Commit 6be7d8eed1a8da582ce0eed8963736c883e35d15

Authored by Francisco Coelho
1 parent 75457690
Exists in master

Organised text

text/summaries/00_PASP_credal.md 0 → 100644
@@ -0,0 +1,143 @@ @@ -0,0 +1,143 @@
  1 +# Probabilistic Answer Set Programming
  2 +
  3 +## Non-stratified programs
  4 +
  5 +> Minimal example of **non-stratified program**.
  6 +
  7 +The following annotated LP, with clauses $c_1, c_2, c_3$ respectively, is non-stratified (because has a cycle with negated arcs) but no head is disjunctive:
  8 +```prolog
  9 +0.3::a. % c1
  10 +s :- not w, not a. % c2
  11 +w :- not s. % c3
  12 +```
  13 +
  14 +This program has three stable models:
  15 +$$
  16 +\begin{aligned}
  17 +m_1 &= \set{ a, w } \cr
  18 +m_2 &= \set{ \neg a, s } \cr
  19 +m_3 &= \set{ \neg a, w }
  20 +\end{aligned}
  21 +$$
  22 +
  23 +The probabilistic clause `0.3::a.` defines a **total choice**
  24 +$$
  25 +\Theta = \set{
  26 + \theta_1 = \set{ a },
  27 + \theta_2 = \set{ \neg a }
  28 +}
  29 +$$
  30 +such that
  31 +$$
  32 +\begin{aligned}
  33 +P(\Theta = \set{ a }) &= 0.3\cr
  34 +P(\Theta = \set{ \neg a }) &= 0.7 \cr
  35 +\end{aligned}
  36 +$$
  37 +
  38 +> While it is natural to extend $P( m_1 ) = 0.3$ from $P(\theta_1) = 0.3$ there is no clear way to assign $P(m_2), P(m_3)$ since both models result from the total choice $\theta_2$.
  39 +
  40 +
  41 +
  42 +Under the **CWA**, $\sim\!\!q \models \neg q$, so $c_2, c_3$ induce probabilities:
  43 +
  44 +$$
  45 +\begin{aligned}
  46 +p_a &= P(a | \Theta) \cr
  47 +p_s &= P(s | \Theta) &= (1 - p_w)(1 - p_a) \cr
  48 +p_w &= P(w | \Theta) &= (1 - p_w)
  49 +\end{aligned}
  50 +$$
  51 +from which results
  52 +$$
  53 +\begin{equation}
  54 +p_s = p_s(1 - p_a).
  55 +\end{equation}
  56 +$$
  57 +
  58 +So, if $\Theta = \theta_1 = \set{ a }$ (one stable model):
  59 +
  60 +- We have $p_a = P(a | \Theta = \set{ a }) = 1$.
  61 +- Equation (1) becomes $p_s = 0$.
  62 +- From $p_w = 1 - p_s$ we get $P(w | \Theta) = 1$.
  63 +
  64 +and if $\Theta = \theta_2 = \set{ \neg a }$ (two stable models):
  65 +
  66 +- We have $p_a = P(a | \Theta = \set{ \neg a }) = 0$.
  67 +- Equation (1) becomes $p_s = p_s$; Since we know nothing about $p_s$, we let $p_s = \alpha \in \left[0, 1\right]$.
  68 +- We still have the relation $p_w = 1 - p_s$ so $p_w = 1 - \alpha$.
  69 +
  70 +We can now define the **marginals** for $s, w$:
  71 +$$
  72 +\begin{aligned}
  73 +P(s) &=\sum_\theta P(s|\theta)P(\theta)= 0.7\alpha \cr
  74 +P(w) &=\sum_\theta P(s|\theta)P(\theta)= 0.3 + 0.7(1 - \alpha) \cr
  75 +\alpha &\in\left[ 0, 1 \right]
  76 +\end{aligned}
  77 +$$
  78 +
  79 +> The parameter $\alpha$ not only **expresses insufficient information** to sharply define $p_s$ but also **relates** $p_s$ and $p_w$.
  80 +
  81 +## Disjunctive heads
  82 +
  83 +> Minimal example of **disjunctive heads** program.
  84 +
  85 +Consider this LP
  86 +
  87 +```prolog
  88 +0.3::a.
  89 +b ; c :- a.
  90 +```
  91 +
  92 +with three stable models:
  93 +$$
  94 +\begin{aligned}
  95 +m_1 &= \set{ \neg a } \cr
  96 +m_2 &= \set{ a, b } \cr
  97 +m_3 &= \set{ a, c }
  98 +\end{aligned}
  99 +$$
  100 +
  101 +Again, $P(m_1) = 0.3$ is quite natural but there are no clear assignments for $P(m_2), P(m_3)$.
  102 +
  103 +The total choices here are
  104 +$$
  105 +\Theta = \set{
  106 + \theta_1 = \set{ a }
  107 + \theta_2 = \set{ \neg a }
  108 +}
  109 +$$
  110 +such that
  111 +$$
  112 +\begin{aligned}
  113 +P(\Theta = \set{ a }) &= 0.3\cr
  114 +P(\Theta = \set{ \neg a }) &= 0.7 \cr
  115 +\end{aligned}
  116 +$$
  117 +and the LP induces
  118 +$$
  119 +P(b \vee c | \Theta) = P(a | \Theta).
  120 +$$
  121 +
  122 +Since the disjunctive expands as
  123 +$$
  124 +\begin{equation}
  125 +P(b \vee c | \Theta) = P(b | \Theta) + P( c | \Theta) - P(b \wedge c | \Theta)
  126 +\end{equation}
  127 +$$
  128 +and we know that $P(b \vee c | \Theta) = P(a | \Theta)$ we need two independent parameters, for example
  129 +$$
  130 +\begin{aligned}
  131 +P(b | \Theta) &= \beta \cr
  132 +P(c | \Theta) &= \gamma \cr
  133 +\end{aligned}
  134 +$$
  135 +where
  136 +$$
  137 +\begin{aligned}
  138 + \alpha & \in \left[0, 0.3\right] \cr
  139 + \beta & \in \left[0, \alpha\right]
  140 +\end{aligned}
  141 +$$
  142 +
  143 +This example also calls for reconsidering the CWA since it entails that **we should assume that $b$ and $c$ are conditionally independent given $a$.**
0 \ No newline at end of file 144 \ No newline at end of file
text/summaries/00_pasp.md 0 → 100644
@@ -0,0 +1,18 @@ @@ -0,0 +1,18 @@
  1 +# Probabilistic ASP
  2 +
  3 +## Weighted Approach
  4 +
  5 +1. **Total Choices.** $N(C = x) = \prod_{a \in x} w_a \prod_{\neg a \in x} (1 - w_a)$.
  6 +2. **Stable Models.** $N(S = x | C = c) = \alpha_{x,c}$,
  7 + where the set of parameters $\alpha_{x,c}$ is such that:
  8 + $$
  9 + \begin{cases}
  10 + \alpha_{x,c} \geq 0, & \forall c, x\cr
  11 + \alpha_{x,c} = 0, & \forall x \not\supseteq c \cr
  12 + \sum_{x} \alpha_{x,c} = 1, & \forall c.
  13 + \end{cases}
  14 + $$
  15 +3. **Worlds.** $N(W = x)$
  16 + 1. If $x$ is a _total choice_: $
  17 + N(W = x) = \prod_{a \in x} w_a \prod_{\neg a \in x} (1 - w_a).
  18 + $$
0 \ No newline at end of file 19 \ No newline at end of file