diff --git a/text/summaries/00_PASP_credal.md b/text/summaries/00_PASP_credal.md new file mode 100644 index 0000000..1e56cbb --- /dev/null +++ b/text/summaries/00_PASP_credal.md @@ -0,0 +1,143 @@ +# Probabilistic Answer Set Programming + +## Non-stratified programs + +> Minimal example of **non-stratified program**. + +The following annotated LP, with clauses $c_1, c_2, c_3$ respectively, is non-stratified (because has a cycle with negated arcs) but no head is disjunctive: +```prolog +0.3::a. % c1 +s :- not w, not a. % c2 +w :- not s. % c3 +``` + +This program has three stable models: +$$ +\begin{aligned} +m_1 &= \set{ a, w } \cr +m_2 &= \set{ \neg a, s } \cr +m_3 &= \set{ \neg a, w } +\end{aligned} +$$ + +The probabilistic clause `0.3::a.` defines a **total choice** +$$ +\Theta = \set{ + \theta_1 = \set{ a }, + \theta_2 = \set{ \neg a } +} +$$ +such that +$$ +\begin{aligned} +P(\Theta = \set{ a }) &= 0.3\cr +P(\Theta = \set{ \neg a }) &= 0.7 \cr +\end{aligned} +$$ + +> While it is natural to extend $P( m_1 ) = 0.3$ from $P(\theta_1) = 0.3$ there is no clear way to assign $P(m_2), P(m_3)$ since both models result from the total choice $\theta_2$. + + + +Under the **CWA**, $\sim\!\!q \models \neg q$, so $c_2, c_3$ induce probabilities: + +$$ +\begin{aligned} +p_a &= P(a | \Theta) \cr +p_s &= P(s | \Theta) &= (1 - p_w)(1 - p_a) \cr +p_w &= P(w | \Theta) &= (1 - p_w) +\end{aligned} +$$ +from which results +$$ +\begin{equation} +p_s = p_s(1 - p_a). +\end{equation} +$$ + +So, if $\Theta = \theta_1 = \set{ a }$ (one stable model): + +- We have $p_a = P(a | \Theta = \set{ a }) = 1$. +- Equation (1) becomes $p_s = 0$. +- From $p_w = 1 - p_s$ we get $P(w | \Theta) = 1$. + +and if $\Theta = \theta_2 = \set{ \neg a }$ (two stable models): + +- We have $p_a = P(a | \Theta = \set{ \neg a }) = 0$. +- Equation (1) becomes $p_s = p_s$; Since we know nothing about $p_s$, we let $p_s = \alpha \in \left[0, 1\right]$. +- We still have the relation $p_w = 1 - p_s$ so $p_w = 1 - \alpha$. + +We can now define the **marginals** for $s, w$: +$$ +\begin{aligned} +P(s) &=\sum_\theta P(s|\theta)P(\theta)= 0.7\alpha \cr +P(w) &=\sum_\theta P(s|\theta)P(\theta)= 0.3 + 0.7(1 - \alpha) \cr +\alpha &\in\left[ 0, 1 \right] +\end{aligned} +$$ + +> The parameter $\alpha$ not only **expresses insufficient information** to sharply define $p_s$ but also **relates** $p_s$ and $p_w$. + +## Disjunctive heads + +> Minimal example of **disjunctive heads** program. + +Consider this LP + +```prolog +0.3::a. +b ; c :- a. +``` + +with three stable models: +$$ +\begin{aligned} +m_1 &= \set{ \neg a } \cr +m_2 &= \set{ a, b } \cr +m_3 &= \set{ a, c } +\end{aligned} +$$ + +Again, $P(m_1) = 0.3$ is quite natural but there are no clear assignments for $P(m_2), P(m_3)$. + +The total choices here are +$$ +\Theta = \set{ + \theta_1 = \set{ a } + \theta_2 = \set{ \neg a } +} +$$ +such that +$$ +\begin{aligned} +P(\Theta = \set{ a }) &= 0.3\cr +P(\Theta = \set{ \neg a }) &= 0.7 \cr +\end{aligned} +$$ +and the LP induces +$$ +P(b \vee c | \Theta) = P(a | \Theta). +$$ + +Since the disjunctive expands as +$$ +\begin{equation} +P(b \vee c | \Theta) = P(b | \Theta) + P( c | \Theta) - P(b \wedge c | \Theta) +\end{equation} +$$ +and we know that $P(b \vee c | \Theta) = P(a | \Theta)$ we need two independent parameters, for example +$$ +\begin{aligned} +P(b | \Theta) &= \beta \cr +P(c | \Theta) &= \gamma \cr +\end{aligned} +$$ +where +$$ +\begin{aligned} + \alpha & \in \left[0, 0.3\right] \cr + \beta & \in \left[0, \alpha\right] +\end{aligned} +$$ + +This example also calls for reconsidering the CWA since it entails that **we should assume that $b$ and $c$ are conditionally independent given $a$.** \ No newline at end of file diff --git a/text/summaries/00_pasp.md b/text/summaries/00_pasp.md new file mode 100644 index 0000000..f64edbc --- /dev/null +++ b/text/summaries/00_pasp.md @@ -0,0 +1,18 @@ +# Probabilistic ASP + +## Weighted Approach + +1. **Total Choices.** $N(C = x) = \prod_{a \in x} w_a \prod_{\neg a \in x} (1 - w_a)$. +2. **Stable Models.** $N(S = x | C = c) = \alpha_{x,c}$, + where the set of parameters $\alpha_{x,c}$ is such that: + $$ + \begin{cases} + \alpha_{x,c} \geq 0, & \forall c, x\cr + \alpha_{x,c} = 0, & \forall x \not\supseteq c \cr + \sum_{x} \alpha_{x,c} = 1, & \forall c. + \end{cases} + $$ +3. **Worlds.** $N(W = x)$ + 1. If $x$ is a _total choice_: $ + N(W = x) = \prod_{a \in x} w_a \prod_{\neg a \in x} (1 - w_a). + $$ \ No newline at end of file -- libgit2 0.21.2