the maximums of x is lesser than the minimum of y max = 0; for (i = 0; i < sum; i++) { CHECK_TTL(ttl_ctr, 100) max += maxs[i] = V_MAX(vs_prop_[i]); } if (max < mins[sum]) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } // remove bounds from all x #if CL_BOOLEAN_VS if (current_cs->boolean == 0) { // not all X are boolean #endif for (i = 0; i < sum; i++) { CHECK_TTL(ttl_ctr, 101) x_id = vs_per_c_idx[i]; cl_v_copy_pm(&x, &vs_prop_[x_id] TTL_CTR_V); changed = 0; if (V_N_VALS(vs_prop_[x_id]) > 1) { if (mins[i] + maxs[sum] - min < maxs[i]) { cl_v_del_gt_n(&changed, &x, mins[i] + maxs[sum] - min TTL_CTR_V); changed = 1; } if (maxs[i] - (max - mins[sum]) > mins[i]) { cl_v_del_lt_n(&changed, &x, maxs[i] - (max - mins[sum]) TTL_CTR_V); changed = 1; } if (V_IS_EMPTY(x)) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); return; } } } #if CL_BOOLEAN_VS } #endif cl_v_copy_pm(&y, &vs_prop_[y_id] TTL_CTR_V); if (min > mins[sum]) { cl_v_del_lt_n(&changed, &y, min TTL_CTR_V); if (V_IS_EMPTY(y)) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); return; } } if (max < maxs[sum]) { cl_v_del_gt_n(&changed, &y, max TTL_CTR_V); if (V_IS_EMPTY(y)) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); } } } /* * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID sum_var opposite constraint * !sum(X, y) * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * prop_v_id - variable ID to propagate * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate */ CUDA_FUNC void sum_var_prop_opposite(CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, CL_CS_MEM cl_constr* current_cs, bool* prop_ok, __global int* terms_mem TTL_CTR) { int sum = current_cs->n_c_vs - 1; int y_id = vs_per_c_idx[sum]; __global int* mins = terms_mem; int min, max; int i; mins[sum] = V_MIN(vs_prop_[y_id]); // if the sum of the minimums of x is equal to y min = 0; max = 0; for (i = 0; i < sum; i++) { CHECK_TTL(ttl_ctr, 228) min += V_MIN(vs_prop_[i]); max += V_MAX(vs_prop_[i]); } if (min == max && min == mins[sum] && V_N_VALS(vs_prop_[y_id]) == 1) { *prop_ok = 0; return; } } #endif CUDA_FUNC void sum_var_propagate(CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_, bool* prop_ok, __global int* terms_mem PROPAGATED_FUNC CS_IGNORE_FUNC TTL_CTR) { #if CS_R_SUM_VAR == 0 sum_var_prop(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok, terms_mem CS_IGNORE_CALL TTL_CTR_V); #if CL_STATS == 1 *propagated = true; #endif #elif CS_R_SUM_VAR == 1 if (current_cs->reified == 1) { if (V_N_VALS(vs_prop_[current_cs->reif_var_id]) > 1) { sum_var_reif(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, terms_mem CS_IGNORE_CALL TTL_CTR_V); } else { if (V_MIN(vs_prop_[current_cs->reif_var_id]) == 1) { sum_var_prop(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok, terms_mem CS_IGNORE_CALL TTL_CTR_V); } else { sum_var_prop_opposite(vs_per_c_idx, vs_prop_, current_cs, prop_ok, terms_mem TTL_CTR_V); } #if CL_STATS == 1 *propagated = true; #endif } } else { sum_var_prop(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok, terms_mem CS_IGNORE_CALL TTL_CTR_V); #if CL_STATS == 1 *propagated = true; #endif } #endif } #endif