Commit 75457690bb885cc229cb0d4f29f10dd08782a4ce

Authored by Francisco Coelho
1 parent 64dd7c8f
Exists in master

Dealing with sub- and supersets.

code/asp/disj.lp
1 1 % prob(a) = 0.3
2 2 a ; -a.
3   -b ; c :- a.
4 3 \ No newline at end of file
  4 +b ; c :- a.
  5 +
  6 +d ; -d.
  7 +b :- c, d.
5 8 \ No newline at end of file
... ...
text/pre-paper.pdf
No preview for this file type
text/pre-paper.tex
1 1 \documentclass[a4paper, 12pt]{article}
2 2  
3 3 \usepackage[x11colors]{xcolor}
  4 +%
  5 +\usepackage{tikz}
  6 +\usetikzlibrary{calc}
  7 +%
4 8 \usepackage{hyperref}
5 9 \hypersetup{
6 10 colorlinks=true,
7 11 linkcolor=blue,
8 12 }
9   -
  13 +%
10 14 \usepackage{commath}
11 15 \usepackage{amsthm}
12 16 \newtheorem{assumption}{Assumption}
... ... @@ -155,17 +159,39 @@ Equation \ref{eq:world.fold.superset} results from conditional independence of t
155 159 Stable models are conditionally independent, given their total choices.
156 160 \end{assumption}
157 161  
158   -Consider the stable models $ab, ac$ from the example above. They result from the clause $b \vee c \leftarrow a$ and the total choice $a$. These formulas alone impose no relation between $b$ and $c$ (given $a$), so none should be assumed. Dependence relations are discussed in Subsection (\ref{subsec:dependence}).
  162 +Consider the stable models $ab, ac$ from the example above. They result from the clause $b \vee c \leftarrow a$ and the total choice $a$. These formulas alone impose no relation between $b$ and $c$ (given $a$), so none should be assumed. Dependence relations are further discussed in Subsection (\ref{subsec:dependence}).
159 163  
160 164 % SUBSET
  165 +\hrule
161 166  
  167 +\bigskip
162 168 I'm not sure about what to say here.\marginpar{todo}
163 169  
  170 +My first guess was
164 171 \begin{equation*}
165 172 \pr{W = w \given C = c} = \sum_{s \supset w}\pr{S = s \given C = c}.
166 173 \end{equation*}
167 174  
168   -But! $\pr{W = w \given C = c}$ already separates $\pr{W}$ into \textbf{disjoint}
  175 +$\pr{W = w \given C = c}$ already separates $\pr{W}$ into \textbf{disjoint} events!
  176 +
  177 +Also, I am assuming that stable models are independent.
  178 +
  179 +This would entail $p(w) = p(s_1) + p(s_2) - p(s_1)p(s_2)$ \textit{if I'm bound to set inclusion}. But I'm not. I'm defining a relation
  180 +
  181 +Also, if I set $p(w) = p(s_1) + p(s_2)$ and respect the laws of probability, this entails $p(s_1)p(s_2) = 0$.
  182 +
  183 +So, maybe what I want is (1) to define the cover $\hat{w} = \cup_{s \supset w} s$
  184 +
  185 +\begin{equation*}
  186 + \pr{W = w \given C = c} = \sum_{s \supset w}\pr{S = s \given C = c} - \pr{W = \hat{w} \given C = c}.
  187 +\end{equation*}
  188 +
  189 +But this doesn't works, because we'd get $\pr{W = a \given C = a} < 1$.
  190 +%
  191 +
  192 +%
  193 +\bigskip
  194 +\hrule
169 195  
170 196 % INDEPENDENCE
171 197  
... ... @@ -188,9 +214,9 @@ $
188 214 $.
189 215  
190 216  
191   -The interesting case is the subtree of the total choice $ac$. Notice that no stable model $s$ contains $adc$ because (1) $adb$ is a stable model and (2) no stable model contains $adc$, because if $adc \subset s$ then $b \in s$ and $adb \subset s$.
  217 +The interesting case is the subtree of the total choice $ad$. Notice that no stable model $s$ contains $adc$ because (1) $adb$ is a stable model and (2) if $adc \subset s$ then $b \in s$ so $adb \subset s$.
192 218  
193   -Following the case of equations (\ref{eq:world.fold.stablemodel}) and (\ref{eq:world.fold.independent}) this sets
  219 +Following equations (\ref{eq:world.fold.stablemodel}) and (\ref{eq:world.fold.independent}) this sets
194 220 \begin{equation*}
195 221 \begin{cases}
196 222 \pr{W = adc \given C = ad} = 0,\cr
... ... @@ -200,7 +226,7 @@ Following the case of equations (\ref{eq:world.fold.stablemodel}) and (\ref{eq:w
200 226 which concentrates all probability mass from the total choice $ad$ in the $adb$ branch, including the node $W = adbc$. This leads to the following cases:
201 227 $$
202 228 \begin{array}{l|r}
203   - x & \pr{x \given C = ad}\
  229 + x & \pr{W = x \given C = ad}\
204 230 \hline
205 231 ad & 1 \\
206 232 adb & 1\\
... ... @@ -208,8 +234,22 @@ $$
208 234 adbc & 1
209 235 \end{array}
210 236 $$
211   -so, for $C = ad$, $\pr{b} = 2/3, \pr{c} = 1/3, \pr{b,c} = 1/3 \not= \pr{b}\pr{c}$.
  237 +so, for $C = ad$,
  238 +$$
  239 +\begin{aligned}
  240 + \pr{W = b} &= \frac{2}{4} \cr
  241 + \pr{W = c} &= \frac{1}{4} \cr
  242 + \pr{W = bc} &= \frac{1}{4} \cr
  243 + &\not= \pr{W = b}\pr{W = c}
  244 +\end{aligned}
  245 +$$
  246 +\textit{i.e.} the events $W = b$ and $W = c$ are dependent and that dependence results directly from the segment $0.2::d, b \leftarrow c \wedge d$ in the specification.
  247 +
212 248  
  249 +%
  250 +
  251 +%
  252 +\hrule
213 253 \begin{quotation}\note{Todo}
214 254  
215 255 Prove the four world cases (done), support the product (done) and sum (tbd) options, with the independence assumptions.
... ...