Commit 8751b3923725ca78bc593ea1bced0b9c28ff08ac

Authored by Francisco Coelho
1 parent 505cdc43
Exists in master

Completing the SBF example.

text/paper_01/pre-paper.pdf
No preview for this file type
text/paper_01/pre-paper.tex
1 \documentclass[a4paper, 12pt]{article} 1 \documentclass[a4paper, 12pt]{article}
2 2
3 \usepackage[ 3 \usepackage[
4 - bibstyle=numeric,  
5 - citestyle=numeric 4 +bibstyle=numeric,
  5 +citestyle=numeric
6 ]{biblatex} %Imports biblatex package 6 ]{biblatex} %Imports biblatex package
7 \addbibresource{zugzwang.bib} %Import the bibliography file 7 \addbibresource{zugzwang.bib} %Import the bibliography file
8 \usepackage[x11colors]{xcolor} 8 \usepackage[x11colors]{xcolor}
9 -% 9 +
10 \usepackage{tikz} 10 \usepackage{tikz}
11 \tikzset{ 11 \tikzset{
12 - event/.style={},  
13 - smodel/.style={fill=gray!25},  
14 - tchoice/.style={draw, circle},  
15 - indep/.style={draw, dashed},  
16 - proptc/.style = {-latex, dashed},  
17 - propsm/.style = {-latex, thick},  
18 - doubt/.style = {gray} 12 +event/.style={},
  13 +smodel/.style={fill=gray!25},
  14 +tchoice/.style={draw, circle},
  15 +indep/.style={draw, dashed},
  16 +proptc/.style = {-latex, dashed},
  17 +propsm/.style = {-latex, thick},
  18 +doubt/.style = {gray}
19 } 19 }
20 \usetikzlibrary{calc, positioning} 20 \usetikzlibrary{calc, positioning}
21 -% 21 +
22 \usepackage{hyperref} 22 \usepackage{hyperref}
23 \hypersetup{ 23 \hypersetup{
24 - colorlinks=true,  
25 - linkcolor=blue,  
26 - citecolor=blue, 24 +colorlinks=true,
  25 +linkcolor=blue,
  26 +citecolor=blue,
27 } 27 }
28 -% 28 +
29 \usepackage{commath} 29 \usepackage{commath}
30 \usepackage{amsthm} 30 \usepackage{amsthm}
31 \newtheorem{assumption}{Assumption} 31 \newtheorem{assumption}{Assumption}
@@ -66,12 +66,14 @@ @@ -66,12 +66,14 @@
66 \newcommand{\class}[1]{\ensuremath{[{#1}]_{\sim}}} 66 \newcommand{\class}[1]{\ensuremath{[{#1}]_{\sim}}}
67 \newcommand{\urep}[1]{\ensuremath{\rep{#1}{}}} 67 \newcommand{\urep}[1]{\ensuremath{\rep{#1}{}}}
68 \newcommand{\lrep}[1]{\ensuremath{\rep{}{#1}}} 68 \newcommand{\lrep}[1]{\ensuremath{\rep{}{#1}}}
69 -\newcommand{\rep}[2]{\left\langle #1 \middle| #2 \right\rangle} 69 +\newcommand{\rep}[2]{\ensuremath{\left\langle #1 \middle| #2 \right\rangle}}
70 \newcommand{\inconsistent}{\bot} 70 \newcommand{\inconsistent}{\bot}
71 \newcommand{\given}{\ensuremath{~\middle|~}} 71 \newcommand{\given}{\ensuremath{~\middle|~}}
72 \newcommand{\emptyevent}{\ensuremath{\vartriangle}} 72 \newcommand{\emptyevent}{\ensuremath{\vartriangle}}
73 \newcommand{\indepclass}{\ensuremath{\Diamond}} 73 \newcommand{\indepclass}{\ensuremath{\Diamond}}
74 \newcommand{\probfact}[2]{\ensuremath{#1\!::\!#2}} 74 \newcommand{\probfact}[2]{\ensuremath{#1\!::\!#2}}
  75 +\newcommand{\tcgen}[1]{\ensuremath{\widehat{#1}}}
  76 +\newcommand{\lfrac}[2]{\ensuremath{{#1}/{#2}}}
75 77
76 \newcommand{\todo}[1]{{\color{red!50!black}(\emph{#1})}} 78 \newcommand{\todo}[1]{{\color{red!50!black}(\emph{#1})}}
77 \newcommand{\remark}[2]{\uwave{#1}~{\color{green!40!black}(\emph{#2})}} 79 \newcommand{\remark}[2]{\uwave{#1}~{\color{green!40!black}(\emph{#2})}}
@@ -79,7 +81,7 @@ @@ -79,7 +81,7 @@
79 \newcommand{\franc}[1]{{\color{orange!60!black}#1}} 81 \newcommand{\franc}[1]{{\color{orange!60!black}#1}}
80 \newcommand{\bruno}{\color{red!60!blue}} 82 \newcommand{\bruno}{\color{red!60!blue}}
81 % 83 %
82 -% ACRONYMS 84 +% Acronyms
83 % 85 %
84 \acrodef{BK}[BK]{background knowledge} 86 \acrodef{BK}[BK]{background knowledge}
85 \acrodef{ASP}[ASP]{answer set program} 87 \acrodef{ASP}[ASP]{answer set program}
@@ -90,34 +92,22 @@ @@ -90,34 +92,22 @@
90 \acrodef{SM}[SM]{stable model} 92 \acrodef{SM}[SM]{stable model}
91 \acrodef{SC}[SC]{stable core} 93 \acrodef{SC}[SC]{stable core}
92 \acrodef{KL}[KL]{Kullback-Leibler} 94 \acrodef{KL}[KL]{Kullback-Leibler}
93 -%  
94 -%  
95 -% 95 +
96 \title{Zugzwang\\\emph{Logic and Artificial Intelligence}\\{\bruno Why this title?}} 96 \title{Zugzwang\\\emph{Logic and Artificial Intelligence}\\{\bruno Why this title?}}
  97 +
97 \author{ 98 \author{
98 - \begin{tabular}{ccc}  
99 - Francisco Coelho  
100 - \footnote{Universidade de ร‰vora}  
101 - & Bruno Dinis  
102 - \footnote{Universidade de ร‰vora}  
103 - & Salvador Abreu  
104 - \footnote{Universidade de ร‰vora}  
105 - \\  
106 - \texttt{fc@uevora.pt}  
107 - & \texttt{bruno.dinis@uevora.pt}  
108 - & \texttt{spa@uevora.pt}  
109 - % \\  
110 - % \begin{minipage}{0.3\textwidth}\centering  
111 - % Universidade de ร‰vora and NOVA\textbf{LINCS}  
112 - % \end{minipage}  
113 - % &  
114 - % \begin{minipage}{0.3\textwidth}\centering  
115 - % Universidade de ร‰vora  
116 - % \end{minipage}  
117 - % & \begin{minipage}{0.3\textwidth}\centering  
118 - % Universidade de ร‰vora and NOVA\textbf{LINCS}  
119 - % \end{minipage}  
120 - \end{tabular} 99 +\begin{tabular}{ccc}
  100 + Francisco Coelho
  101 + \footnote{Universidade de ร‰vora}
  102 + & Bruno Dinis
  103 + \footnote{Universidade de ร‰vora}
  104 + & Salvador Abreu
  105 + \footnote{Universidade de ร‰vora}
  106 + \\
  107 + \texttt{fc@uevora.pt}
  108 + & \texttt{bruno.dinis@uevora.pt}
  109 + & \texttt{spa@uevora.pt}
  110 +\end{tabular}
121 } 111 }
122 112
123 \begin{document} 113 \begin{document}
@@ -133,10 +123,9 @@ @@ -133,10 +123,9 @@
133 123
134 \section{Introduction and Motivation} 124 \section{Introduction and Motivation}
135 125
136 -  
137 \todo{Define and/or give references to all necessary concepts used in the paper} 126 \todo{Define and/or give references to all necessary concepts used in the paper}
138 -  
139 \todo{state of the art; references} 127 \todo{state of the art; references}
  128 +
140 \Acf{ASP} is a logic programming paradigm based on the \ac{SM} semantics of \acp{NP} that can be implemented using the latest advances in SAT solving technology. Unlike ProLog, \ac{ASP} is a truly declarative language that supports language constructs such as disjunction in the head of a clause, choice rules, and hard and weak constraints. 129 \Acf{ASP} is a logic programming paradigm based on the \ac{SM} semantics of \acp{NP} that can be implemented using the latest advances in SAT solving technology. Unlike ProLog, \ac{ASP} is a truly declarative language that supports language constructs such as disjunction in the head of a clause, choice rules, and hard and weak constraints.
141 130
142 \todo{references} 131 \todo{references}
@@ -147,9 +136,6 @@ The \ac{DS} is a key approach to extend logical representations with probabilist @@ -147,9 +136,6 @@ The \ac{DS} is a key approach to extend logical representations with probabilist
147 \label{eq:prob.total.choice} 136 \label{eq:prob.total.choice}
148 \end{equation} 137 \end{equation}
149 138
150 -% \todo{Insert simple example?}  
151 -  
152 -  
153 Our goal is to extend this probability, from \acp{TC}, to cover the \emph{specification} domain. We use the term ``specification'' as set of rules and facts, plain and probabilistic, to decouple it from any computational semantics, implied, at least implicitly, by the term ``program''. We can foresee at least two key applications of this extended probability: 139 Our goal is to extend this probability, from \acp{TC}, to cover the \emph{specification} domain. We use the term ``specification'' as set of rules and facts, plain and probabilistic, to decouple it from any computational semantics, implied, at least implicitly, by the term ``program''. We can foresee at least two key applications of this extended probability:
154 140
155 \begin{enumerate} 141 \begin{enumerate}
@@ -157,16 +143,13 @@ Our goal is to extend this probability, from \acp{TC}, to cover the \emph{specif @@ -157,16 +143,13 @@ Our goal is to extend this probability, from \acp{TC}, to cover the \emph{specif
157 \item Also, given a dataset and a divergence measure, the specification can be scored (by the divergence w.r.t.\ the \emph{empiric} distribution of the dataset), and weighted or sorted amongst other specifications. These are key ingredients in algorithms searching, for example, optimal specifications of a dataset. 143 \item Also, given a dataset and a divergence measure, the specification can be scored (by the divergence w.r.t.\ the \emph{empiric} distribution of the dataset), and weighted or sorted amongst other specifications. These are key ingredients in algorithms searching, for example, optimal specifications of a dataset.
158 \end{enumerate} 144 \end{enumerate}
159 145
160 -%  
161 -%\todo{Outline/Explain our idea, further developed in \cref{sec:extending.probalilities}}  
162 -%  
163 Our idea to extend probabilities starts with the stance that a specification describes an \emph{observable system} and that observed events must be related with the \acp{SM} of that specification. From here, probabilities must be extended from \aclp{TC} to \acp{SM} and then from \acp{SM} to any event. 146 Our idea to extend probabilities starts with the stance that a specification describes an \emph{observable system} and that observed events must be related with the \acp{SM} of that specification. From here, probabilities must be extended from \aclp{TC} to \acp{SM} and then from \acp{SM} to any event.
164 147
165 Extending probability from \acp{TC} to \acp{SM} faces a critical problem, illustrated by the example in \cref{sec:example.1}, concerning situations where multiple \acp{SM}, $ab$ and $ac$, result from a single \ac{TC}, $a$, but there is not enough information (in the specification) to assign a single probability to each \ac{SM}. We propose to address this issue by using algebraic variables to describe that lack of information and then estimate the value of those variables from empirical data. 148 Extending probability from \acp{TC} to \acp{SM} faces a critical problem, illustrated by the example in \cref{sec:example.1}, concerning situations where multiple \acp{SM}, $ab$ and $ac$, result from a single \ac{TC}, $a$, but there is not enough information (in the specification) to assign a single probability to each \ac{SM}. We propose to address this issue by using algebraic variables to describe that lack of information and then estimate the value of those variables from empirical data.
166 149
167 In a related work, \cite{verreet2022inference}, epistemic uncertainty (or model uncertainty) is considered as a lack of knowledge about the underlying model, that may be mitigated via further observations. This seems to presuppose a Bayesian approach to imperfect knowledge in the sense that having further observations allows to improve/correct the model. Indeed, the approach in that work uses Beta distributions in order to be able to learn the full distribution. This approach seems to be specially fitted to being able to tell when some probability lies beneath some given value. \todo{Our approach seems to be similar in spirit. If so, we should mention this in the introduction.} 150 In a related work, \cite{verreet2022inference}, epistemic uncertainty (or model uncertainty) is considered as a lack of knowledge about the underlying model, that may be mitigated via further observations. This seems to presuppose a Bayesian approach to imperfect knowledge in the sense that having further observations allows to improve/correct the model. Indeed, the approach in that work uses Beta distributions in order to be able to learn the full distribution. This approach seems to be specially fitted to being able to tell when some probability lies beneath some given value. \todo{Our approach seems to be similar in spirit. If so, we should mention this in the introduction.}
168 151
169 -\todo{cite \cite{sympy} \franc{--- why? but cite \cite{cozman2020joy} and relate with our work.}} 152 +\todo{cite \cite{sympy} \franc{--- why here? but cite \cite{cozman2020joy} and relate with our work.}}
170 153
171 \todo{Discuss the least informed strategy and the corolary that \aclp{SM} should be conditionally independent on the \acl{TC}.} 154 \todo{Discuss the least informed strategy and the corolary that \aclp{SM} should be conditionally independent on the \acl{TC}.}
172 155
@@ -177,21 +160,24 @@ In a related work, \cite{verreet2022inference}, epistemic uncertainty (or model @@ -177,21 +160,24 @@ In a related work, \cite{verreet2022inference}, epistemic uncertainty (or model
177 \todo{Write an introduction to the section} 160 \todo{Write an introduction to the section}
178 161
179 \begin{example}\label{running.example} 162 \begin{example}\label{running.example}
180 -Consider the following specification  
181 -\begin{equation} 163 + Consider the following specification
  164 +
  165 + \begin{equation}
  166 + \begin{aligned}
  167 + \probfact{0.3}{a}&,\cr
  168 + b \vee c& \leftarrow a.
  169 + \end{aligned}
  170 + \label{eq:example.1}
  171 + \end{equation}
  172 +
  173 + This specification has three \aclp{SM}, $\co{a}, ab$ and $ac$ (see \cref{fig:running.example}). While it is straightforward to set $P(\co{a})=0.7$, there is no further information to assign values to $P(ab)$ and $P(ac)$. Assuming that the \acfp{SM} are (probabilistically) independent, we can use a parameter $\theta$ such that
  174 +
  175 + $$
182 \begin{aligned} 176 \begin{aligned}
183 - \probfact{0.3}{a}&,\cr  
184 - b \vee c& \leftarrow a. 177 + P(ab) &= 0.3 \theta,\cr
  178 + P(ac) &= 0.3 (1 - \theta).
185 \end{aligned} 179 \end{aligned}
186 - \label{eq:example.1}  
187 -\end{equation}  
188 -This specification has three stable models, $\co{a}, ab$ and $ac$ (see \cref{fig:running.example}). While it is straightforward to set $P(\co{a})=0.7$, there is no further information to assign values to $P(ab)$ and $P(ac)$. Assuming that the \acfp{SM} are (probabilistically) independent, we can use a parameter $\theta$ such that  
189 -$$  
190 -\begin{aligned}  
191 -P(ab) &= 0.3 \theta,\cr  
192 -P(ac) &= 0.3 (1 - \theta).  
193 -\end{aligned}  
194 -$$ 180 + $$
195 \end{example} 181 \end{example}
196 182
197 While uncertainty is inherent to the specification it can be mitigated with the help of a dataset: the parameter $\theta$ can be estimated from a empirical distribution \todo{or we can have a distribution of $\theta$}. \todo{point to examples of this in following sections.} 183 While uncertainty is inherent to the specification it can be mitigated with the help of a dataset: the parameter $\theta$ can be estimated from a empirical distribution \todo{or we can have a distribution of $\theta$}. \todo{point to examples of this in following sections.}
@@ -199,11 +185,17 @@ While uncertainty is inherent to the specification it can be mitigated with the @@ -199,11 +185,17 @@ While uncertainty is inherent to the specification it can be mitigated with the
199 In summary, if an \ac{ASP} specification is intended to describe some observable system then: 185 In summary, if an \ac{ASP} specification is intended to describe some observable system then:
200 186
201 \begin{enumerate} 187 \begin{enumerate}
  188 +
202 \item Observations can be used to estimate the value of the parameters (such as $\theta$ above and others entailed from further clauses). 189 \item Observations can be used to estimate the value of the parameters (such as $\theta$ above and others entailed from further clauses).
203 - \item \todo{What about the case where we already know a distribution of $\theta$?} 190 +
  191 + \item \todo{What about the case where we already know a distribution of $\theta$?}
  192 +
204 \item With a probability set for the \aclp{SM}, we want to extend it to all the events of the specification domain. 193 \item With a probability set for the \aclp{SM}, we want to extend it to all the events of the specification domain.
  194 +
205 \item This extended probability can then be related to the \emph{empirical distribution}, using a probability divergence, such as \ac{KL}; and the divergence value used as a \emph{performance} measure of the specification with respect to the observations. 195 \item This extended probability can then be related to the \emph{empirical distribution}, using a probability divergence, such as \ac{KL}; and the divergence value used as a \emph{performance} measure of the specification with respect to the observations.
  196 +
206 \item If that specification is only but one of many possible candidates then that performance measure can be used, \emph{e.g.} as fitness, by algorithms searching (optimal) specifications of a dataset of observations. 197 \item If that specification is only but one of many possible candidates then that performance measure can be used, \emph{e.g.} as fitness, by algorithms searching (optimal) specifications of a dataset of observations.
  198 +
207 \end{enumerate} 199 \end{enumerate}
208 200
209 \begin{quote} 201 \begin{quote}
@@ -212,13 +204,13 @@ In summary, if an \ac{ASP} specification is intended to describe some observable @@ -212,13 +204,13 @@ In summary, if an \ac{ASP} specification is intended to describe some observable
212 204
213 Currently, we are addressing the problem of extending a probability function (possibly using parameters such as $\theta$), defined on the \acp{SM} of a specification, to all the events of that specification. Of course, this extension must satisfy the Kolmogorov axioms of probability so that probabilistic reasoning is consistent with the \ac{ASP} specification. 205 Currently, we are addressing the problem of extending a probability function (possibly using parameters such as $\theta$), defined on the \acp{SM} of a specification, to all the events of that specification. Of course, this extension must satisfy the Kolmogorov axioms of probability so that probabilistic reasoning is consistent with the \ac{ASP} specification.
214 206
215 -The conditional independence of stable worlds asserts the least informed strategy that we discussed in the introduction and make explicit here: 207 +The conditional independence of stable worlds asserts the \remark{least informed strategy}{references?} that we discussed in the introduction and make explicit here:
216 208
217 \begin{assumption}\label{assumption:smodels.independence} 209 \begin{assumption}\label{assumption:smodels.independence}
218 - \Acl{SM} are conditionally independent, given their total choices. 210 + \Acl{SM} are conditionally independent, given their \aclp{TC} .
219 \end{assumption} 211 \end{assumption}
220 212
221 -The stable models $ab, ac$ from \cref{running.example} result from the clause $b \vee c \leftarrow a$ and the total choice $a$. These formulas alone imposes no relation between $b$ and $c$ (given $a$), so none should be assumed. Dependence relations are further discussed in \cref{subsec:dependence}. 213 +The \aclp{SM} $ab, ac$ from \cref{running.example} result from the clause $b \vee c \leftarrow a$ and the \acl{TC} $a$. These formulas alone imposes no relation between $b$ and $c$ (given $a$), so none should be assumed. Dependence relations are further discussed in \cref{subsec:dependence}.
222 214
223 \section{Extending Probabilities}\label{sec:extending.probalilities} 215 \section{Extending Probabilities}\label{sec:extending.probalilities}
224 216
@@ -232,6 +224,8 @@ The stable models $ab, ac$ from \cref{running.example} result from the clause $b @@ -232,6 +224,8 @@ The stable models $ab, ac$ from \cref{running.example} result from the clause $b
232 \node[event, below = of ab] (b) {$b$}; 224 \node[event, below = of ab] (b) {$b$};
233 \node[event, below = of ac] (c) {$c$}; 225 \node[event, below = of ac] (c) {$c$};
234 \node[event, above right = of ab] (abc) {$abc$}; 226 \node[event, above right = of ab] (abc) {$abc$};
  227 + \node[event, above left = of ab] (abC) {$ab\co{c}$};
  228 + \node[event, above right = of ac] (aBc) {$a\co{b}c$};
235 \node[indep, right = of ac] (bc) {$bc$}; 229 \node[indep, right = of ac] (bc) {$bc$};
236 \node[tchoice, smodel, below right = of bc] (A) {$\co{a}$}; 230 \node[tchoice, smodel, below right = of bc] (A) {$\co{a}$};
237 \node[event, above = of A] (Ac) {$\co{a}c$}; 231 \node[event, above = of A] (Ac) {$\co{a}c$};
@@ -239,17 +233,20 @@ The stable models $ab, ac$ from \cref{running.example} result from the clause $b @@ -239,17 +233,20 @@ The stable models $ab, ac$ from \cref{running.example} result from the clause $b
239 % ---- 233 % ----
240 \draw[doubt] (a) to[bend left] (ab); 234 \draw[doubt] (a) to[bend left] (ab);
241 \draw[doubt] (a) to[bend right] (ac); 235 \draw[doubt] (a) to[bend right] (ac);
242 - 236 +
243 \draw[doubt] (ab) to[bend left] (abc); 237 \draw[doubt] (ab) to[bend left] (abc);
244 - \draw[doubt] (ac) to[bend right] (abc); 238 + \draw[doubt] (ab) to[bend right] (abC);
245 239
  240 + \draw[doubt] (ac) to[bend right] (abc);
  241 + \draw[doubt] (ac) to[bend left] (aBc);
  242 +
246 \draw[doubt] (A) to (Ac); 243 \draw[doubt] (A) to (Ac);
247 \draw[doubt] (A) to (Abc); 244 \draw[doubt] (A) to (Abc);
248 - 245 +
249 \draw[doubt] (ab) to[bend right] (E); 246 \draw[doubt] (ab) to[bend right] (E);
250 \draw[doubt] (ac) to[bend right] (E); 247 \draw[doubt] (ac) to[bend right] (E);
251 \draw[doubt] (A) to[bend left] (E); 248 \draw[doubt] (A) to[bend left] (E);
252 - 249 +
253 \draw[doubt] (ab) to (b); 250 \draw[doubt] (ab) to (b);
254 \draw[doubt] (ac) to (c); 251 \draw[doubt] (ac) to (c);
255 % \draw[doubt] (ab) to[bend left] (a); 252 % \draw[doubt] (ab) to[bend left] (a);
@@ -260,8 +257,8 @@ The stable models $ab, ac$ from \cref{running.example} result from the clause $b @@ -260,8 +257,8 @@ The stable models $ab, ac$ from \cref{running.example} result from the clause $b
260 \draw[doubt] (c) to[bend right] (Ac); 257 \draw[doubt] (c) to[bend right] (Ac);
261 \end{tikzpicture} 258 \end{tikzpicture}
262 \end{center} 259 \end{center}
263 - \caption{Events related to the stable models of \cref{running.example}. The circle nodes are \aclp{TC} and shaded nodes are \aclp{SM}. The \emph{empty event}, with no literals, is denoted by $\emptyevent$. Notice that the event $bc$ is not related with any stable model.}  
264 - % \caption{Extending probabilities from total choice nodes to stable models and then to general events in a \emph{node-wise} process quickly leads to coherence problems concerning probability, with no clear systematic approach --- Instead, weight extension can be based in \emph{the relation an event has with the stable models}.{\bruno Why is this comment on the caption?}} 260 +
  261 + \caption{Events related to the \aclp{SM} of \cref{running.example}. The circle nodes are \aclp{TC} and shaded nodes are \aclp{SM}. The \emph{empty event}, with no literals, is denoted by $\emptyevent$. Notice that the event $bc$ is not related with any \acl{SM}.}
265 \label{fig:running.example} 262 \label{fig:running.example}
266 \end{figure} 263 \end{figure}
267 264
@@ -269,22 +266,124 @@ The stable models $ab, ac$ from \cref{running.example} result from the clause $b @@ -269,22 +266,124 @@ The stable models $ab, ac$ from \cref{running.example} result from the clause $b
269 266
270 \note{$\emptyevent$ notation introduced in \cref{fig:running.example}.} 267 \note{$\emptyevent$ notation introduced in \cref{fig:running.example}.}
271 268
272 -The diagram in \cref{fig:running.example} illustrates the problem of extending probabilities from total choice nodes to stable models and then to general events in a \emph{node-wise} process. This quickly leads to coherence problems concerning probability, with no clear systematic approach --- Instead, weight extension can be based in the relation an event has with the stable models. 269 +The diagram in \cref{fig:running.example} illustrates the problem of extending probabilities from \acp{TC} nodes to \acp{SM} and then to general events in a \emph{node-wise} process. This quickly leads to \remark{coherence problems}{for example?} concerning probability, with no clear systematic approach --- Instead, weight extension can be based in the relation an event has with the \aclp{SM}.
273 270
274 \subsection{An Equivalence Relation}\label{subsec:equivalence.relation} 271 \subsection{An Equivalence Relation}\label{subsec:equivalence.relation}
275 272
276 -Given an ASP specification  
277 -% DONE: {\bruno This should be defined somewhere (maybe in the introduction).}  
278 -\remark{{\bruno Introduce also the sets mentioned below}}{how?}  
279 -, we consider the \emph{atoms} $a \in \fml{A}$ and \emph{literals}, $z \in \fml{L}$, \emph{events} $e \in \fml{E} \iff e \subseteq \fml{L}$ and \emph{worlds} $w \in \fml{W}$ (consistent events), \emph{total choices} $c \in \fml{C} \iff c = a \vee \neg a$ and \emph{stable models} $s \in \fml{S}\subset\fml{W}$.  
280 -  
281 -% In a statistical setting, the outcomes are the literals $x$, $\neg x$ for each atom $x$, the events express a set of possible outcomes (including $\emptyset$, $\set{a, b}$, $\set{a, \neg a, b}$, \emph{etc.}), and worlds are events with no contradictions. 273 +\begin{figure}[t]
  274 + \begin{center}
  275 + \begin{tikzpicture}
  276 + \node[event] (E) {$\emptyevent$};
  277 + \node[tchoice, above left = of E] (a) {$a$};
  278 + \node[smodel, above left = of a] (ab) {$ab$};
  279 + \node[smodel, above right = of a] (ac) {$ac$};
  280 + \node[event, below = of ab] (b) {$b$};
  281 + \node[event, below = of ac] (c) {$c$};
  282 + \node[event, above right = of ab] (abc) {$abc$};
  283 + \node[event, above left = of ab] (abC) {$ab\co{c}$};
  284 + \node[event, above right = of ac] (aBc) {$a\co{b}c$};
  285 + \node[indep, right = of ac] (bc) {$bc$};
  286 + \node[tchoice, smodel, below right = of bc] (A) {$\co{a}$};
  287 + \node[event, above = of A] (Ac) {$\co{a}c$};
  288 + \node[event, above right = of Ac] (Abc) {$\co{a}bc$};
  289 + % ----
  290 + \path[draw, rounded corners, fill=cyan, fill opacity=0.1]
  291 + (ab.west) --
  292 + (ab.north west) --
  293 + %
  294 + (abC.south west) --
  295 + (abC.north west) --
  296 + (abC.north) --
  297 + %
  298 + (abc.north east) --
  299 + (abc.east) --
  300 + (abc.south east) --
  301 + %
  302 + (ab.north east) --
  303 + (ab.east) --
  304 + (ab.south east) --
  305 + %
  306 + (a.north east) --
  307 + %
  308 + (E.north east) --
  309 + (E.east) --
  310 + (E.south east) --
  311 + (E.south) --
  312 + (E.south west) --
  313 + %
  314 + (b.south west) --
  315 + %
  316 + (ab.west)
  317 + ;
  318 + % ----
  319 + \path[draw, rounded corners, fill=magenta, fill opacity=0.1]
  320 + (ac.south west) --
  321 + (ac.west) --
  322 + (ac.north west) --
  323 + %
  324 + (abc.south west) --
  325 + (abc.west) --
  326 + (abc.north west) --
  327 + %
  328 + (aBc.north east) --
  329 + (aBc.east) --
  330 + (aBc.south east) --
  331 + %
  332 + (ac.north east) --
  333 + %
  334 + (c.east) --
  335 + %
  336 + (E.east) --
  337 + (E.south east) --
  338 + (E.south) --
  339 + (E.south west) --
  340 + %
  341 + (a.south west) --
  342 + (a.west) --
  343 + (a.north west) --
  344 + (a.north) --
  345 + %
  346 + (ac.south west)
  347 + ;
  348 + % ----
  349 + \path[draw, rounded corners, fill=yellow, fill opacity=0.1]
  350 + % (A.north west) --
  351 + %
  352 + (Ac.north west) --
  353 + %
  354 + (Abc.north west) --
  355 + (Abc.north) --
  356 + (Abc.north east) --
  357 + (Abc.south east) --
  358 + %
  359 + % (Ac.north east) --
  360 + % (Ac.east) --
  361 + %
  362 + % (A.east) --
  363 + (A.south east) --
  364 + %
  365 + (E.south east) --
  366 + (E.south) --
  367 + (E.south west) --
  368 + (E.west) --
  369 + (E.north west) --
  370 + %
  371 + (Ac.north west)
  372 + ;
  373 + \end{tikzpicture}
  374 + \end{center}
  375 +
  376 + \caption{Classes (of consistent events) related to the \aclp{SM} of \cref{running.example} are defined through inclusions. \todo{write the caption}}
  377 + \label{fig:running.example.classes}
  378 +\end{figure}
282 379
  380 +Given an ASP specification,
  381 +\remark{{\bruno Introduce also the sets mentioned below}}{how?}
  382 + we consider the \emph{atoms} $a \in \fml{A}$ and \emph{literals}, $z \in \fml{L}$, \emph{events} $e \in \fml{E} \iff e \subseteq \fml{L}$ and \emph{worlds} $w \in \fml{W}$ (consistent events), \emph{\aclp{TC} } $c \in \fml{C} \iff c = a \vee \neg a$ and \emph{\aclp{SM} } $s \in \fml{S}\subset\fml{W}$.
283 383
284 -Our path starts with a perspective of stable models as playing a role similar to \emph{prime} factors.  
285 -The stable models of a specification are the irreducible events entailed from that specification and any event must be \replace{interpreted}{considered} under its relation with the stable models. 384 +Our path starts with a perspective of \aclp{SM} as playing a role similar to \emph{prime} factors. The \aclp{SM} of a specification are the irreducible events entailed from that specification and any event must be \replace{interpreted}{considered} under its relation with the \aclp{SM}.
286 385
287 -%\remark{\todo{Introduce a structure with worlds, events, and stable models}}{seems irrelevant} 386 +%\remark{\todo{Introduce a structure with worlds, events, and \aclp{SM} }}{seems irrelevant}
288 This focus on the \acp{SM} leads to the following definition: 387 This focus on the \acp{SM} leads to the following definition:
289 388
290 \begin{definition}\label{def:stable.structure} 389 \begin{definition}\label{def:stable.structure}
@@ -292,108 +391,60 @@ This focus on the \acp{SM} leads to the following definition: @@ -292,108 +391,60 @@ This focus on the \acp{SM} leads to the following definition:
292 \end{definition} 391 \end{definition}
293 392
294 393
295 -\todo{expand this text to explain how the stable models form the basis of the equivalence relation}. %This \replace{stance}{} leads to definition \ref{def:rel.events}: 394 +\todo{expand this text to explain how the \aclp{SM} form the basis of the equivalence relation}. %This \replace{stance}{} leads to definition \ref{def:rel.events}:
296 395
297 \begin{definition}\label{def:stable.core} 396 \begin{definition}\label{def:stable.core}
298 - The \emph{\ac{SC}} of the event $e\in \fml{E}$ is  
299 -  
300 - % \begin{equation}  
301 - % \uset{e} = \set{s \in \fml{S} \given e \subseteq s},\label{eq:uset}  
302 - % \end{equation}  
303 - % \begin{equation}  
304 - % \lset{e} = \set{s \in \fml{S} \given e \supseteq s}, \label{eq:lset}  
305 - % \end{equation}  
306 - % \begin{equation}  
307 - % \stablecore{e} = \uset{e} \cup \lset{e} \label{def:stable.core}  
308 - % \end{equation} 397 + The \emph{\ac{SC}} of the event $e\in \fml{E}$ is
309 \begin{equation} 398 \begin{equation}
310 \stablecore{e} := \set{s \in \fml{S} \given s \subseteq e \vee e \subseteq s} \label{eq:stable.core} 399 \stablecore{e} := \set{s \in \fml{S} \given s \subseteq e \vee e \subseteq s} \label{eq:stable.core}
311 \end{equation} 400 \end{equation}
312 -  
313 - \end{definition}  
314 401
315 -We now define an equivalence relation, $\sim$, so that two events are related if either both are inconsistent or both are consistent with the same stable core. 402 +\end{definition}
  403 +
  404 +We now define an equivalence relation, $\sim$, so that two events are related if either both are inconsistent or both are consistent with the same \acl{SC}.
316 405
317 \begin{definition}\label{def:equiv.rel} 406 \begin{definition}\label{def:equiv.rel}
318 -For a given specification, let $u, v \in \fml{E}$. The equivalence relation $\sim$ is defined by 407 + For a given specification, let $u, v \in \fml{E}$. The equivalence relation $\sim$ is defined by
319 \begin{equation} 408 \begin{equation}
320 - u \sim v :\iff u,v \not\in\fml{W} \vee \del{u,v \in \fml{W} \wedge \stablecore{u} = \stablecore{v}}.\label{eq:equiv.rel} 409 + u \sim v :\!\iff u,v \not\in\fml{W} \vee \del{u,v \in \fml{W} \wedge \stablecore{u} = \stablecore{v}}.\label{eq:equiv.rel}
321 \end{equation} 410 \end{equation}
322 \end{definition} 411 \end{definition}
323 412
324 -Observe that the minimality of stable models implies that, in \cref{def:stable.core}, either $e$ is a stable model or one of $s \subseteq e, e \subseteq s$ is never true.  
325 -%  
326 -% \begin{definition}\label{def:smodel.events}  
327 -% For $\set{s_1, \ldots, s_n} \subseteq \fml{S}$ define  
328 -% \begin{equation}  
329 -% \lclass{s_1, \ldots, s_n} = \set{e\in \fml{E}\setminus \fml{S} \given \uset{e} = \set{s_1, \ldots, s_n}},  
330 -% \label{eq:smodel.lclass}  
331 -% \end{equation}  
332 -% \begin{equation}  
333 -% \uclass{s_1, \ldots, s_n} = \set{e\in \fml{E}\setminus \fml{S} \given \lset{e} = \set{s_1, \ldots, s_n}}  
334 -% \label{eq:smodel.uclass}  
335 -% \end{equation}  
336 -% and  
337 -% \begin{equation}  
338 -% \smclass{s_1, \ldots, s_n} = \set{s_1, \ldots, s_n}  
339 -% \label{eq:smodel.smclass}  
340 -% \end{equation}  
341 -% \end{definition}  
342 -%  
343 -This relation defines a partition of the events space, where each class holds a unique relation with the stable models. In particular, we denote each class by: 413 +Observe that the minimality of \aclp{SM} implies that, in \cref{def:stable.core}, either $e$ is a \acl{SM} or one of $s \subseteq e, e \subseteq s$ is never true. This relation defines a partition of the events space, where each class holds a unique relation with the \aclp{SM}. In particular, we denote each class by:
344 \begin{equation} 414 \begin{equation}
345 \class{e} = 415 \class{e} =
346 \begin{cases} 416 \begin{cases}
347 - \inconsistent := \fml{E} \setminus \fml{W} &\text{if~} e \not\in \fml{E} \setminus \fml{W}, \\  
348 - \set{u \in \fml{W} \given \stablecore{u} = \stablecore{e}} &\text{if~} e \in \fml{W}, \\  
349 - % \lclass{\uset{e}} &\text{if~} \uset{e} \not= \emptyset, \\  
350 - % \uclass{\lset{e}} &\text{otherwise}. 417 + \inconsistent := \fml{E} \setminus \fml{W}
  418 + &\text{if~} e \in \fml{E} \setminus \fml{W}, \\
  419 + \set{u \in \fml{W} \given \stablecore{u} = \stablecore{e}}
  420 + &\text{if~} e \in \fml{W},
351 \end{cases}\label{eq:event.class} 421 \end{cases}\label{eq:event.class}
352 \end{equation} 422 \end{equation}
353 423
354 -% The stable core defines a \emph{canonical} representative of each class:  
355 -% \begin{theorem}  
356 -% Let $e\in\fml{E}$ and $\stablecore{e} = \set{s_1, \ldots, s_n} \subseteq \fml{S}$. Then  
357 -% \begin{equation}  
358 -% \class{e} = \class{s_1 \cup \cdots \cup s_n}.  
359 -% \end{equation}  
360 -% We simplify the notation with $\class{s_1, \ldots, s_n} := \class{s_1 \cup \cdots \cup s_n}$.  
361 -% \todo{This only works for consistent $s_1, \ldots, s_n$: $\set{\emptyevent} = \class{\co{a}, ab, ac} \not= \class{a\co{a}bc} = \inconsistent$.}  
362 -% \end{theorem}  
363 -% \begin{proof}  
364 -% \todo{tbd}  
365 -% \end{proof}  
366 -  
367 -The subsets of the stable models, together with $\inconsistent$, form a set of representatives. Consider again Example~\ref{running.example}. As previously mentioned, the stable models are $\fml{S} = \co{a}, ab, ac$ so the quotient set of this relation is: 424 +The subsets of the \aclp{SM}, together with $\inconsistent$, form a set of representatives. Consider again Example~\ref{running.example}. As previously mentioned, the \aclp{SM} are $\fml{S} = \co{a}, ab, ac$ so the quotient set of this relation is:
368 \begin{equation} 425 \begin{equation}
369 \class{\fml{E}} = \set{ 426 \class{\fml{E}} = \set{
370 - \inconsistent,  
371 - \indepclass,  
372 - \class{\co{a}},  
373 - \class{ab},  
374 - \class{ac},  
375 - \class{\co{a}, ab},  
376 - \class{\co{a}, ac},  
377 - \class{ab, ac},  
378 - \class{\co{a}, ab, ac}  
379 - }  
380 -% \begin{aligned}  
381 -% & \inconsistent, \emptyset, \\  
382 -% & \stablecore{\co{a}}, \stablecore{ab}, \stablecore{ac}, \\  
383 -% & \stablecore{\co{a}, ab}, \stablecore{\co{a}, ac}, \stablecore{ab, ac}, \\  
384 -% & \stablecore{\co{a}, ab, ac}.  
385 -% \end{aligned} 427 + \inconsistent,
  428 + \indepclass,
  429 + \class{\co{a}},
  430 + \class{ab},
  431 + \class{ac},
  432 + \class{\co{a}, ab},
  433 + \class{\co{a}, ac},
  434 + \class{ab, ac},
  435 + \class{\co{a}, ab, ac}
  436 + }
386 \end{equation} 437 \end{equation}
387 where $\indepclass$ denotes both the class of \emph{independent} events $e$ such that $\stablecore{e} = \emptyset$ and its core (which is the emptyset). We have: 438 where $\indepclass$ denotes both the class of \emph{independent} events $e$ such that $\stablecore{e} = \emptyset$ and its core (which is the emptyset). We have:
388 \begin{equation*} 439 \begin{equation*}
389 \begin{array}{l|lr} 440 \begin{array}{l|lr}
390 - \text{\textbf{Core}}  
391 - & \text{\textbf{Class}}  
392 - & \text{\textbf{Size}}\\ 441 + \text{\textbf{Core}}, \stablecore{e}
  442 + & \text{\textbf{Class}}, \class{e}
  443 + & \text{\textbf{Size}}, \# \class{e}\\
393 \hline 444 \hline
394 % 445 %
395 \inconsistent 446 \inconsistent
396 - & \text{inconsistent events} 447 + & a\co{a}, \ldots
397 & 37 448 & 37
398 \\ 449 \\
399 % 450 %
@@ -446,23 +497,25 @@ where $\indepclass$ denotes both the class of \emph{independent} events $e$ such @@ -446,23 +497,25 @@ where $\indepclass$ denotes both the class of \emph{independent} events $e$ such
446 \end{equation*} 497 \end{equation*}
447 498
448 \begin{itemize} 499 \begin{itemize}
449 - \item Since all events within an equivalence class are in relation with a specific set of stable models, \emph{weights, including probability, should be constant within classes}: 500 + \item Since all events within an equivalence class are in relation with a specific set of \aclp{SM}, \emph{weights, including probability, should be constant within classes}:
450 \[ 501 \[
451 - \forall u\in \class{e} \left(\pr{u} = \pr{e} \right). 502 + \forall u\in \class{e} \left(\mu\at{u} = \mu\at{e} \right).
452 \] 503 \]
453 - \item So, instead of dealing with $64 = 2^6$ events, we need only to \replace{handle}{handle, at most,} $9 = 2^3 + 1$ classes, well defined in terms of combinations of the stable models. \remark{This seems fine}{but, in general, we will get \emph{much more} stable models than literals, so the number of these classes is much larger than of events!} {\bruno Nevertheless, the equivalence classes alow us to propagate probabilities from total choices to events, as explained in the next subsection.} 504 + \item So, instead of dealing with $64 = 2^6$ events, we consider the $9 = 2^3 + 1$ classes, well defined in terms of combinations of the \aclp{SM}. In general, we have \emph{much more} \aclp{SM} than literals. Nevertheless, the equivalence classes allow us to propagate probabilities from \aclp{TC} to events, as explained in the next subsection.
454 % \item The extended probability \emph{events} are the \emph{classes}. 505 % \item The extended probability \emph{events} are the \emph{classes}.
455 \end{itemize} 506 \end{itemize}
456 507
  508 +
  509 +
457 \subsection{From Total Choices to Events}\label{subsec:from.tchoices.to.events} 510 \subsection{From Total Choices to Events}\label{subsec:from.tchoices.to.events}
458 511
459 \todo{Check adaptation} Our path to set a probability measure on $\fml{E}$ has two phases: 512 \todo{Check adaptation} Our path to set a probability measure on $\fml{E}$ has two phases:
460 -\begin{itemize}  
461 - \item Extending the probabilities, \emph{as weights}, of the total choices to events. 513 +\begin{enumerate}
  514 + \item Extending the probabilities, \emph{as weights}, from the \aclp{TC} to events.
462 \item Normalization of the weights. 515 \item Normalization of the weights.
463 -\end{itemize} 516 +\end{enumerate}
464 517
465 -The ``extension'' phase, traced by equations (\ref{eq:prob.total.choice}) and (\ref{eq:weight.tchoice} --- \ref{eq:weight.events}), starts with the weight (probability) of total choices, $\pw{c} = \pr{C = c}$, expands it to stable models, $\pw{s}$, and then, within the equivalence relation from Equation \eqref{eq:equiv.rel}, to (general) events, $\pw{e}$, including (consistent) worlds. 518 +The ``extension'' phase, traced by equations (\ref{eq:prob.total.choice}) and (\ref{eq:weight.tchoice} --- \ref{eq:weight.events}), starts with the weight (probability) of \aclp{TC}, $\pw{c} = \pr{C = c}$, expands it to \aclp{SM}, $\pw{s}$, and then, within the equivalence relation from \cref{eq:equiv.rel}, to (general) events, $\pw{e}$, including (consistent) worlds.
466 519
467 \begin{description} 520 \begin{description}
468 % 521 %
@@ -472,72 +525,78 @@ The ``extension'' phase, traced by equations (\ref{eq:prob.total.choice}) and (\ @@ -472,72 +525,78 @@ The ``extension'' phase, traced by equations (\ref{eq:prob.total.choice}) and (\
472 \label{eq:weight.tchoice} 525 \label{eq:weight.tchoice}
473 \end{equation} 526 \end{equation}
474 % 527 %
475 - \item[Stable Models.] Each total choice $c$, together with the rules and the other facts of a specification, defines a set of stable models associated with that choice, that we denote by $S_c$. 528 + \item[Stable Models.] Each \acl{TC} $c$, together with the rules and the other facts of a specification, defines a set of \aclp{SM} associated with that choice, that \remark{we denote by $\tcgen{c}$}{put this in the introduction, where core concepts are presented}.
476 529
477 - Given a stable model $s \in \fml{S}$, a total choice $c$, and variables/values $\theta_{s,c} \in \intcc{0, 1}$, 530 + Given a \acl{SM} $s \in \fml{S}$, a \acl{TC} $c$, and variables/values $\theta_{s,c} \in \intcc{0, 1}$,
478 \begin{equation} 531 \begin{equation}
479 \pw{s, c} := \begin{cases} 532 \pw{s, c} := \begin{cases}
480 - \theta_{s,c}\remark{\pw{c}}{\text{maybe not!}} & \text{if~} s \in S_c\cr 533 + \theta_{s,c} & \text{if~} s \in \tcgen{c}\cr
481 0&\text{otherwise} 534 0&\text{otherwise}
482 \end{cases} 535 \end{cases}
483 \label{eq:weight.stablemodel} 536 \label{eq:weight.stablemodel}
484 \end{equation} 537 \end{equation}
485 - such that $\sum_{s\in S_c} \theta_{s,c} = 1$. 538 + such that $\sum_{s\in \tcgen{c}} \theta_{s,c} = 1$.
486 % 539 %
487 - \item[Classes.] \label{item:class.cases} Each class is either the inconsistent class, $\inconsistent$, or is represented by some set of stable models.  
488 - \begin{itemize}  
489 - \item \textbf{Inconsistent Class.} The inconsistent class contains events that are logically inconsistent. Since these events should never be observed: 540 + \item[Classes.] \label{item:class.cases} Each class is either the inconsistent class, $\inconsistent$, or is represented by some set of \aclp{SM}.
  541 + \begin{description}
  542 + \item[Inconsistent Class.] The inconsistent class contains events that are logically inconsistent, thus should never be observed:
490 \begin{equation} 543 \begin{equation}
491 \pw{\inconsistent, c} := 0. 544 \pw{\inconsistent, c} := 0.
492 \label{eq:weight.class.inconsistent} 545 \label{eq:weight.class.inconsistent}
493 \end{equation} 546 \end{equation}
494 - \item \textbf{Independent Class.} A world that neither contains nor is contained in a stable model describes a case that, according to the specification, should never be observed. So the respective weight is set to zero: 547 + \item[Independent Class.] A world that neither contains nor is contained in a \acl{SM} describes a case that, according to the specification, shouldn't exist. So the respective weight is set to zero:
495 \begin{equation} 548 \begin{equation}
496 \pw{\indepclass, c} := 0. 549 \pw{\indepclass, c} := 0.
497 \label{eq:weight.class.independent} 550 \label{eq:weight.class.independent}
498 \end{equation} 551 \end{equation}
499 - \item \textbf{Other Classes.} The extension must be constant within a class, its value should result from the elements in the stable core, and respect the assumption \ref{assumption:smodels.independence} (stable models independence): 552 + \item[Other Classes.] The extension must be constant within a class, its value should result from the elements in the \acl{SC}, and respect the assumption \ref{assumption:smodels.independence} (\aclp{SM} independence):
500 \begin{equation} 553 \begin{equation}
501 - \pw{\class{e}, c} := \prod_{k=1}^{n}\pw{s_k, c},~\text{if}~\stablecore{e} = \set{s_1, \ldots, s_n}. 554 + \pw{\class{e}, c} := \sum_{k=1}^{n}\pw{s_k, c},~\text{if}~\stablecore{e} = \set{s_1, \ldots, s_n}.
502 \label{eq:weight.class.other} 555 \label{eq:weight.class.other}
503 \end{equation} 556 \end{equation}
504 - \end{itemize} 557 + and
  558 + \begin{equation}
  559 + \pw{\class{e}} := \sum_{c \in \fml{C}} \pw{\class{e}, c}\pw{c}.
  560 + \label{eq:weight.class.unconditional}
  561 + \end{equation}
  562 + \remark{}{Changed from $\prod$ to $\sum$ to represent ``either'' instead of ``both'' since the later is not consistent with the ``only one stable model at a time'' assumption.}
  563 + \end{description}
505 % 564 %
506 - \item[Events.] \label{item:event.cases} Each (general) event $e$ is in the class defined by its stable core, $\stablecore{e}$. So, we set: 565 + \item[Events.] \label{item:event.cases} Each (general) event $e$ is in the class defined by its \acl{SC}, $\stablecore{e}$. So, we set:
507 \begin{equation} 566 \begin{equation}
508 - \pw{e, c} := \pw{\class{e}, c}. 567 + \pw{e, c} := \frac{\pw{\class{e}, c}}{\# \class{e}} .
509 \label{eq:weight.events} 568 \label{eq:weight.events}
510 \end{equation} 569 \end{equation}
511 and 570 and
512 \begin{equation} 571 \begin{equation}
513 - \pw{e} := \sum_{c\in\fml{C}} \pw{e, c}. 572 + \pw{e} := \sum_{c\in\fml{C}} \pw{e, c} \pw{c}.
514 \label{eq:weight.events.unconditional} 573 \label{eq:weight.events.unconditional}
515 \end{equation} 574 \end{equation}
516 - \remark{instead of that equation}{if we set $\pw{s,c} := \theta_{s,c}$ in equation \eqref{eq:weight.stablemodel} here we do:  
517 - $$  
518 - \pw{e} := \sum_{c\in\fml{C}} \pw{e, c}\pw{c}.  
519 - $$  
520 - By the way, this is the \emph{marginalization + bayes theorem} in statistics:  
521 - $$  
522 - P(A) = \sum_b P(A | B=b)P(B=b)  
523 - $$  
524 - } 575 + % \remark{instead of that equation}{if we set $\pw{s,c} := \theta_{s,c}$ in equation \eqref{eq:weight.stablemodel} here we do:
  576 + % $$
  577 + % \pw{e} := \sum_{c\in\fml{C}} \pw{e, c}\pw{c}.
  578 + % $$
  579 + % By the way, this is the \emph{marginalization + bayes theorem} in statistics:
  580 + % $$
  581 + % P(A) = \sum_b P(A | B=b)P(B=b)
  582 + % $$
  583 + % }
525 \end{description} 584 \end{description}
526 585
527 % PARAMETERS FOR UNCERTAINTY 586 % PARAMETERS FOR UNCERTAINTY
528 \begin{itemize} 587 \begin{itemize}
529 - \item \todo{Remark that $\pw{\inconsistent, c} = 0$ is independent of the total choice.}  
530 - \item \todo{Remark the example $bc$ for equation \ref{eq:weight.class.independent}.} 588 + \item \todo{Remark that $\pw{\inconsistent, c} = 0$ is independent of the \acl{TC}.}
  589 + \item Consider the event $bc$. Since $\class{bc} = \indepclass$, from \cref{eq:weight.class.independent} we get $\mu\at{bc} = 0$.
531 \item \todo{Remark that equation \eqref{eq:weight.events.unconditional}, together with observations, can be used to learn about the \emph{initial} probabilities of the atoms, in the specification.} 590 \item \todo{Remark that equation \eqref{eq:weight.events.unconditional}, together with observations, can be used to learn about the \emph{initial} probabilities of the atoms, in the specification.}
532 \end{itemize} 591 \end{itemize}
533 592
534 593
535 -The $\theta_{s,c}$ parameters in equation \eqref{eq:weight.stablemodel} express the \emph{specification's} lack of knowledge about the weight assignment, when a single total choice entails more than one stable model. In that case, how to distribute the respective weights? Our proposal to address this problem consists in assigning an unknown weight, $\theta_{s,c}$, conditional on the total choice, $c$, to each stable model $s$. This approach allows the expression of an unknown quantity and future estimation, given observed data. 594 +The $\theta_{s,c}$ parameters in equation \eqref{eq:weight.stablemodel} express the \emph{specification's} lack of knowledge about the weight assignment, when a single \acl{TC} entails more than one \acl{SM}. In that case, how to distribute the respective weights? Our proposal to address this problem consists in assigning an unknown weight, $\theta_{s,c}$, conditional on the \acl{TC}, $c$, to each \acl{SM} $s$. This approach allows the expression of an unknown quantity and future estimation, given observed data.
536 595
537 % SUPERSET 596 % SUPERSET
538 -Equation \eqref{eq:weight.class.other} results from conditional independence of stable models. 597 +Equation \eqref{eq:weight.class.other} results from conditional independence of \aclp{SM}.
  598 +
539 599
540 -  
541 \section{Developed Examples} 600 \section{Developed Examples}
542 601
543 \subsection{The SBF Example} 602 \subsection{The SBF Example}
@@ -546,180 +605,164 @@ We continue with the specification from Equation \eqref{eq:example.1}. @@ -546,180 +605,164 @@ We continue with the specification from Equation \eqref{eq:example.1}.
546 605
547 \begin{description} 606 \begin{description}
548 % 607 %
549 - \item[Total Choices.] The total choices, and respective stable models, are 608 + \item[\Aclp{TC}.] The \aclp{TC}, and respective \aclp{SM}, are
550 \begin{center} 609 \begin{center}
551 - \begin{tabular}{llr}  
552 - \textbf{Total Choice} & \textbf{Stable Models} & \textbf{$\pw{\cdot}$}\\ 610 + \begin{tabular}{ll|r}
  611 + \textbf{\Acl{TC}} & \textbf{\Aclp{SM}} & \textbf{$\pw{c}$}\\
553 \hline 612 \hline
554 $a$ & $ab, ac$ & $0.3$\\ 613 $a$ & $ab, ac$ & $0.3$\\
555 $\co{a} = \neg a$ & $\co{a}$ & $\co{0.3} = 0.7$ 614 $\co{a} = \neg a$ & $\co{a}$ & $\co{0.3} = 0.7$
556 \end{tabular} 615 \end{tabular}
557 \end{center} 616 \end{center}
558 % 617 %
559 - \item[Stable Models.] \todo{Enter the $\theta$ parameters.}  
560 - \begin{equation*}  
561 - \begin{array}{ll|r}  
562 - \text{\textbf{Stable Model}}  
563 - & \text{\textbf{Total Choice}}  
564 - & \pw{s,c}  
565 - \\  
566 - \hline  
567 - \co{a}  
568 - & \co{a}  
569 - & 1.0  
570 - \\  
571 - ab  
572 - & a  
573 - & \theta  
574 - \\  
575 - ac  
576 - & a  
577 - & \co{\theta}  
578 - \end{array}  
579 - \end{equation*}  
580 - \item[Classes.] Following the definitions in \cref{eq:stable.core,eq:equiv.rel,eq:event.class} and in \cref{eq:weight.class.inconsistent,eq:weight.class.independent,eq:weight.class.other} we get the following quotient set, and weights: 618 + \item[\Aclp{SM}.] The $\theta_{s,c}$ parameters in this example are
  619 + $$
  620 + \theta_{ab,\co{a}} = \theta_{ac,\co{a}} = \theta_{\co{a}, a} = 0
  621 + $$
  622 + and
  623 + $$
  624 + \theta_{\co{a}, \co{a}} = 1, \theta_{ab, a} = \theta, \theta_{ac, a} = \co{\theta}
  625 + $$
  626 + with $\theta \in \intcc{0, 1}$.
  627 + \item[Classes.] Following the definitions in \cref{eq:stable.core,eq:equiv.rel,eq:event.class} and in \cref{eq:weight.class.inconsistent,eq:weight.class.independent,eq:weight.class.other} we get the following quotient set (ignoring $\inconsistent$ and $\indepclass$), and weights:
581 \begin{equation*} 628 \begin{equation*}
582 - \begin{array}{l|rrr|r}  
583 - \text{\textbf{Core}}  
584 - & \pw{c}  
585 - & \pw{s,c}  
586 - & \pw{\class{e}, c}  
587 - & \pw{e} 629 + \begin{array}{l|ll|r}
  630 + \stablecore{e}
  631 + & \pw{s_k, c= \co{a}}
  632 + & \pw{s_k, c= a}
  633 + & \pw{\class{e}}=\sum_{c}\pw{\class{e},c}\pw{c}
588 \\ 634 \\
589 \hline 635 \hline
590 - %  
591 - \inconsistent  
592 - &  
593 - & 0.0  
594 - & 0.0  
595 - & 0.0  
596 - \\  
597 - %  
598 - \indepclass  
599 - &  
600 - & 0.0  
601 - & 0.0  
602 - & 0.0  
603 - \\  
604 - %  
605 \co{a} 636 \co{a}
606 - & 0.7  
607 - & 1.0  
608 - & 1.0 637 + & 1
  638 + &
609 & 0.7 639 & 0.7
610 \\ 640 \\
611 % 641 %
612 ab 642 ab
613 - & 0.3  
614 - & \theta 643 + &
615 & \theta 644 & \theta
616 & 0.3\theta 645 & 0.3\theta
617 \\ 646 \\
618 % 647 %
619 ac 648 ac
620 - & 0.3  
621 - & \co{\theta} 649 + &
622 & \co{\theta} 650 & \co{\theta}
623 & 0.3\co{\theta} 651 & 0.3\co{\theta}
624 \\ 652 \\
625 % 653 %
626 \co{a}, ab 654 \co{a}, ab
627 - & 0.7, 0.3  
628 - & 1.0, \theta  
629 - & 1.0, \theta 655 + & 1, 0
  656 + & 0, \theta
630 & 0.7 + 0.3\theta 657 & 0.7 + 0.3\theta
631 \\ 658 \\
632 % 659 %
633 \co{a}, ac 660 \co{a}, ac
634 - & 0.7, 0.3  
635 - & 1.0, \co{\theta}  
636 - & 1.0, \co{\theta} 661 + & 1, 0
  662 + & 0, \co{\theta}
637 & 0.7 + 0.3\co{\theta} 663 & 0.7 + 0.3\co{\theta}
638 \\ 664 \\
639 % 665 %
640 ab, ac 666 ab, ac
641 - & 0.3, 0.3 667 + &
642 & \theta, \co{\theta} 668 & \theta, \co{\theta}
643 - & \theta\co{\theta}  
644 - & 0.3\theta\co{\theta} 669 + & 0.3
645 \\ 670 \\
646 % 671 %
647 \co{a}, ab, ac 672 \co{a}, ab, ac
648 - & 0.7, 0.3, 0.3  
649 - & 1.0, \theta, \co{\theta}  
650 - & 1.0, \theta\co{\theta}  
651 - & 0.7 + 0.3\theta\co{\theta} 673 + & 1, 0, 0
  674 + & 0, \theta, \co{\theta}
  675 + & 1
652 \end{array} 676 \end{array}
653 \end{equation*} 677 \end{equation*}
654 - \item[Normalization.] To get a weight that sums up to one, we compute the \emph{normalization factor} 678 + \item[Normalization.] To get a weight that sums up to one, we compute the \emph{normalization factor}. Since $\pw{\cdot}$ is constant on classes we have
655 \begin{equation*} 679 \begin{equation*}
656 Z := \sum_{e\in\fml{E}} \pw{e} 680 Z := \sum_{e\in\fml{E}} \pw{e}
657 - = \sum_{e\in\fml{E}} \sum_{c\in\fml{C}}\pw{e,c}\pw{c}  
658 - = \sum_{e\in\fml{E}} \sum_{c\in\fml{C}} \del{\prod_{s\in\stablecore{e}}\pw{s,c}}\pw{c} 681 + = \sum_{\class{e} \in\fml{E}/\sim} \frac{\pw{\class{e}}}{\#\class{e}},
659 \end{equation*} 682 \end{equation*}
660 - to divide the weight function into a normalized weight: 683 + that divides the weight function into a normalized weight:
661 \begin{equation*} 684 \begin{equation*}
662 - \nu\at{e} := \frac{\pw{e}}{Z}. 685 + \pr{e} := \frac{\pw{e}}{Z}.
663 \end{equation*} 686 \end{equation*}
664 - Since $\pw{\cdot}$ is constant on classes we have: 687 +
  688 + For the SBF example,
665 \begin{equation*} 689 \begin{equation*}
666 - \begin{array}{lr|r}  
667 - \text{\textbf{Core}}  
668 - & \text{\textbf{Size}}  
669 - & \pw{\class{\cdot}} 690 + \begin{array}{lr|r|rr}
  691 + \stablecore{e}
  692 + & \# \class{e}
  693 + & \pw{\class{e}}
  694 + & \pw{e}
  695 + & \pr{e}
670 \\ 696 \\
671 \hline 697 \hline
672 % 698 %
673 \inconsistent 699 \inconsistent
674 & 37 700 & 37
675 - & 0.0 701 + & 0
  702 + & 0
  703 + & 0
676 \\ 704 \\
677 % 705 %
678 \indepclass 706 \indepclass
679 & 9 707 & 9
680 - & 0.0 708 + & 0
  709 + & 0
  710 + & 0
681 \\ 711 \\
682 % 712 %
683 \co{a} 713 \co{a}
684 & 9 714 & 9
685 - & 0.7 715 + & \lfrac{7}{10}
  716 + & \lfrac{7}{90}
  717 + & \lfrac{7}{792}
686 \\ 718 \\
687 % 719 %
688 ab 720 ab
689 & 3 721 & 3
690 - & 0.3\theta 722 + & \lfrac{3\theta}{10}
  723 + & \lfrac{\theta}{10}
  724 + & \lfrac{\theta}{88}
691 \\ 725 \\
692 % 726 %
693 ac 727 ac
694 & 3 728 & 3
695 - & 0.3\co{\theta} 729 + & \lfrac{3\co{\theta}}{10}
  730 + & \lfrac{\co{\theta}}{10}
  731 + & \lfrac{\co{\theta}}{88}
696 \\ 732 \\
697 % 733 %
698 \co{a}, ab 734 \co{a}, ab
699 & 0 735 & 0
700 - & 0.3\theta + 0.7 736 + &
  737 + &
  738 + &
701 \\ 739 \\
702 % 740 %
703 \co{a}, ac 741 \co{a}, ac
704 & 0 742 & 0
705 - & 0.3\co{\theta} + 0.7 743 + &
  744 + &
  745 + &
706 % 746 %
707 \\ 747 \\
708 % 748 %
709 ab, ac 749 ab, ac
710 & 2 750 & 2
711 - & 0.3\theta\co{\theta} 751 + & \lfrac{3}{10}
  752 + & \lfrac{3}{20}
  753 + & \lfrac{3}{176}
712 \\ 754 \\
713 % 755 %
714 \co{a}, ab, ac 756 \co{a}, ab, ac
715 & 1 757 & 1
716 - & 0.3\theta\co{\theta} + 0.7 758 + & 1
  759 + & 1
  760 + & \lfrac{5}{176}
717 \\ 761 \\
718 % 762 %
719 \hline 763 \hline
720 - Z  
721 & 764 &
722 - & 0.9\theta\co{\theta} + 7.9 765 + & Z = 8.8
723 \end{array} 766 \end{array}
724 \end{equation*} 767 \end{equation*}
725 \end{description} 768 \end{description}
@@ -751,71 +794,71 @@ Considering the probabilities given in \cref{Figure_Alarm} we obtain the followi @@ -751,71 +794,71 @@ Considering the probabilities given in \cref{Figure_Alarm} we obtain the followi
751 794
752 795
753 \begin{figure} 796 \begin{figure}
754 -\begin{center}  
755 -\begin{tikzpicture}[node distance=2.5cm]  
756 -  
757 -% Nodes  
758 -\node[smodel, circle] (A) {A};  
759 -\node[tchoice, above right of=A] (B) {B};  
760 -\node[tchoice, above left of=A] (E) {E};  
761 -\node[tchoice, below left of=A] (M) {M};  
762 -\node[tchoice, below right of=A] (J) {J};  
763 -  
764 -% Edges  
765 -\draw[->] (B) to[bend left] (A) node[right,xshift=1.1cm,yshift=0.8cm] {\footnotesize{$P(B)=0,001$}} ;  
766 -\draw[->] (E) to[bend right] (A) node[left, xshift=-1.4cm,yshift=0.8cm] {\footnotesize{$P(E)=0,002$}} ;  
767 -\draw[->] (A) to[bend right] (M) node[left,xshift=0.2cm,yshift=0.7cm] {\footnotesize{$P(M|A)$}};  
768 -\draw[->] (A) to[bend left] (J) node[right,xshift=-0.2cm,yshift=0.7cm] {\footnotesize{$P(J|A)$}} ;  
769 -\end{tikzpicture}  
770 -\end{center}  
771 -  
772 -\begin{multicols}{3}  
773 -  
774 -\footnotesize{  
775 - \begin{equation*}  
776 - \begin{split}  
777 - &P(M|A)\\  
778 - & \begin{array}{c|cc}  
779 - A & T & F \\  
780 - \hline  
781 - T & 0,9 & 0,1\\  
782 - F& 0,05 & 0,95  
783 - \end{array}  
784 - \end{split}  
785 -\end{equation*}  
786 -}  
787 -  
788 -\footnotesize{  
789 - \begin{equation*}  
790 - \begin{split}  
791 - &P(J|A)\\  
792 - & \begin{array}{c|cc}  
793 - A & T & F \\  
794 - \hline  
795 - T & 0,7 & 0,3\\  
796 - F& 0,01 & 0,99  
797 - \end{array}  
798 - \end{split}  
799 -\end{equation*}  
800 -}  
801 -\footnotesize{  
802 - \begin{equation*}  
803 - \begin{split}  
804 - P(A|B \vee E)\\  
805 - \begin{array}{c|c|cc}  
806 - B & E& T & F \\  
807 - \hline  
808 - T & T & 0,95 & 0,05\\  
809 - T & F & 0,94 & 0,06\\  
810 - F & T & 0,29 & 0,71\\  
811 - F & F & 0,001 & 0,999  
812 - \end{array}  
813 -\end{split}  
814 -\end{equation*}  
815 -}  
816 -\end{multicols}  
817 -\caption{The Earthquake, Burglary, Alarm model}  
818 -\label{Figure_Alarm} 797 + \begin{center}
  798 + \begin{tikzpicture}[node distance=2.5cm]
  799 +
  800 + % Nodes
  801 + \node[smodel, circle] (A) {A};
  802 + \node[tchoice, above right of=A] (B) {B};
  803 + \node[tchoice, above left of=A] (E) {E};
  804 + \node[tchoice, below left of=A] (M) {M};
  805 + \node[tchoice, below right of=A] (J) {J};
  806 +
  807 + % Edges
  808 + \draw[->] (B) to[bend left] (A) node[right,xshift=1.1cm,yshift=0.8cm] {\footnotesize{$P(B)=0,001$}} ;
  809 + \draw[->] (E) to[bend right] (A) node[left, xshift=-1.4cm,yshift=0.8cm] {\footnotesize{$P(E)=0,002$}} ;
  810 + \draw[->] (A) to[bend right] (M) node[left,xshift=0.2cm,yshift=0.7cm] {\footnotesize{$P(M|A)$}};
  811 + \draw[->] (A) to[bend left] (J) node[right,xshift=-0.2cm,yshift=0.7cm] {\footnotesize{$P(J|A)$}} ;
  812 + \end{tikzpicture}
  813 + \end{center}
  814 +
  815 + \begin{multicols}{3}
  816 +
  817 + \footnotesize{
  818 + \begin{equation*}
  819 + \begin{split}
  820 + &P(M|A)\\
  821 + & \begin{array}{c|cc}
  822 + A & T & F \\
  823 + \hline
  824 + T & 0,9 & 0,1\\
  825 + F& 0,05 & 0,95
  826 + \end{array}
  827 + \end{split}
  828 + \end{equation*}
  829 + }
  830 +
  831 + \footnotesize{
  832 + \begin{equation*}
  833 + \begin{split}
  834 + &P(J|A)\\
  835 + & \begin{array}{c|cc}
  836 + A & T & F \\
  837 + \hline
  838 + T & 0,7 & 0,3\\
  839 + F& 0,01 & 0,99
  840 + \end{array}
  841 + \end{split}
  842 + \end{equation*}
  843 + }
  844 + \footnotesize{
  845 + \begin{equation*}
  846 + \begin{split}
  847 + P(A|B \vee E)\\
  848 + \begin{array}{c|c|cc}
  849 + B & E& T & F \\
  850 + \hline
  851 + T & T & 0,95 & 0,05\\
  852 + T & F & 0,94 & 0,06\\
  853 + F & T & 0,29 & 0,71\\
  854 + F & F & 0,001 & 0,999
  855 + \end{array}
  856 + \end{split}
  857 + \end{equation*}
  858 + }
  859 + \end{multicols}
  860 + \caption{The Earthquake, Burglary, Alarm model}
  861 + \label{Figure_Alarm}
819 \end{figure} 862 \end{figure}
820 863
821 864
@@ -830,111 +873,111 @@ Considering the probabilities given in \cref{Figure_Alarm} we obtain the followi @@ -830,111 +873,111 @@ Considering the probabilities given in \cref{Figure_Alarm} we obtain the followi
830 % 873 %
831 % My first guess was 874 % My first guess was
832 % \begin{equation*} 875 % \begin{equation*}
833 -% \pr{W = w \given C = c} = \sum_{s \supset w}\pr{S = s \given C = c}.  
834 -% \end{equation*}  
835 -%  
836 -% $\pr{W = w \given C = c}$ already separates $\pr{W}$ into \textbf{disjoint} events!  
837 -%  
838 -% Also, I am assuming that stable models are independent.  
839 -%  
840 -% This would entail $p(w) = p(s_1) + p(s_2) - p(s_1)p(s_2)$ \emph{if I'm bound to set inclusion}. But I'm not. I'm defining a relation  
841 -%  
842 -% Also, if I set $p(w) = p(s_1) + p(s_2)$ and respect the laws of probability, this entails $p(s_1)p(s_2) = 0$.  
843 -%  
844 -% So, maybe what I want is (1) to define the cover $\hat{w} = \cup_{s \supset w} s$  
845 -%  
846 -% \begin{equation*}  
847 -% \pr{W = w \given C = c} = \sum_{s \supset w}\pr{S = s \given C = c} - \pr{W = \hat{w} \given C = c}.  
848 -% \end{equation*}  
849 -%  
850 -% But this doesn't works, because we'd get $\pr{W = a \given C = a} < 1$.  
851 -% %  
852 -%  
853 -% %  
854 -% \bigskip  
855 -% \hrule  
856 -%  
857 -% INDEPENDENCE  
858 -%  
859 -%, per equation (\ref{eq:weight.class.independent}).  
860 -%  
861 -% ================================================================  
862 -%  
863 -\subsection{Dependence}  
864 -\label{subsec:dependence}  
865 -  
866 -Our basic assertion about dependence relations between atoms of the underlying system is that they can be \emph{explicitly expressed in the specification}. And, in that case, they should be.  
867 -  
868 -For example, a dependence relation between $b$ and $c$ can be expressed by $b \leftarrow c \wedge d$, where $d$ is an atomic choice that explicitly expresses the dependence between $b$ and $c$. One would get, for example, a specification such as  
869 -$$  
870 -\probfact{0.3}{a}, b \vee c \leftarrow a, \probfact{0.2}{d}, b \leftarrow c \wedge d.  
871 -$$  
872 -with stable models  
873 -$  
874 -\co{ad}, \co{a}d, a\co{d}b, a\co{d}c, adb  
875 -$.  
876 -  
877 -  
878 -The interesting case is the subtree of the total choice $ad$. Notice that no stable model $s$ contains $adc$ because $(i)$ $adb$ is a stable model and $(ii)$ if $adc \subset s$ then $b \in s$ so $adb \subset s$.  
879 -  
880 -Following equations \eqref{eq:world.fold.stablemodel} and \eqref{eq:world.fold.independent} {\bruno What are these equations?} this entails  
881 -\begin{equation*}  
882 - \begin{cases}  
883 - \pr{W = adc \given C = ad} = 0,\cr  
884 - \pr{W = adb \given C = ad} = 1  
885 - \end{cases}  
886 -\end{equation*}  
887 -which concentrates all probability mass from the total choice $ad$ in the $adb$ branch, including the node $W = adbc$. This leads to the following cases:  
888 -$$  
889 -\begin{array}{l|c}  
890 - x & \pr{W = x \given C = ad}\\  
891 - \hline  
892 - ad & 1 \\  
893 - adb & 1\\  
894 - adc & 0\\  
895 - adbc & 1  
896 -\end{array}  
897 -$$  
898 -so, for $C = ad$,  
899 -$$  
900 -\begin{aligned}  
901 - \pr{W = b} &= \frac{2}{4} \cr  
902 - \pr{W = c} &= \frac{1}{4} \cr  
903 - \pr{W = bc} &= \frac{1}{4} \cr  
904 - &\not= \pr{W = b}\pr{W = c}  
905 -\end{aligned}  
906 -$$  
907 -\emph{i.e.} the events $W = b$ and $W = c$ are dependent and that dependence results directly from the segment $\probfact{0.2}{d}, b \leftarrow c \wedge d$ in the specification.  
908 -  
909 -{\bruno Why does this not contradict Assumption 1?}  
910 -  
911 -%  
912 -  
913 -%  
914 -\hrule  
915 -\begin{quotation}\note{Todo}  
916 -  
917 - Prove the four world cases (done), support the product (done) and sum (tbd) options, with the independence assumptions.  
918 -\end{quotation}  
919 -  
920 -\section{Final Remarks}  
921 -  
922 -\todo{develop this section.}  
923 -  
924 -\begin{itemize}  
925 - \item The measure of the inconsistent events doesn't need to be set to $0$ and, maybe, in some cases, it shouldn't.  
926 - \item The physical system might have \emph{latent} variables, possibly also represented in the specification. These variables are never observed, so observations should be concentrated \emph{somewhere else}.  
927 - \item Comment on the possibility of extending equation \eqref{eq:weight.events.unconditional} with parameters expressing further uncertainties, enabling a tuning of the model's total choices, given observations.  
928 - \begin{equation*}  
929 - \pw{e} := \sum_{c\in\fml{C}} \pw{e, c}\theta_c.  
930 - \end{equation*}  
931 -\end{itemize}  
932 -  
933 -  
934 -\section*{Acknowledgements}  
935 -  
936 -This work is supported by NOVA\textbf{LINCS} (UIDB/04516/2020) with the financial support of FCT.IP.  
937 -  
938 -\printbibliography  
939 -  
940 -\end{document}  
941 \ No newline at end of file 876 \ No newline at end of file
  877 + % \pr{W = w \given C = c} = \sum_{s \supset w}\pr{S = s \given C = c}.
  878 + % \end{equation*}
  879 + %
  880 + % $\pr{W = w \given C = c}$ already separates $\pr{W}$ into \textbf{disjoint} events!
  881 + %
  882 + % Also, I am assuming that \aclp{SM} are independent.
  883 + %
  884 + % This would entail $p(w) = p(s_1) + p(s_2) - p(s_1)p(s_2)$ \emph{if I'm bound to set inclusion}. But I'm not. I'm defining a relation
  885 + %
  886 + % Also, if I set $p(w) = p(s_1) + p(s_2)$ and respect the laws of probability, this entails $p(s_1)p(s_2) = 0$.
  887 + %
  888 + % So, maybe what I want is (1) to define the cover $\hat{w} = \cup_{s \supset w} s$
  889 + %
  890 + % \begin{equation*}
  891 + % \pr{W = w \given C = c} = \sum_{s \supset w}\pr{S = s \given C = c} - \pr{W = \hat{w} \given C = c}.
  892 + % \end{equation*}
  893 + %
  894 + % But this doesn't works, because we'd get $\pr{W = a \given C = a} < 1$.
  895 + % %
  896 + %
  897 + % %
  898 + % \bigskip
  899 + % \hrule
  900 + %
  901 + % INDEPENDENCE
  902 + %
  903 + %, per equation (\ref{eq:weight.class.independent}).
  904 + %
  905 + % ================================================================
  906 + %
  907 + \subsection{Dependence}
  908 + \label{subsec:dependence}
  909 +
  910 + Our basic assertion about dependence relations between atoms of the underlying system is that they can be \emph{explicitly expressed in the specification}. And, in that case, they should be.
  911 +
  912 + For example, a dependence relation between $b$ and $c$ can be expressed by $b \leftarrow c \wedge d$, where $d$ is an atomic choice that explicitly expresses the dependence between $b$ and $c$. One would get, for example, a specification such as
  913 + $$
  914 + \probfact{0.3}{a}, b \vee c \leftarrow a, \probfact{0.2}{d}, b \leftarrow c \wedge d.
  915 + $$
  916 + with \aclp{SM}
  917 + $
  918 + \co{ad}, \co{a}d, a\co{d}b, a\co{d}c, adb
  919 + $.
  920 +
  921 +
  922 + The interesting case is the subtree of the \acl{TC} $ad$. Notice that no \acl{SM} $s$ contains $adc$ because $(i)$ $adb$ is a \acl{SM} and $(ii)$ if $adc \subset s$ then $b \in s$ so $adb \subset s$.
  923 +
  924 + Following equations \eqref{eq:world.fold.stablemodel} and \eqref{eq:world.fold.independent} {\bruno What are these equations?} this entails
  925 + \begin{equation*}
  926 + \begin{cases}
  927 + \pr{W = adc \given C = ad} = 0,\cr
  928 + \pr{W = adb \given C = ad} = 1
  929 + \end{cases}
  930 + \end{equation*}
  931 + which concentrates all probability mass from the \acl{TC} $ad$ in the $adb$ branch, including the node $W = adbc$. This leads to the following cases:
  932 + $$
  933 + \begin{array}{l|c}
  934 + x & \pr{W = x \given C = ad}\\
  935 + \hline
  936 + ad & 1 \\
  937 + adb & 1\\
  938 + adc & 0\\
  939 + adbc & 1
  940 + \end{array}
  941 + $$
  942 + so, for $C = ad$,
  943 + $$
  944 + \begin{aligned}
  945 + \pr{W = b} &= \frac{2}{4} \cr
  946 + \pr{W = c} &= \frac{1}{4} \cr
  947 + \pr{W = bc} &= \frac{1}{4} \cr
  948 + &\not= \pr{W = b}\pr{W = c}
  949 + \end{aligned}
  950 + $$
  951 + \emph{i.e.} the events $W = b$ and $W = c$ are dependent and that dependence results directly from the segment $\probfact{0.2}{d}, b \leftarrow c \wedge d$ in the specification.
  952 +
  953 + {\bruno Why does this not contradict Assumption 1?}
  954 +
  955 + %
  956 +
  957 + %
  958 + \hrule
  959 + \begin{quotation}\note{Todo}
  960 +
  961 + Prove the four world cases (done), support the product (done) and sum (tbd) options, with the independence assumptions.
  962 + \end{quotation}
  963 +
  964 + \section{Final Remarks}
  965 +
  966 + \todo{develop this section.}
  967 +
  968 + \begin{itemize}
  969 + \item The measure of the inconsistent events doesn't need to be set to $0$ and, maybe, in some cases, it shouldn't.
  970 + \item The physical system might have \emph{latent} variables, possibly also represented in the specification. These variables are never observed, so observations should be concentrated \emph{somewhere else}.
  971 + \item Comment on the possibility of extending equation \eqref{eq:weight.events.unconditional} with parameters expressing further uncertainties, enabling a tuning of the model's \aclp{TC}, given observations.
  972 + \begin{equation*}
  973 + \pw{e} := \sum_{c\in\fml{C}} \pw{e, c}\theta_c.
  974 + \end{equation*}
  975 + \end{itemize}
  976 +
  977 +
  978 + \section*{Acknowledgements}
  979 +
  980 + This work is supported by NOVA\textbf{LINCS} (UIDB/04516/2020) with the financial support of FCT.IP.
  981 +
  982 + \printbibliography
  983 +
  984 + \end{document}
942 \ No newline at end of file 985 \ No newline at end of file