Commit 505cdc43ae8f7e327bfe57042d5dc201661f5128

Authored by Francisco Coelho
1 parent d080b400
Exists in master

long due comeback

students/amartins/tarefas/Untitled1.ipynb 0 → 100644
... ... @@ -0,0 +1,424 @@
  1 +{
  2 + "cells": [
  3 + {
  4 + "cell_type": "code",
  5 + "execution_count": 1,
  6 + "id": "a1e66bad-47aa-49b5-ac59-a2183646e74e",
  7 + "metadata": {},
  8 + "outputs": [],
  9 + "source": [
  10 + "import numpy as np\n",
  11 + "import matplotlib.pyplot as plt"
  12 + ]
  13 + },
  14 + {
  15 + "cell_type": "code",
  16 + "execution_count": 2,
  17 + "id": "0dbacf2a-1b98-4a20-89f7-1b46ac725a13",
  18 + "metadata": {},
  19 + "outputs": [],
  20 + "source": [
  21 + "x = np.linspace(0,1)\n",
  22 + "y = x*(1-x)"
  23 + ]
  24 + },
  25 + {
  26 + "cell_type": "code",
  27 + "execution_count": 3,
  28 + "id": "178862b2-2fc8-42ec-b8e9-ceb8b78ea7a9",
  29 + "metadata": {},
  30 + "outputs": [
  31 + {
  32 + "data": {
  33 + "text/plain": [
  34 + "[<matplotlib.lines.Line2D at 0x7f7473269e80>]"
  35 + ]
  36 + },
  37 + "execution_count": 3,
  38 + "metadata": {},
  39 + "output_type": "execute_result"
  40 + },
  41 + {
  42 + "data": {
  43 + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAABP2klEQVR4nO3deVzUZeIH8M8czAznIPcpghd4I6iAWWlKaplWm3TZZYfbpfnbrVy793Db3e7Sssu1ErG0tMIUOzySPBC8zQOUGwSE4RyYme/vj4FpSVQGgWeOz/v1mtdrHb9Mn/kuOB+e7/N9HpkkSRKIiIiIbJhcdAAiIiKiS2FhISIiIpvHwkJEREQ2j4WFiIiIbB4LCxEREdk8FhYiIiKyeSwsREREZPNYWIiIiMjmKUUH6C4mkwnFxcXw9PSETCYTHYeIiIg6QZIk1NbWIiQkBHL5hcdRHKawFBcXIzw8XHQMIiIi6oKCggKEhYVd8O8dprB4enoCML9hLy8vwWmIiIioM3Q6HcLDwy2f4xfiMIWl7TKQl5cXCwsREZGdudR0Dk66JSIiIpvHwkJEREQ2j4WFiIiIbB4LCxEREdk8FhYiIiKyeSwsREREZPNYWIiIiMjmsbAQERGRzWNhISIiIpvXpcKydOlSREZGQqPRIC4uDtu3b7/gsevWrcOUKVPg7+8PLy8vJCYmYtOmTe2OWbFiBWQy2XmPpqamrsQjIiIiB2N1YUlLS8OCBQuwePFiZGdnY8KECZg2bRry8/M7PH7btm2YMmUK0tPTkZWVhYkTJ2LGjBnIzs5ud5yXlxdKSkraPTQaTdfeFRERETkUmSRJkjVfMG7cOIwePRrLli2zPBcTE4NZs2ZhyZIlnXqNoUOHIiUlBc899xwA8wjLggULUF1dbU2UdnQ6HbRaLWpqariXEBERkZ3o7Oe3VZsfNjc3IysrC08//XS755OTk7Fz585OvYbJZEJtbS18fHzaPV9XV4eIiAgYjUaMGjUKf/3rXxEbG3vB19Hr9dDr9ZY/63Q6K94JEdmKZoMJpTVNKKxuQNG5RhSea4SuqeWSX+eikCNYq0GotytC+7gizNsNXq7KS26gRkT2yarCUlFRAaPRiMDAwHbPBwYGorS0tFOv8corr6C+vh6zZ8+2PBcdHY0VK1Zg+PDh0Ol0eOONNzB+/Hjs378fAwcO7PB1lixZghdffNGa+EQkiCRJKKhqxO7TVTh1tg5F5xpRVN2IonONKKttgnXjvBfmoVZaCkyotyvCfVwxKrwPRoRpoXFRdM9/hIiEsKqwtPn9bzCSJHXqt5rU1FS88MILWL9+PQICAizPJyQkICEhwfLn8ePHY/To0Xjrrbfw5ptvdvhaixYtwsKFCy1/1ul0CA8Pt/atEFEPkCQJp87WYVdeFXa3PkpqLjyJXq2U/zZS0scVfdxUuNQ/KU0tJhRX/1Z8KuubUac34NeyWvxaVtvuWJVSjlHh3kiI9MHYSF+MjvCGm6pL//wRkSBW/cT6+flBoVCcN5pSXl5+3qjL76WlpWHu3Ln4/PPPMXny5IseK5fLMWbMGJw4ceKCx6jVaqjV6s6HJ6IeI0kSfi2rReapSktBqaxvbneMi0KGEWHeGBrihbA+rgj1drOMhPh5qC77Uk5js9FcXqobUXjOfHkpr6Iee06fQ0Wd3pILOAmlXIbhYVqMjfTBuEgfJET5ssAQ2TirfkJVKhXi4uKQkZGBG2+80fJ8RkYGZs6cecGvS01NxX333YfU1FRcd911l/zvSJKEnJwcDB8+3Jp4RNTLSmoa8VV2MdbtK8SJ8rp2f6dWyjG6bx9LKYjt2weuqp67LOOqUmBAgAcGBHi0e16SJORV1FtGe3blVqK4pgnZ+dXIzq/Ge1tz4a5SYOqwYNw0OhQJUb5QyDkPhsjWWP0rxcKFCzFnzhzEx8cjMTERy5cvR35+PubNmwfAfKmmqKgIK1euBGAuK3fddRfeeOMNJCQkWEZnXF1dodVqAQAvvvgiEhISMHDgQOh0Orz55pvIycnBO++8013vk4i6SZ3egO8OleLL7ELsPFVpmX+iUsqREOWLca0FZXiYFmql+HkjMpkMUf4eiPL3wG1j+wIACs81YFeuucD8fKoChecasXZfIdbuK0SwVoOZo0Jx0+hQDAr0FJyeiNpYXVhSUlJQWVmJl156CSUlJRg2bBjS09MREREBACgpKWm3Jst7770Hg8GARx55BI888ojl+bvvvhsrVqwAAFRXV+PBBx9EaWkptFotYmNjsW3bNowdO/Yy3x4RdQejScKOkxX4cl8hNh0uQ2OL0fJ3YyN9cPPoUEwbHgwvjYvAlJ0X1scNYXFuuDkuDJIkYV/+OazdV4Rv9hejpKYJ7249hXe3nsKwUC/cGBuGG0aGwN+Tl6CJRLJ6HRZbxXVYiLpfbVMLPvnlDFb8fBrltb8tIxDl544bY0MxKzYU4T5uAhN2L73BiB+OlmNddhF+PFYOg8n8z6NCLsPkmAA8OnEghodpBackciyd/fxmYSGi89Q0tODjnXn4+OfTqGk0r4ni7eaCG0aG4MbYUIwK93b49U6q6pvxzYFirNtXhJyCasvzVw/2x2OTBiAuwufCX0xEncbCQkRWq6zT48MdeViZeQZ1egMAoL+/Ox6ZOADXjwiBSumc+6WeKKvFsp9OYf3+YhhbR12S+vvisUkDkRDl4/DljagnsbAQUaeV65rw/vZcfPpLvmV+SnSQJx6dNADThgXzrplWZyrrseynU/giq9ByuWhMvz54dNJAXDnQj8WFqAtYWIjoksp0TVj640mk7ilAs8EEABgeqsVjkwZgckwg5CwqHSqqbsS7P51C2t7fztvIMC0ev2YgJkUHsLgQWYGFhYguyGA0YcXO03gt4zjqm80jKqP7euOxawbi6kH+/MDtpDJdE5Zvy8Vnu86gqcVcXCYO9seLNwxDX1/HmYxM1JNYWIioQ3tPV+GZrw7hWKl5+fpR4d548trBSOzvy6LSRRV1ery/LRcf/ZyHFqMElVKOR64egIeuiuIeRkSXwMJCRO1U1unxz43H8HlWIQDzXT9PT43G7PhwXvrpJqfO1uH59Yex42QFAKCfrxtenDkMVw3yF5yMyHaxsBARAMBkkrB6TwFe/u6Y5RblW8eE48mp0fBxVwlO53gkScI3B0rw12+OWNaumT48CM9ePwTBWlfB6YhsDwsLEeFQUQ0Wf3UI+1vXEYkJ9sLfZg1DXEQfscGcQG1TC17fcgIrdp6G0STBTaXAgskDce/4SLgonPP2cKKOsLAQObGmFiP+9d2vWLEzDyYJ8FAr8X/JgzAnIQJKflj2qiPFOjy7/hCyzpwDAAwO9MQrs0diWChXzCUCWFhExyES5mR5HR5LzcbREh0A4IaRIXjmuhgEeGkEJ3NeJpOEL7IKsWTjUZxraIFKIcfT06Jx7/h+nOhMTo+FhcjJSJKEz7MK8fz6w2hsMcLXXYX/3DISE6MDREejVlX1zXjyiwPYcrQMAHBNdAD+fctIziUip8bCQuREdE0teObLQ9iwvxgAMH6AL16bPYqjKjZIkiSszDyDv6cfRbPBhEAvNV5LGYWk/n6ioxEJwcJC5CRyCqrxWOo+FFQ1QiGXYeGUQfjjVf15q7KNO1Ksw2Op+3DqbD1kMuDRiQMw/5qBnGNEToeFhcjBmUwSlm/PxX82/QqDSUKotyvevC2WdwDZkYZmA17ccARpewsAAPERffD6raMQ1oer5JLzYGEhcmDltU34vzX7sf2EeYGy64YH4x83DYfW1UVwMuqKDfuLsXjdQdTqDfDSKPHyzSMwbXiw6FhEvYKFhchBZeefwwMrs1BRp4fGRY7nZwzFrWPCebeJncuvbMBjq7Mta+bcf0UkFk2P4U7Z5PA6+/nNi6VEduTbAyW4dfkvqKjTY1CgB75+9ArcNrYvy4oD6Ovrhi/mJWLeVf0BAB/syMNDn2ShXm8QnIzINrCwENkBSZLwzo8n8ciqfdAbTJgUHYB1D4/HwEBP0dGoG7m0rs/y5m2xUCnl2HK0DLPfy0RpTZPoaETCsbAQ2bhmgwl//uIA/r3pVwDAveP74f274uGhVgpORj3lhpEhSH0gAb7uKhwu1mHmOztwqKhGdCwioVhYiGxYdUMz5ny4C19kFUIuA16aORTPzxjKeQ1OIC6iD756ZDwGBHigTKfHLe9mIuNImehYRMKwsBDZqLyKety0dCd25VXBQ63Eh/eMwV2J/UTHol4U7uOGtX9MwhUD/NDYYsSDn+zFB9tz4SD3ShBZhYWFyAbtzqvCjUt/Rm5FPUK9XfHFHxMxcTCX2HdGWlcXfHzvGNw2ti8kCfjbt0fxzFeHYDCaREcj6lUsLEQ2Zt2+QtzxwS+obmjByDAtvnwkCdFBvFXfmbko5PjHjcOweHoMZDLgs135uHfFHuiaWkRHI+o1LCxENuT9bblYuGY/WowSpg0LwuoHExHgyf2ACJDJZHjgyii8e2ccXF0U2H6iAinv/YKq+mbR0Yh6BQsLkY1458eT+Hv6UQDAQ1dG4Z3bR8NVpRCcimzNtUODsOahRPh5qHC0RIdbl2fibK1edCyiHsfCQiSYJEl4LeO45bblhVMGYdH0GG5eSBc0PEzbOvqmxvGyOty6PBNlOq7VQo6NhYVIIEmS8K9Nv+KN708AAJ6aGo3HrxkoOBXZgwEBHkh7KBHBWg1Ona1HynuZKK5uFB2LqMewsBAJIkkS/v7tUSz76RQA4JnrYvDHq/sLTkX2JNLPHWseSkRYH1ecrmzA7PcyUVDVIDoWUY9gYSESwGSS8MKGw/hgRx4A4K8zh+L+CVGCU5E9CvdxQ9pDiYjwdUPhuUakvJeJ0xX1omMRdTsWFqJeZjJJWPzVQfw38wxkMuCfNw3HHC4IR5ch1NsVax5KRJS/O4prmpCyPBMny+tExyLqViwsRL3IaJLw5y8OIHV3AeQy4D9/GIlbx/YVHYscQKCXBmkPJmJQoHkp/1uX/4JfS2tFxyLqNiwsRL3EYDRh4ZocrN1XCIVchtdvjcXNcWGiY5ED8fdUI/WBBMQEe6GiTo/b3v8FR4p1omMRdQsWFqJeYDJJePKLA1ifUwylXIa3b4vFDSNDRMciB+TroUbqA+MwIkyLqvpm3P7BLzhZzpEWsn8sLEQ9TJIk/D39KNZlF0Ehl2HZnXGYNjxYdCxyYN5uKnx6/ziMDNOiuqEFd324m7c8k91jYSHqYe9uzcWHrXcD/fsPIzBlSKDgROQMvDQu+PjesZaJuHd9tBvnuIw/2TEWFqIetGZPAV7+7hgA8zorN43mnBXqPT7uKnwydxyCvDQ4WV6H+/67Bw3NBtGxiLqEhYWoh2QcKcPT6w4AAOZd1Z/rrJAQod6uWDl3LLSuLsjOr8YfP92HFqNJdCwiq7GwEPWAXbmVeHTVPpgkYHZ8GJ6aOlh0JHJigwI98dE9Y6BxkWPr8bP48+f7YTJJomMRWYWFhaibHSnW4f6Ve6E3mDA5JhD/uHE4ZDJuZEhixUX0wbI746CUy/BVTjH+9u1RSBJLC9kPFhaibpRf2YC7P96N2iYDxvTrg7dvj4VSwR8zsg0TBwfg37eMAAB89HMelm09JTgRUefxX1KibnK2Vo+7PtqFs7V6RAd54oO7x0DjohAdi6idG2PD8Mx1MQCAf333K9L25AtORNQ5LCxE3aC2qQX3fLwbpysbENbHFSvvM09yJLJF90+IsuwMvmjdQWw6XCo4EdGlsbAQXSaD0YSHP9uHw8U6+LbeRhrgpREdi+iinrx2MGbHh8EkAY+lZiM7/5zoSEQXxcJCdJn+nn4U209UwNVFgRX3jkWkn7voSESXJJPJ8I8bh2NyTACaDSY89EkWSmuaRMciuiAWFqLLkLYnHx//fBoA8FrKSAwP04oNRGQFpUKO12+NxeBAT5TX6vHQJ3vR1GIUHYuoQywsRF2053QVnvnqEADgicmDMHUY9wci++OhVuKDu+PRx80F+wtr8NTaA7zdmWwSCwtRFxRVN2LeJ1loMUqYPjwIj00aIDoSUZeF+7hh6R3mNVrW5xTj3a25oiMRnYeFhchKDc0G3P/fvaisb8aQYC/855aRkMu5MBzZt8T+vnjhhqEAgH9tOoYtR8oEJyJqj4WFyAomk4T/W7MfR0vMdwS9f3c83FRK0bGIusWdCRG4M6EvJAmYvzobx8tqRUcismBhIbLCWz+cxMZDpXBRyPDenDiEeruKjkTUrZ6fMRQJUT6obzbi/v/uxbn6ZtGRiACwsBB12saDJXhty3EAwN9nDUd8Px/BiYi6n4tCjqV3xCHcxxX5VQ14ZBV3dybbwMJC1AlHinVYuGY/AODe8f0we0y44EREPcfHXYUP7hoDd5UCO09V4m/fHBEdiYiFhehSKur0eGDlXjS2GDFhoB8WT48RHYmoxw0O8sRrKaMgkwH/zTyDVbu45xCJxcJCdBFty+4XVTein68b3r5tNHdfJqeRPDQIf0oeDAB4bv0h7D1dJTgROTP+y0t0Ea9mHMfuvCrL4lpaN25oSM7l4av74/oRwTCYJDyWms1JuCRMlwrL0qVLERkZCY1Gg7i4OGzfvv2Cx65btw5TpkyBv78/vLy8kJiYiE2bNp133Nq1azFkyBCo1WoMGTIEX375ZVeiEXWbrcfPYulPpwAA/7x5OAYEeApORNT7ZDIZ/nnzCET5uaOkpgn/9/l+mExcCZd6n9WFJS0tDQsWLMDixYuRnZ2NCRMmYNq0acjP7/j65rZt2zBlyhSkp6cjKysLEydOxIwZM5CdnW05JjMzEykpKZgzZw7279+POXPmYPbs2di1a1fX3xnRZSjTNWFhWg4A4M6Evrh+RIjYQEQCeaiVeOeO0VAr5fjhWDk+2MGVcKn3ySQrN40YN24cRo8ejWXLllmei4mJwaxZs7BkyZJOvcbQoUORkpKC5557DgCQkpICnU6HjRs3Wo6ZOnUq+vTpg9TU1E69pk6ng1arRU1NDby8vKx4R0TtGYwm3PHBLuzKq8KQYC+sezgJGheF6FhEwq3alY+/fHkQSrkMaQ8lIi6ij+hI5AA6+/lt1QhLc3MzsrKykJyc3O755ORk7Ny5s1OvYTKZUFtbCx+f39awyMzMPO81r7322k6/JlF3evP7E9iVVwV3lQLv3DGaZYWo1W1jwzFjZAgMJgmPp2ajuoHzWaj3WFVYKioqYDQaERgY2O75wMBAlJaWduo1XnnlFdTX12P27NmW50pLS61+Tb1eD51O1+5BdLl2nKjAWz+eBAD846bhiPRzF5yIyHbIZDL848Zh6OfrhqLqRvzpc+7sTL2nS5NuZbL2G71JknTecx1JTU3FCy+8gLS0NAQEBFzWay5ZsgRardbyCA/nQl50ecprm7AgLQeSBNw2ti9mjgoVHYnI5nhqXPD27aOhUsix5WgZPtyRJzoSOQmrCoufnx8UCsV5Ix/l5eXnjZD8XlpaGubOnYs1a9Zg8uTJ7f4uKCjI6tdctGgRampqLI+CggJr3gpRO0aThPmpOaio0yM6yBPPzxgiOhKRzRoWqsWz15sXUHz5u2PIKagWG4icglWFRaVSIS4uDhkZGe2ez8jIQFJS0gW/LjU1Fffccw9WrVqF66677ry/T0xMPO81N2/efNHXVKvV8PLyavcg6qq3fjiBzNxKuHHeClGn3JkQgenDg9BilPDoqn2oaWgRHYkcnNLaL1i4cCHmzJmD+Ph4JCYmYvny5cjPz8e8efMAmEc+ioqKsHLlSgDmsnLXXXfhjTfeQEJCgmUkxdXVFVqtFgAwf/58XHnllXj55Zcxc+ZMrF+/Hlu2bMGOHTu6630SXdDOUxV44/sTAIC/3zgM/f09BCcisn1t67McKtIhv6oBf/5iP96bE9ep6QFEXWH1HJaUlBS8/vrreOmllzBq1Chs27YN6enpiIiIAACUlJS0W5Plvffeg8FgwCOPPILg4GDLY/78+ZZjkpKSsHr1anz88ccYMWIEVqxYgbS0NIwbN64b3iLRhZ2t1WP+avO8ldnxYbgxNkx0JCK74aVxwTut81k2HynDip2nRUciB2b1Oiy2iuuwkLVMJgl3f7wb209UYFCgB9Y/cgVcVbwURGStFT/n4YWvj8BFIcPaPyZhRJi36EhkR3pkHRYiR/LxztPYfqICri4KLL1jNMsKURfdndQPU4ea57MsSMtBU4tRdCRyQCws5JROltfhX98dAwA8c30M9wkiugzm+SzDEeilRu7Zerzc+rNF1J1YWMjptBhNWLgmB3qDCVcN8sftY/uKjkRk97zdVPjnzSMAAB//fBo7T1UITkSOhoWFnM7SH0/hQGENvDRKvHzzCN7VQNRNJg4OwO3jzL8A/PnzA9A18VZn6j4sLORUDhbW4K0fzLcw/3XWMARpNYITETmWxdNj0NfHvHT/X78+IjoOORAWFnIaTS1GLFyTA4NJwnXDg3HDyBDRkYgcjrtaif/cMhIyGfB5ViEyjpSJjkQOgoWFnMYrm3/FifI6+Hmo8ddZw3gpiKiHjI30wYMTogAAi9YdQGWdXnAicgQsLOQUduVW4oPWTdpevnk4fNxVghMRObYnpgzCoEAPVNQ145mvDnFXZ7psLCzk8Or0Bvzpi/2QJCAlPhzXxFx8o04iunwaFwVenT0KSrkMGw+VYn1OsehIZOdYWMjh/f3bIyioakSotyuead1hloh63rBQLR6/ZiAA4Nn1h1BS0yg4EdkzFhZyaD8eK0fq7gIAwH9uGQlPjYvgRETO5eGr+2NkuDdqmwx48osDvDREXcbCQg7rXH0znlp7AABw3/hIJPb3FZyIyPkoFXK8cstIqJVybD9RgU935V/6i4g6wMJCDuvZ9YdQXqtHf393PDl1sOg4RE5rQIAHnpoaDQD4x7dHcbqiXnAiskcsLOSQNh4swTcHSqCQy/Dq7FHQuHBjQyKR7knqh8QoXzS2GPHnL/bDZOKlIbIOCws5nJrGFjy/4TAA4I9Xma+fE5FYcrkM/75lBNxUCuw5fQ6r9xSIjkR2hoWFHM6/vjuG8lo9ovzc8eikAaLjEFGrsD5u+FOy+fLsko1HUa5rEpyI7AkLCzmUPaer8FnrpL5/3DScl4KIbMzdSf0wIkyL2iYDXuReQ2QFFhZyGHqDEYvWHQQAzI4PQ0IU7woisjUKuQxLbhoOhVyGbw+WYAv3GqJOYmEhh/He1lycLK+Dr7sKf5nOBeKIbNXQEC3uvyISAPDc+kOo1xsEJyJ7wMJCDuHU2Tq8/cNJAMBzM4bA2417BRHZsvmTByLcxxXFNU14ZfNx0XHIDrCwkN2TJAl/WXcQzUYTrhrkjxtGhoiORESX4KZS4m+zhgMAVuzMw/6CarGByOaxsJDd+3xvIXblVUHjIsffZg2DTCYTHYmIOuGqQf6YOSoEJgl4et1BtBhNoiORDWNhIbt2tlaPv6cfBQAsnDII4T5ughMRkTWevX4ItK4uOFqiw0c78kTHIRvGwkJ27a/fHEFNYwuGBHvhvvGRouMQkZX8PNRYfJ15kvxrW44jv7JBcCKyVSwsZLd++rUcG/YXQy4D/nnzcCgV/HYmske3xIUhIcoHTS0mLP7qIHd0pg7xX3iySw3NBjzz1SEAwL3jIzEizFtsICLqMplMhn/cOByq1h2dN+wvFh2JbBALC9ml17ecQOG5RoR6u2LhlEGi4xDRZYry98BjE81babz09RGcq28WnIhsDQsL2Z1DRTX4sHVy3l9nDYW7Wik4ERF1h4eu6o+BAR6orG+2TKYnasPCQnbFZJLw3PpDMJokXDc8GJOiA0VHIqJuolLK8c+bzWuzfJFViKwzVYITkS1hYSG78mV2EfblV8NNpcCz1w8RHYeIullchA9mx4cBAJ7fcBhGEyfgkhkLC9mN2qYW/PO7YwCAxyYNRJBWIzgREfWEJ6dGw1OtxKEiHdbsLRAdh2wECwvZjbd/OImztXr083XDfVf0Ex2HiHqIn4caC1on0/9706+oaWgRnIhsAQsL2YVTZ+vw0c/mibbPzRgCtVIhOBER9aS7EiMwMMADVfXNeG0LN0ckFhayA5Ik4aWvj6DFKGFSdAAn2hI5AReFHM/PGAoA+OSXM/i1tFZwIhKNhYVs3vdHy7H1+Fm4KGScaEvkRK4Y6IepQ4NgNEl4YcNhroDr5FhYyKY1tRjx0jdHAABzr4hCpJ+74ERE1JsWXxcDtVKOzNxKbDxUKjoOCcTCQjbtwx15yK9qQICnGo9OGiA6DhH1snAfNzx0VX8AwN+/PYrGZqPgRCQKCwvZrJKaRrz9w0kAwF+mx8CDK9oSOaU/XtUfod6uKKpuxLKtp0THIUFYWMhmLUk/hsYWI+Ii+mDmqBDRcYhIEFeVAouviwEAvLv1FAqqGgQnIhFYWMgm7c6rwob9xZDJgBdvGAqZTCY6EhEJNG1YEBKjfNFsMOHv33KfIWfEwkI2x2iS8PyGwwCA28b2xbBQreBERCSaTCbDCzcMhUIuw3eHS7HjRIXoSNTLWFjI5qzanY+jJTp4aZT4U/Jg0XGIyEYMDvLEnIQIAMALXx9Gi9EkOBH1JhYWsinn6pvxyuZfAQD/lzwYPu4qwYmIyJY8MXkQfNxVOFleh5WZZ0THoV7EwkI25bUtx1Hd0ILoIE/cMa6v6DhEZGO0bi548lrzyOvrGcdRUacXnIh6CwsL2YxTZ+vw2a58AOb9gpQKfnsS0fluiQ/HsFAv1OoNeOv7E6LjUC/hJwLZjH99dwxGk4TJMQFI6u8nOg4R2SiFXIa/TDff5vzZrnzkVdQLTkS9gYWFbMLe01XYdLgMchnw1NRo0XGIyMYl9ffDxMH+MJgk/HvTMdFxqBewsJBwkiThH+nmdRVSxoRjYKCn4EREZA+enhYDuQxIP1iKrDPnRMehHsbCQsJ9d6gU+/Kr4eqiwBOTB4mOQ0R2YnCQJ26JCwcALEk/yt2cHRwLCwnVYjTh5e/Mw7kPXBmFAC+N4EREZE+emDIIGhc59p45h81HykTHoR7EwkJCpe7Ox+nKBvh5qPDglVGi4xCRnQnSanD/FeZ/O17eeIyLyTkwFhYSprapBW9sMd+SOH/yIO7GTERd8tBVUfBxVyG3oh5pewpEx6EewsJCwizflovK+mZE+bnj1jHhouMQkZ3y1Lhg/jUDAQCvbzmOOr1BcCLqCSwsJERpTRPe354LAHhqWjRcuEgcEV2G28f1RaSfOyrqmrF8W67oONQD+ClBQryWcRxNLSbER/RB8pBA0XGIyM65KOSWJfvf35aLcl2T4ETU3VhYqNf9WlqLz7PM15kXTY+BTCYTnIiIHMHUYUGI7euNxhYjXtvCJfsdDQsL9bqXvzsGkwRMGxaEuIg+ouMQkYOQyX5bsj9tTz5OltcKTkTdqUuFZenSpYiMjIRGo0FcXBy2b99+wWNLSkpw++23Y/DgwZDL5ViwYMF5x6xYsQIymey8R1MTh/Qczc5TFfjhWDmUchn+3Dp8S0TUXcb080HykECYJOCfG38VHYe6kdWFJS0tDQsWLMDixYuRnZ2NCRMmYNq0acjPz+/weL1eD39/fyxevBgjR4684Ot6eXmhpKSk3UOj4SJijsRkkrAk3bxI3O3j+iLK30NwIiJyRE9Ni4ZCLsOWo2XYlVspOg51E6sLy6uvvoq5c+fi/vvvR0xMDF5//XWEh4dj2bJlHR7fr18/vPHGG7jrrrug1Wov+LoymQxBQUHtHuRYvj5QjINFNfBQK/F46y2IRETdrb+/B24ba14q4R9cst9hWFVYmpubkZWVheTk5HbPJycnY+fOnZcVpK6uDhEREQgLC8P111+P7Ozsix6v1+uh0+naPch2NRtM+M9m8/DsvKui4OehFpyIiBzZ/GsGwU2lwP7CGqQfLBUdh7qBVYWloqICRqMRgYHtb0MNDAxEaWnXvyGio6OxYsUKbNiwAampqdBoNBg/fjxOnLjwLO8lS5ZAq9VaHuHhXHjMlq3ZW4CCqkb4e6px3xWRouMQkYPz91TjgQnmJftf23IcRhNHWexdlybd/v42VEmSLuvW1ISEBNx5550YOXIkJkyYgDVr1mDQoEF46623Lvg1ixYtQk1NjeVRUMDlmG1VU4sRb/9wEgDwyNX94abiEvxE1PPmToiE1tUFJ8vrsGF/keg4dJmsKix+fn5QKBTnjaaUl5efN+pyWaHkcowZM+aiIyxqtRpeXl7tHmSbVu3KR6muCSFaDW4b11d0HCJyEl4aFzx0lXmU5fUtJ7gxop2zqrCoVCrExcUhIyOj3fMZGRlISkrqtlCSJCEnJwfBwcHd9pokRkOzAUt/OgUAeHTSQKiVCsGJiMiZ3J3YD77uKpypbMC6fYWi49BlsPqS0MKFC/HBBx/go48+wtGjR/HEE08gPz8f8+bNA2C+VHPXXXe1+5qcnBzk5OSgrq4OZ8+eRU5ODo4cOWL5+xdffBGbNm1Cbm4ucnJyMHfuXOTk5Fhek+zXyswzqKjTo6+PG26JDxMdh4icjLtaiT9e3R8A8Ob3J6E3GAUnoq6yejJBSkoKKisr8dJLL6GkpATDhg1Deno6IiIiAJgXivv9miyxsbGW/52VlYVVq1YhIiICp0+fBgBUV1fjwQcfRGlpKbRaLWJjY7Ft2zaMHTv2Mt4aiVbb1IL3tppHVx6/ZiA3OCQiIe5MiMDybbkoqm7Emj0FmJPYT3Qk6gKZ5CA3qOt0Omi1WtTU1HA+i4148/sTeDXjOKL83bF5wZVQsrAQkSArM0/jufWHEeCpxrYnJ0LjwsvTtqKzn9/8BKEeUdPQgve3m7d4XzB5EMsKEQmVMiYcod6uKK/V49NfzoiOQ13ATxHqER/syEVtkwGDAz1x/XBOniYisdRKBR6bNAAA8O7WU6jXGwQnImuxsFC3q6pvxkc78gAAT0wZBLm862v0EBF1l5vjwhDh64aKumb8N/O06DhkJRYW6nbvbT2F+mYjhoV64dqh3bc+DxHR5XBRyDG/dR+z97bmQtfUIjgRWYOFhbpVeW2T5TeX/5sy+LJWQCYi6m4zR4Wiv787ahpbLCPBZB9YWKhbLf3xFJpaTBjd1xtXD/YXHYeIqB2FXIYnpgwCAHy4PQ/VDc2CE1FnsbBQtymubsSqXeY1eP4vmaMrRGSbpg8LRnSQJ2r1Bizflis6DnUSCwt1m7d/PIlmowkJUT5I6u8rOg4RUYfkchkWto6yrNh5GhV1esGJqDNYWKhb5Fc2YM0e847ZHF0hIls3ZUggRoRp0dBsxLut+52RbWNhoW7x5g8nYDBJuHKQP8b08xEdh4joomSy30ZZPvnlDMp0TYIT0aWwsNBly6uot+yC2vYPABGRrbtqkD/iIvpAbzBh6Y8nRcehS2Bhocu27KeTMEnApOgAjAr3Fh2HiKhT/neUZfWeApTXcpTFlrGw0GUpPNeAdfuKAACPti57TURkL5L6+yK2rzf0BhM+3M51WWwZCwtdlve25sJgkjB+gC9G9+0jOg4RkVVkMhkenWj+ZeuTX87gXD3XZbFVLCzUZeW6JqTtNd8Z9OjEgYLTEBF1zaToAMQEe6Gh2YiPd54WHYcugIWFuuz97bloNpgQH9EHCVG8M4iI7JNMJrPs5Lzi5zzuMWSjWFioS6rqm/HpL+ZVbR+ZNIDrrhCRXZs6NAj9/d2hazLgk8wzouNQB1hYqEs+/jkPjS3mHZmvHsQ9g4jIvsnlMjzSOpflwx15aGg2CE5Ev8fCQlaraWzBip9PAzDPXeHoChE5ghtGhiDcxxVV9c1I3V0gOg79DgsLWe2TzNOo1RswKNADyUMCRcchIuoWSoUcD19tHmVZvu0U9Aaj4ET0v1hYyCoNzQZ8uMO8VsEjEwdALufoChE5jptGhyLIS4MynR5fZBWKjkP/g4WFrLJqVz7ONbSgn68brhseLDoOEVG3UisVeOiqKADAsp9OocVoEpyI2rCwUKc1tRjx3rZcAMDDVw+AUsFvHyJyPLeO6Qs/DxUKzzVifU6x6DjUip841Gmf7y3A2Vo9QrQazIoNFR2HiKhHuKoUmHuFeZRl6Y8nYTRJghMRwMJCndRiNOHdrebRlXlX94dKyW8dInJcdyb0hdbVBbkV9dh4qER0HAILC3XSl9lFKKpuhL+nGrPjw0XHISLqUZ4aF9w7vh8A4O0fTsLEURbhWFjokowmCct+OgUAeHBCFDQuCsGJiIh63j1J/eChVuJYaS2+P1YuOo7TY2GhS/r2YAnyKurh7eaC28f1FR2HiKhXeLupcGdCBADg7R9PQpI4yiISCwtdlMkk4Z0fTgIA5o6PhLtaKTgREVHvuX9CJDQucuwvqMaOkxWi4zg1Fha6qC1Hy/BrWS081UrcldRPdBwiol7l56HGbWPNI8tvt/7yRmKwsNBFLW9dd+XOxAhoXV0EpyEi6n0PXhkFpVyGXXlV2F9QLTqO02JhoQvKOnMOe8+cg0ohx70cXSEiJxWsdcUNo0IA/PZLHPU+Fha6oOXbzHcGzYoNQYCXRnAaIiJxHphgXkhu46ES5Fc2CE7jnFhYqEO5Z+uw+UgZAPNwKBGRM4sJ9sKVg/xhkoAPdnCURQQWFurQBzvyIEnANdEBGBDgKToOEZFwD7X+8rZmbwGq6psFp3E+LCx0noq637ZV5+gKEZFZUn9fDA3xQlOLCZ/+ckZ0HKfDwkLnWbnzNJoNJowM98bYSB/RcYiIbIJMJrP8EvffnafR1GIUnMi5sLBQO43NRqxs/c3hwQlRkMlkghMREdmO64YHI9TbFZX1zVi7r1B0HKfCwkLtfJ5VgOqGFvT1ccPUYUGi4xAR2RSlQo65V0QCAD7YngcjN0XsNSwsZGE0Sfhgex4A83LUCjlHV4iIfi9lTDi8NErkVdQjo/VuSup5LCxk8d2hUuRXNaCPmwtuiQsXHYeIyCa5q5WWTRHb1quinsfCQgAASZIsP3hzEvvBVaUQnIiIyHbdk9QPKoUc+/KrkXWmSnQcp8DCQgBg3iOjsAZqpRx3JUaIjkNEZNMCvDS4MTYUAPDeVi4k1xtYWAjAb/tj3BwXBj8PteA0RES274ErzZNvM46WIfdsneA0jo+FhXCirBY/HCuHTPbbfhlERHRxAwI8MTkmAJIEvN96wwL1HBYWsoyuJA8JRKSfu+A0RET248Er+wMA1u4rxNlaveA0jo2FxcmV6ZrwVU4RgN9+8IiIqHPG9OuDUeHeaDaYsDLztOg4Do2Fxcmt2HkaLUYJ8RF9EBfRR3QcIiK7IpPJLJsifvLLGTQ0GwQnclwsLE6sTm+wbODFTQ6JiLomeWgQInzdUN3Qgs/3crn+nsLC4sTS9hSgtsmAKD93TI4JFB2HiMguKeQy3N+2XP+OXC7X30NYWJyU0SRhxU7zrPa5EyIh5zL8RERd9oe4cPRxc0FBVSO2HOVy/T2BhcVJfX+0DAVVjdC6uuCm2DDRcYiI7JqrSoHbxvYFAHz8M29x7gksLE7q459PAwBuHRvOZfiJiLrBnQkRUMhl+CW3CkdLdKLjOBwWFid0rFSHzNxKKOQy3JXYT3QcIiKHEOLtiqnDggAAK1p/KaTuw8LihNp+kK4dGohQb1exYYiIHMh94/sBAL7KKUJVfbPYMA6GhcXJVNU348ts80Jx9yRFCk5DRORYRvftg+GhWugNJqTuzhcdx6F0qbAsXboUkZGR0Gg0iIuLw/bt2y94bElJCW6//XYMHjwYcrkcCxYs6PC4tWvXYsiQIVCr1RgyZAi+/PLLrkSjS1i9Jx96gwlDQ7wwph8XiiMi6k4ymQz3to6yfJJ5Bi1Gk9hADsTqwpKWloYFCxZg8eLFyM7OxoQJEzBt2jTk53fcJPV6Pfz9/bF48WKMHDmyw2MyMzORkpKCOXPmYP/+/ZgzZw5mz56NXbt2WRuPLqLFaMInmeaF4u4dHwmZjLcyExF1t+tGBMPPQ41SXRO+O1QqOo7DkEmSZNUKN+PGjcPo0aOxbNkyy3MxMTGYNWsWlixZctGvvfrqqzFq1Ci8/vrr7Z5PSUmBTqfDxo0bLc9NnToVffr0QWpqaqdy6XQ6aLVa1NTUwMvLq/NvyIl8e6AEj6zaBz8PFX5+ehLUSt4dRETUE17fchyvbzmB0X29se7h8aLj2LTOfn5bNcLS3NyMrKwsJCcnt3s+OTkZO3fu7FpSmEdYfv+a11577UVfU6/XQ6fTtXvQxbWtDXD72L4sK0REPej2cX3hopBhX3419hdUi47jEKwqLBUVFTAajQgMbL+Me2BgIEpLuz7sVVpaavVrLlmyBFqt1vIIDw/v8n/fGRwsrMHeM+fgopDhzoQI0XGIiBxagKcGM0aEADBvMkuXr0uTbn8/90GSpMueD2Htay5atAg1NTWWR0FBwWX99x3dx63L8F83PBgBXhrBaYiIHN+94813Yn5zoBjluibBaeyfVYXFz88PCoXivJGP8vLy80ZIrBEUFGT1a6rVanh5ebV7UMfO1urxzf4SAMA943krMxFRbxgepkVcRB+0GCV8uou3OF8uqwqLSqVCXFwcMjIy2j2fkZGBpKSkLodITEw87zU3b958Wa9Jv/ls1xk0G02I7euNUeHeouMQETmNtlucV+06A73BKDaMnVNa+wULFy7EnDlzEB8fj8TERCxfvhz5+fmYN28eAPOlmqKiIqxcudLyNTk5OQCAuro6nD17Fjk5OVCpVBgyZAgAYP78+bjyyivx8ssvY+bMmVi/fj22bNmCHTt2dMNbdG7NBhM+/cXc7O/l6AoRUa+6dmgQgrUalNQ04Zv9Jbg5jpvNdpXVhSUlJQWVlZV46aWXUFJSgmHDhiE9PR0REeaJnCUlJeetyRIbG2v531lZWVi1ahUiIiJw+vRpAEBSUhJWr16NZ555Bs8++yz69++PtLQ0jBs37jLeGgHAtweLUVGnR6CXGtNa97ggIqLe4aKQY05iBP713a/4eGcebhodyjWwusjqdVhsFddhOZ8kSZj5zs84UFiDPyUPwqOTBoqORETkdM7VNyNhyffQG0z4fF4ixvTzER3JpvTIOixkX/blV+NAYQ1USjluG9tXdBwiIqfUx12FG2NDAXAX58vBwuLA2haKmzUqBL4easFpiIic1z2tk2+/O1yK4upGsWHsFAuLgyqpacTG1j0suCszEZFY0UFeSIzyhdEkYWXrnm5kHRYWB/XpL2dgNEkYF+mDISGc00NEJFrbLc6r9+SjsZm3OFuLhcUB6Q1GpO42r/zb9gNCRERiXRMTiHAfV1Q3tODr/cWi49gdFhYH9N2hUlTVNyNYq8HkmK6vQExERN1HIZfhjnHmJUA+3cXLQtZiYXFAn/5i/kG4dUxfKBX8v5iIyFbcEhcGlUKOA4U1OFBYLTqOXeGnmYM5VqrDntPnoJDLcOtY7mBNRGRLfD3UmD7cvIhn2y+X1DksLA7ms9Zl+JOHBCKQuzITEdmcOxPMl4U27C9GTUOL4DT2g4XFgdTpDVi3rxAAMKf1B4KIiGxLXEQfRAd5oqnFhC9a/82mS2NhcSBfZRehvtmIKH93JPb3FR2HiIg6IJPJLKMsn+06AwfZIafHsbA4CEmSLNdD7xgXwc21iIhs2KzYULirFMg9W4/MU5Wi49gFFhYHsS//HI6V1kLjIscfRnP7ciIiW+ahVuLG0eb9hXiLc+ewsDiIT1sn284YEQKtm4vgNEREdCltl4U2Hy5Dma5JcBrbx8LiACrr9Pj2QAmA334AiIjItkUHeSE+og8MJgmrW1cnpwtjYXEAn2cVotlowogwLUaGe4uOQ0REnTQn0fxLZurufBiMJsFpbBsLi50zmSSs2mW+HHTnOI6uEBHZk6nDguDrrkKprgnfHysXHcemsbDYuW0nziK/qgFeGiVmjAwRHYeIiKygVipwS7x5VXKufHtxLCx2rm2y7c1xYXBVKQSnISIia90xri9kMmD7iQqcrqgXHcdmsbDYsaLqRvxwrAwALDuAEhGRfQn3ccNVg/wBmBeSo46xsNix1F35MElAYpQvBgR4iI5DRERd1DYH8fOsQjS1GAWnsU0sLHaq2WDC6j3m2+DaZpkTEZF9mhgdgFBvV1Q3tFiWqaD2WFjs1OYjpaio0yPAU40pQwJFxyEiosugkMtw+7i+ALjy7YWwsNipttnkt44Jh4uC/zcSEdm72fHhcFHIkJ1fjUNFNaLj2Bx+0tmhE2W1+CW3CnIZcOvYvqLjEBFRN/D3VOPaoUEAOPm2Iywsduiz1oXirokJRIi3q+A0RETUXdq2V/kquxi6phbBaWwLC4udaWw2Yu2+QgDAHO4bRETkUMZF+mBggAcaW4z4KrtIdBybwsJiZ9IPlqC2yYBwH1dcMcBPdBwiIupGMtlvk29TdxdAkiTBiWwHC4udSWu9lTklPhxyuUxwGiIi6m43xoZCpZTjaIkOh4p0ouPYDBYWO3LqbB12nzZPtv1DXLjoOERE1AO83VSY2jr5dvWefMFpbAcLix1Z0zq6MnFwAIK0GsFpiIiop9w6xvxL6YacYjQ0GwSnsQ0sLHai2WCyTLZNGcPRFSIiR5YQ5Yu+Pm6o1RuQfrBUdBybwMJiJ74/WoaKumYEeKoxKTpAdBwiIupBcrnM8svp6t28LASwsNiNtn2D/hAXBiVXtiUicnh/iAuDQi7D3jPncLK8VnQc4fjJZweKqhux7cRZAOalm4mIyPEFemkwcbB5RL3tDlFnxsJiBz7fWwBJAhKjfNHPz110HCIi6iVtk2/X7itCs8EkOI1YLCw2zmiS8Ple82TbW8dydIWIyJlcPdgfAZ5qVNU3Y8vRMtFxhGJhsXE7TlagqLoRWlcXy6ZYRETkHJQKOW6JDwPw21xGZ8XCYuPSWhcNujE2FBoXheA0RETU21LizUv1bz9xFoXnGgSnEYeFxYZV1OmRccQ8BMi1V4iInFNfXzeMH+ALSQLWtE4RcEYsLDZs3b5CtBgljAz3Rkywl+g4REQkSMoY8yjL53sLYDQ554aILCw2SpIky/XKWzm6QkTk1JKHBMLbzQUlNU2WZS6cDQuLjdp75hxyz9bDTaXAjJEhouMQEZFAGhcFbowNBQCk7XbOybcsLDZqdes35PUjguGhVgpOQ0REorXNZdxytAxna/WC0/Q+FhYbpGtqwbcHiwH8dt2SiIicW3SQF0aFe8NgkrBun/NNvmVhsUHrc4rR1GLCoEAPjO7rLToOERHZiNtaFxBN21MASXKuybcsLDaobe2VlDF9IZPJBKchIiJbcf2IELirFMitqMfuvCrRcXoVC4uNOVRUg0NFOqgUcssEKyIiIgBwVystN2I424aILCw2pu0bMHloIHzcVYLTEBGRrWmbfPvtwRLUNLYITtN7WFhsSGOzEV/lFAEAbuVkWyIi6sCocG8MDvSE3mDC+tbPDGfAwmJDNh8pRW2TAWF9XJHU31d0HCIiskEymcwyyvJFlvPcLcTCYkPavvFuHh0GuZyTbYmIqGMzR4VAKZfhQGENjpfVio7TK1hYbERJTSN2nKwAYC4sREREF+Lrocak6AAAwFonGWVhYbER6/YVQZKAsZE+6OvrJjoOERHZuJvjzL/crssugsFoEpym57Gw2ABJkiwN+Q9xHF0hIqJLmzg4AD7uKpyt1WP7iQrRcXocC4sNyC6oRm5FPVxdFJg+PFh0HCIisgMqpRwzR5nXZPnCCZbq71JhWbp0KSIjI6HRaBAXF4ft27df9PitW7ciLi4OGo0GUVFRePfdd9v9/YoVKyCTyc57NDU1dSWe3WmbbDttWBA3OiQiok5rm/OYcbgMNQ2OvSaL1YUlLS0NCxYswOLFi5GdnY0JEyZg2rRpyM/P7/D4vLw8TJ8+HRMmTEB2djb+8pe/4PHHH8fatWvbHefl5YWSkpJ2D41G07V3ZUeaWoz4er95o0NeDiIiImsMDfFCdJAnmo0mfH2gWHScHmV1YXn11Vcxd+5c3H///YiJicHrr7+O8PBwLFu2rMPj3333XfTt2xevv/46YmJicP/99+O+++7Df/7zn3bHyWQyBAUFtXs4g4wjZahtMiDU2xUJUVx7hYiIOk8mk1l+2XX0NVmsKizNzc3IyspCcnJyu+eTk5Oxc+fODr8mMzPzvOOvvfZa7N27Fy0tvw1f1dXVISIiAmFhYbj++uuRnZ190Sx6vR46na7dwx61fYPdNDqUa68QEZHVZo4KhUIuQ05BNU6W14mO02OsKiwVFRUwGo0IDAxs93xgYCBKS0s7/JrS0tIOjzcYDKioMM9qjo6OxooVK7BhwwakpqZCo9Fg/PjxOHHixAWzLFmyBFqt1vIIDw+35q3YhDJdE7afOAuAa68QEVHX+HuqMXGwPwBgrQNPvu3SpFuZrP1IgCRJ5z13qeP/9/mEhATceeedGDlyJCZMmIA1a9Zg0KBBeOutty74mosWLUJNTY3lUVBgf7tWfpldBJMExEf0QT8/d9FxiIjITrX90rtuXyGMJklwmp5h1S0pfn5+UCgU542mlJeXnzeK0iYoKKjD45VKJXx9O56zIZfLMWbMmIuOsKjVaqjVamvi2xSuvUJERN1lUkwAvN1cUKbT4+eTFbhykL/oSN3OqhEWlUqFuLg4ZGRktHs+IyMDSUlJHX5NYmLiecdv3rwZ8fHxcHFx6fBrJElCTk4OgoMdd02SA4U1OFFeB7VSjukjHPd9EhFRz1MrFbhhZOuaLA46+dbqS0ILFy7EBx98gI8++ghHjx7FE088gfz8fMybNw+A+VLNXXfdZTl+3rx5OHPmDBYuXIijR4/io48+wocffog//elPlmNefPFFbNq0Cbm5ucjJycHcuXORk5NjeU1H1PYNNXVYELw0HRc3IiKizmobrd90uBS6Jsdbk8XqVcpSUlJQWVmJl156CSUlJRg2bBjS09MREREBACgpKWm3JktkZCTS09PxxBNP4J133kFISAjefPNN3HzzzZZjqqur8eCDD6K0tBRarRaxsbHYtm0bxo4d2w1v0fboDUZsaF17hZNtiYioOwwP1WJggAdOlNfh2wMluG1sX9GRupVMapsBa+d0Oh20Wi1qamrg5eUlOs5FpR8swcOf7UOQlwY/Pz0JCt7OTERE3eC9raewZOMxxEX0wdo/djxVw9Z09vObewkJsPZ/1l5hWSEiou5yY2wo5DIg68w55FXUi47TrVhYell5bRN+Ot669grvDiIiom4U4KWx3CG01sEm37Kw9LL12cUwmiTE9vVGf38P0XGIiMjBtE2+XbevECYHWpOFhaUXSZJkuTuIk22JiKgnTI4JhJdGieKaJmTmVoqO021YWHrR4WIdfi2rhUopx4wRIaLjEBGRA9K4KDDDAddkYWHpRW3fOMlDAqF149orRETUM9ouC208VIJaB1mThYWllzQbTFifUwSAk22JiKhnjQr3RpS/O5paTNh4sOPNie0NC0sv+fHXcpxraEGApxoTBviJjkNERA5MJpNZRlkc5bIQC0sv+SrbPLoyKzYUSgVPOxER9awbY0MhkwG7T1eh8FyD6DiXjZ+cvaCmsQXfHysHAMwaFSo4DREROYNgrSsSIn0BwLIdjD1jYekF3x0qQbPBhEGBHogJ9hQdh4iInMSsWPPdQl9lF8Hed+JhYekFX2Wbm+2s2FDIZFyKn4iIesfUYcFQKeU4XlaHoyW1ouNcFhaWHlZS04hf8swL99wwkmuvEBFR79G6uuCa6AAAwFetd6raKxaWHrYhpxiSBIzt54OwPm6i4xARkZOZ2Tp3ckOOeWsYe8XC0sO+/J+7g4iIiHrbxGh/eGmUKNU1YZcdL9XPwtKDjpXqcKy0Fi4KGaYPDxIdh4iInJBaqcB1I4IB2PdlIRaWHtQ22Xbi4AB4u6kEpyEiImfVtqTGxoOlaGoxCk7TNSwsPcRkkrAhh5eDiIhIvDH9fBCi1aBWb8APreuC2RsWlh6y+3QVimua4KlWYlLrDG0iIiIR5HIZZrb+8tw2t9LesLD0kLaNDqcND4LGRSE4DRERObu2y0I//VqO6oZmwWmsx8LSA/QGI749UAKAl4OIiMg2DA7yREywF1qMEtLtcAdnFpYe8OOxs9A1GRDkpbHs40BERCTarFG/LdVvb1hYekDb5aCZo0Igl3MpfiIisg03jAqx2x2cWVi6WU1jC74/ap6BPZM7MxMRkQ353x2c1+fY1w7OLCzd7LtDJWg2mjA40JM7MxMRkc25sXVupb3t4MzC0s3abhebGRvCnZmJiMjmTB0eBJVSjhPldThSohMdp9NYWLpRcXUjduVVAeDlICIisk1eGhdMjjGvD2ZPl4VYWLrRhv2tOzNH+iDU21V0HCIiog61/VK9PqfIbnZwZmHpRm23id3ItVeIiMiGXT3YH1pXF5Tp9HazgzMLSzdp25lZpZBj+rBg0XGIiIguSK1UYPpw+9rBmYWlm7TtzHz1YH9o3VwEpyEiIrq4tkXk7GUHZxaWbvC/OzPzchAREdmDMf3M8y3tZQdnFpZuYNmZWaPERO7MTEREdkAul+GG1lEWe9jBmYWlG7TdFjZtGHdmJiIi+9F2VeCnX8tR09AiOM3FsbBcphajCRsPmXdm5torRERkTwYFeiI6yBMtRgmbDtv2Ds4sLJdpx8kKVDe0wM9DjYQo7sxMRET2ZcZI82Whrw/Y9iJyLCyX6Zv95tGV64YHQcGdmYmIyM5cP8J8e/POU5WoqNMLTnNhLCyXoanFiM2tQ2jXtzZUIiIiexLh644RYVoYTRI2HrLdy0IsLJdh6/GzqNUbEKzVIK5vH9FxiIiIumTGiNbLQvtt97IQC8tl+OaA+XLQ9SOCIeflICIislPXtV4W2nO6CqU1TYLTdIyFpYsamg3YcqQMAHD9CF4OIiIi+xXi7Yr4iD6QJODbgyWi43SIhaWLfjhWjsYWI/r6uGFEmFZ0HCIiosvSdrfQNzZ6txALSxe1XeebMTIYMhkvBxERkX2bNjwIchmQnV+NgqoG0XHOw8LSBbVNLfjx17MAeDmIiIgcQ4CnxrKeWNscTVvCwtIFGUfK0GwwYUCAB6KDPEXHISIi6hZtv4Tb4mUhFpYuaLscdP0IXg4iIiLHMXVYEJRyGQ4X63DqbJ3oOO2wsFjpXH0ztp+oAMDLQURE5Fh83FW4YqAfgN9WcrcVLCxW2nS4FAaThCHBXhgQ4CE6DhERUbdq+2X86wPFkCRJcJrfsLBYqW1zqOtHBgtOQkRE1P2ShwZCpZDjZHkdfi2rFR3HgoXFCmdr9cg8VQngt2WMiYiIHImXxgVXD/YHYFtL9bOwWGHjoRKYJGBUuDfCfdxExyEiIuoR11sWkSuxmctCLCxW+N+7g4iIiBzV5JgAuLoocKayAQeLakTHAcDC0mnF1Y3Yc/ocZDLeHURERI7NTaXEpJgAALZzWYiFpZPSWzeDGtPPB0FajeA0REREPattrua3B0pgMom/LMTC0kmWvYN4OYiIiJzA1YP94aFWorimCfvyz4mOw8LSGWcq67G/sAZyGTBtOAsLERE5Po2LAslDAgHYxmWhLhWWpUuXIjIyEhqNBnFxcdi+fftFj9+6dSvi4uKg0WgQFRWFd99997xj1q5diyFDhkCtVmPIkCH48ssvuxKtR7RtAjV+gB/8PNSC0xAREfWOGa13C317sBRGwZeFrC4saWlpWLBgARYvXozs7GxMmDAB06ZNQ35+fofH5+XlYfr06ZgwYQKys7Pxl7/8BY8//jjWrl1rOSYzMxMpKSmYM2cO9u/fjzlz5mD27NnYtWtX199ZN+LdQURE5IzGD/CD1tUFFXV67MqtFJpFJll5g/W4ceMwevRoLFu2zPJcTEwMZs2ahSVLlpx3/FNPPYUNGzbg6NGjlufmzZuH/fv3IzMzEwCQkpICnU6HjRs3Wo6ZOnUq+vTpg9TU1E7l0ul00Gq1qKmpgZeXlzVv6aJOltdi8qvb4KKQYc/iyfB2U3XbaxMREdm6p9cewOo9BbhtbDiW3DSi21+/s5/fVo2wNDc3IysrC8nJye2eT05Oxs6dOzv8mszMzPOOv/baa7F37160tLRc9JgLvSYA6PV66HS6do+e8HXr5k9XDvRnWSEiIqfTdllo46FStBhNwnJYVVgqKipgNBoRGBjY7vnAwECUlpZ2+DWlpaUdHm8wGFBRUXHRYy70mgCwZMkSaLVayyM8PNyat9IpkiRx7yAiInJq4yJ94OehQnVDC3acrBCWo0uTbmUyWbs/S5J03nOXOv73z1v7mosWLUJNTY3lUVBQ0On8nSVJwFNTo3HDyBBMjgm89BcQERE5GKVCjgevjMJTU6MRE9R9Uy6szmHNwX5+flAoFOeNfJSXl583QtImKCiow+OVSiV8fX0vesyFXhMA1Go11OqevWNHLpfh2qFBuHZoUI/+d4iIiGzZg1f2Fx3BuhEWlUqFuLg4ZGRktHs+IyMDSUlJHX5NYmLiecdv3rwZ8fHxcHFxuegxF3pNIiIici5WjbAAwMKFCzFnzhzEx8cjMTERy5cvR35+PubNmwfAfKmmqKgIK1euBGC+I+jtt9/GwoUL8cADDyAzMxMffvhhu7t/5s+fjyuvvBIvv/wyZs6cifXr12PLli3YsWNHN71NIiIismdWF5aUlBRUVlbipZdeQklJCYYNG4b09HREREQAAEpKStqtyRIZGYn09HQ88cQTeOeddxASEoI333wTN998s+WYpKQkrF69Gs888wyeffZZ9O/fH2lpaRg3blw3vEUiIiKyd1avw2KremodFiIiIuo5PbIOCxEREZEILCxERERk81hYiIiIyOaxsBAREZHNY2EhIiIim8fCQkRERDaPhYWIiIhsHgsLERER2TwWFiIiIrJ5Vi/Nb6vaFuzV6XSCkxAREVFntX1uX2rhfYcpLLW1tQCA8PBwwUmIiIjIWrW1tdBqtRf8e4fZS8hkMqG4uBienp6QyWTd9ro6nQ7h4eEoKCjgHkU9iOe59/Bc9w6e597B89w7evI8S5KE2tpahISEQC6/8EwVhxlhkcvlCAsL67HX9/Ly4g9DL+B57j08172D57l38Dz3jp46zxcbWWnDSbdERERk81hYiIiIyOaxsFyCWq3G888/D7VaLTqKQ+N57j08172D57l38Dz3Dls4zw4z6ZaIiIgcF0dYiIiIyOaxsBAREZHNY2EhIiIim8fCQkRERDaPhQXA0qVLERkZCY1Gg7i4OGzfvv2ix2/duhVxcXHQaDSIiorCu+++20tJ7Zs153ndunWYMmUK/P394eXlhcTERGzatKkX09ova7+f2/z8889QKpUYNWpUzwZ0INaea71ej8WLFyMiIgJqtRr9+/fHRx991Etp7Ze15/mzzz7DyJEj4ebmhuDgYNx7772orKzspbT2adu2bZgxYwZCQkIgk8nw1VdfXfJrev2zUHJyq1evllxcXKT3339fOnLkiDR//nzJ3d1dOnPmTIfH5+bmSm5ubtL8+fOlI0eOSO+//77k4uIiffHFF72c3L5Ye57nz58vvfzyy9Lu3bul48ePS4sWLZJcXFykffv29XJy+2LteW5TXV0tRUVFScnJydLIkSN7J6yd68q5vuGGG6Rx48ZJGRkZUl5enrRr1y7p559/7sXU9sfa87x9+3ZJLpdLb7zxhpSbmytt375dGjp0qDRr1qxeTm5f0tPTpcWLF0tr166VAEhffvnlRY8X8Vno9IVl7Nix0rx589o9Fx0dLT399NMdHv/kk09K0dHR7Z576KGHpISEhB7L6AisPc8dGTJkiPTiiy92dzSH0tXznJKSIj3zzDPS888/z8LSSdae640bN0parVaqrKzsjXgOw9rz/O9//1uKiopq99ybb74phYWF9VhGR9OZwiLis9CpLwk1NzcjKysLycnJ7Z5PTk7Gzp07O/yazMzM846/9tprsXfvXrS0tPRYVnvWlfP8eyaTCbW1tfDx8emJiA6hq+f5448/xqlTp/D888/3dESH0ZVzvWHDBsTHx+Nf//oXQkNDMWjQIPzpT39CY2Njb0S2S105z0lJSSgsLER6ejokSUJZWRm++OILXHfddb0R2WmI+Cx0mM0Pu6KiogJGoxGBgYHtng8MDERpaWmHX1NaWtrh8QaDARUVFQgODu6xvPaqK+f591555RXU19dj9uzZPRHRIXTlPJ84cQJPP/00tm/fDqXSqf85sEpXznVubi527NgBjUaDL7/8EhUVFXj44YdRVVXFeSwX0JXznJSUhM8++wwpKSloamqCwWDADTfcgLfeeqs3IjsNEZ+FTj3C0kYmk7X7syRJ5z13qeM7ep7as/Y8t0lNTcULL7yAtLQ0BAQE9FQ8h9HZ82w0GnH77bfjxRdfxKBBg3ornkOx5nvaZDJBJpPhs88+w9ixYzF9+nS8+uqrWLFiBUdZLsGa83zkyBE8/vjjeO6555CVlYXvvvsOeXl5mDdvXm9EdSq9/Vno1L9S+fn5QaFQnNfUy8vLz2uObYKCgjo8XqlUwtfXt8ey2rOunOc2aWlpmDt3Lj7//HNMnjy5J2PaPWvPc21tLfbu3Yvs7Gw8+uijAMwfqpIkQalUYvPmzZg0aVKvZLc3XfmeDg4ORmhoKLRareW5mJgYSJKEwsJCDBw4sEcz26OunOclS5Zg/Pjx+POf/wwAGDFiBNzd3TFhwgT87W9/4yh4NxHxWejUIywqlQpxcXHIyMho93xGRgaSkpI6/JrExMTzjt+8eTPi4+Ph4uLSY1ntWVfOM2AeWbnnnnuwatUqXn/uBGvPs5eXFw4ePIicnBzLY968eRg8eDBycnIwbty43opud7ryPT1+/HgUFxejrq7O8tzx48chl8sRFhbWo3ntVVfOc0NDA+Ty9h9tCoUCwG8jAHT5hHwW9th0XjvRdsvchx9+KB05ckRasGCB5O7uLp0+fVqSJEl6+umnpTlz5liOb7uV64knnpCOHDkiffjhh7ytuROsPc+rVq2SlEql9M4770glJSWWR3V1tai3YBesPc+/x7uEOs/ac11bWyuFhYVJf/jDH6TDhw9LW7dulQYOHCjdf//9ot6CXbD2PH/88ceSUqmUli5dKp06dUrasWOHFB8fL40dO1bUW7ALtbW1UnZ2tpSdnS0BkF599VUpOzvbcvu4LXwWOn1hkSRJeuedd6SIiAhJpVJJo0ePlrZu3Wr5u7vvvlu66qqr2h3/008/SbGxsZJKpZL69esnLVu2rJcT2ydrzvNVV10lATjvcffdd/d+cDtj7ffz/2JhsY615/ro0aPS5MmTJVdXVyksLExauHCh1NDQ0Mup7Y+15/nNN9+UhgwZIrm6ukrBwcHSHXfcIRUWFvZyavvy448/XvTfXFv4LJRJEsfIiIiIyLY59RwWIiIisg8sLERERGTzWFiIiIjI5rGwEBERkc1jYSEiIiKbx8JCRERENo+FhYiIiGweCwsRERHZPBYWIiIisnksLERERGTzWFiIiIjI5rGwEBERkc37f8rkpQmffQknAAAAAElFTkSuQmCC\n",
  44 + "text/plain": [
  45 + "<Figure size 640x480 with 1 Axes>"
  46 + ]
  47 + },
  48 + "metadata": {},
  49 + "output_type": "display_data"
  50 + }
  51 + ],
  52 + "source": [
  53 + "plt.plot(x,y)"
  54 + ]
  55 + },
  56 + {
  57 + "cell_type": "code",
  58 + "execution_count": 94,
  59 + "id": "26e02fe3-a079-4b64-b986-56f37f967e85",
  60 + "metadata": {},
  61 + "outputs": [],
  62 + "source": [
  63 + "from sympy import pprint, symbols, expand, factor, simplify, collect, cancel, apart, Matrix, solve, Poly, roots, degree\n",
  64 + "from sympy.printing.latex import latex\n",
  65 + "from sympy.plotting import plot"
  66 + ]
  67 + },
  68 + {
  69 + "cell_type": "code",
  70 + "execution_count": 57,
  71 + "id": "baf8a3e6-0a39-410a-85c8-8c536b7603ae",
  72 + "metadata": {},
  73 + "outputs": [],
  74 + "source": [
  75 + "t,x = sympy.symbols(\"t x\")"
  76 + ]
  77 + },
  78 + {
  79 + "cell_type": "code",
  80 + "execution_count": 7,
  81 + "id": "5d570fe9-37cf-4680-a608-99e015d9b977",
  82 + "metadata": {},
  83 + "outputs": [],
  84 + "source": [
  85 + "Z = 8.8 + t*(1-t)"
  86 + ]
  87 + },
  88 + {
  89 + "cell_type": "code",
  90 + "execution_count": 8,
  91 + "id": "de141bca-0e2a-42c7-86a3-355a1eda8287",
  92 + "metadata": {},
  93 + "outputs": [],
  94 + "source": [
  95 + "pa = 0.7/Z"
  96 + ]
  97 + },
  98 + {
  99 + "cell_type": "code",
  100 + "execution_count": 20,
  101 + "id": "0194f6b5-c206-47d7-bc0d-8b1617186d46",
  102 + "metadata": {},
  103 + "outputs": [],
  104 + "source": [
  105 + "T = 1 - t"
  106 + ]
  107 + },
  108 + {
  109 + "cell_type": "code",
  110 + "execution_count": 58,
  111 + "id": "d1b858fc-2432-42e7-ba79-e012e76a6a99",
  112 + "metadata": {},
  113 + "outputs": [],
  114 + "source": [
  115 + "s = Matrix([\n",
  116 + " 37,\n",
  117 + " 9,\n",
  118 + " 9,\n",
  119 + " 3,\n",
  120 + " 3,\n",
  121 + " 0,\n",
  122 + " 0,\n",
  123 + " 2,\n",
  124 + " 1])\n",
  125 + "m = Matrix([\n",
  126 + " 0.0,\n",
  127 + " 0.0,\n",
  128 + " 0.7,\n",
  129 + " 0.3 * t,\n",
  130 + " 0.3 * T,\n",
  131 + " 0.7 + 0.3 * t,\n",
  132 + " 0.7 + 0.3 * T,\n",
  133 + " 0.3 * t * T,\n",
  134 + " 0.7 + 0.3 * t * T\n",
  135 + "])\n",
  136 + "z = (s.T * m)[0,0]"
  137 + ]
  138 + },
  139 + {
  140 + "cell_type": "code",
  141 + "execution_count": 50,
  142 + "id": "2b461810-5bbe-4e4c-a938-b3c916dd95ee",
  143 + "metadata": {},
  144 + "outputs": [],
  145 + "source": [
  146 + "z = (s.T * m)[0,0]"
  147 + ]
  148 + },
  149 + {
  150 + "cell_type": "code",
  151 + "execution_count": 51,
  152 + "id": "3946e0dc-fc81-4030-9cac-ccdccf05b9e1",
  153 + "metadata": {},
  154 + "outputs": [
  155 + {
  156 + "data": {
  157 + "text/latex": [
  158 + "$\\displaystyle - 0.9 t \\left(t - 1\\right) + 7.9$"
  159 + ],
  160 + "text/plain": [
  161 + "-0.9*t*(t - 1) + 7.9"
  162 + ]
  163 + },
  164 + "execution_count": 51,
  165 + "metadata": {},
  166 + "output_type": "execute_result"
  167 + }
  168 + ],
  169 + "source": [
  170 + "simplify(z)"
  171 + ]
  172 + },
  173 + {
  174 + "cell_type": "code",
  175 + "execution_count": 68,
  176 + "id": "a34c1fc2-3810-4054-bcee-b3d8db7b852f",
  177 + "metadata": {},
  178 + "outputs": [
  179 + {
  180 + "data": {
  181 + "text/latex": [
  182 + "$\\displaystyle - 7.9 \\cdot \\left(0.113924050632911 t^{2} - 0.113924050632911 t - 1.0\\right)$"
  183 + ],
  184 + "text/plain": [
  185 + "-7.9*(0.113924050632911*t**2 - 0.113924050632911*t - 1.0)"
  186 + ]
  187 + },
  188 + "execution_count": 68,
  189 + "metadata": {},
  190 + "output_type": "execute_result"
  191 + }
  192 + ],
  193 + "source": [
  194 + "factor(z)"
  195 + ]
  196 + },
  197 + {
  198 + "cell_type": "code",
  199 + "execution_count": 53,
  200 + "id": "89ac28fa-0c47-4a27-a0cc-f7fe0ddf63bd",
  201 + "metadata": {},
  202 + "outputs": [
  203 + {
  204 + "data": {
  205 + "text/latex": [
  206 + "$\\displaystyle - 0.9 t^{2} + 0.9 t + 7.9$"
  207 + ],
  208 + "text/plain": [
  209 + "-0.9*t**2 + 0.9*t + 7.9"
  210 + ]
  211 + },
  212 + "execution_count": 53,
  213 + "metadata": {},
  214 + "output_type": "execute_result"
  215 + }
  216 + ],
  217 + "source": [
  218 + "expand(z)"
  219 + ]
  220 + },
  221 + {
  222 + "cell_type": "code",
  223 + "execution_count": 47,
  224 + "id": "f575ba56-647a-4e01-8c0f-39499abf6300",
  225 + "metadata": {},
  226 + "outputs": [
  227 + {
  228 + "data": {
  229 + "text/plain": [
  230 + "'- 1.3 t^{2} + 1.3 t + 7.5'"
  231 + ]
  232 + },
  233 + "execution_count": 47,
  234 + "metadata": {},
  235 + "output_type": "execute_result"
  236 + }
  237 + ],
  238 + "source": [
  239 + "latex(expand(z))"
  240 + ]
  241 + },
  242 + {
  243 + "cell_type": "code",
  244 + "execution_count": 61,
  245 + "id": "a4c62a99-9ad7-4b79-9dda-a28092383a07",
  246 + "metadata": {},
  247 + "outputs": [],
  248 + "source": [
  249 + "zx = z.replace(t,x)"
  250 + ]
  251 + },
  252 + {
  253 + "cell_type": "code",
  254 + "execution_count": 70,
  255 + "id": "9d67f9d2-48d9-454e-bbfa-4d185eb86200",
  256 + "metadata": {},
  257 + "outputs": [
  258 + {
  259 + "data": {
  260 + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA06UlEQVR4nO3deXRUZZ7/8U/tSSAJYkgggCyKItigElFAWu1RUBHRHlRGh4PaqBywhebYLfxcgG4xo55hWgUUaQZnmkWO3YKeHhWYOcri0gLCjMq4gyANgyJkIUklVfX8/qglVdnIXqmH9+uce+69z31u1Te5SeVzn3ur4jDGGAEAACDlOZNdAAAAAFoHwQ4AAMASBDsAAABLEOwAAAAsQbADAACwBMEOAADAEgQ7AAAASxDsAAAALEGwAwAAsATBDgAAwBIdItht3bpV48ePV35+vhwOhzZs2JCw3Rij+fPnKz8/X+np6bryyiv16aefJqdYAACADqpDBLuTJ09q6NChWrx4cZ3bn3rqKS1atEiLFy/Wjh071L17d11zzTUqKSlp50oBAAA6LocxxiS7iHgOh0Pr16/XTTfdJCk8Wpefn69Zs2bpoYcekiT5/X7l5eXpySef1H333ZfEagEAADqODjFi15B9+/bpyJEjGjNmTKzN5/Ppiiuu0HvvvVfvfn6/X8XFxbGpqKhI33//vTpYjgUAAGg1HT7YHTlyRJKUl5eX0J6XlxfbVpfCwkJlZ2fHpi5duig3N5fLtwAAwFodPthFORyOhHVjTK22eHPnzlVRUVFsOnjwYFuXCAAAkFTuZBdwKt27d5cUHrnr0aNHrP3o0aO1RvHi+Xw++Xy+Nq8PAACgo+jwI3b9+vVT9+7dtXnz5lhbZWWltmzZopEjRyaxMgAAgI6lQ4zYlZaW6quvvoqt79u3T3v27FHXrl111llnadasWXriiSc0YMAADRgwQE888YQyMjJ0++23J7FqAACAjqVDBLudO3fqqquuiq3Pnj1bkjRlyhS99NJL+s1vfqPy8nJNnz5dx48f16WXXqpNmzYpMzMzWSUDAAB0OB3uc+zaSnFxsbKzs1VUVKSsrKxklwMAaCOhUEiVlZXJLgOnOY/HI5fL1e7P2yFG7AAAaA2VlZXat2+fQqFQsksB1KVLF3Xv3r3BT/FobQQ7AIAVjDE6fPiwXC6XevfuLaezw78/EJYyxqisrExHjx6VpIRP9WhrBDsAgBUCgYDKysqUn5+vjIyMZJeD01x6erqk8Mez5ebmtttlWU5nAABWCAaDkiSv15vkSoCw6AlGVVVVuz0nwQ4AYJX2vJ8JaEgyfhYJdgAAAJYg2AEAAFiCYAcAAGAJgh0AAKexY8eOKTc3V/v37092KQkmTpyoRYsWJbuMlEOwAwCgA1i6dKn69euntLQ0DRs2TNu2bWuwf0lJiWbNmqU+ffooPT1dI0eO1I4dO5r8vIWFhRo/frz69u0rSdq6davGjx+v/Px8ORwObdiwoRlfTcs99thjWrhwoYqLi1v9sfv27SuHw1FrmjFjRr37tNb3u60R7AAASLJ169Zp1qxZevjhh7V7926NHj1a1113nQ4cOFDvPlOnTtXmzZv1xz/+UR9//LHGjBmjq6++WocOHWr085aXl2vFihWaOnVqrO3kyZMaOnSoFi9e3KKvqaWGDBmivn37avXq1Y3qf+WVV+qll15qVN8dO3bo8OHDsWnz5s2SpFtuuaXefVrj+90uzGmiqKjISDJFRUXJLgUA0AbKy8vN3r17TXl5ebJLabLhw4ebadOmJbQNHDjQzJkzp87+ZWVlxuVymb/85S8J7UOHDjUPP/xwbH3NmjXG5/OZ7777Ltb2i1/8wvzkJz8xJ06cMH/+859NTk5OvXVJMuvXr2/GV3Rqp6rNGGPmz59vRo8e3ajHu+KKK8zKlSubVcvMmTPN2WefbUKhUJ3bG/v9rikZP5OM2AEArGSMUVllICmTMabRdVZWVmrXrl0aM2ZMQvuYMWP03nvv1blPIBBQMBhUWlpaQnt6erq2b98eW580aZLOO+88FRYWSpIWLFigjRs36s0331R2dra2bt2qgoKCRtfamk5VmyQNHz5cH374ofx+f5vVUVlZqVWrVunuu++u93PnGvv97gj4l2IAACuVVwU16LGNSXnuvb8dqwxv4/7E/vDDDwoGg8rLy0toz8vL05EjR+rcJzMzUyNGjNDvfvc7nX/++crLy9PatWv117/+VQMGDIj1czgcWrhwoSZOnKj8/Hw988wz2rZtm3r27ClJ2r9/v/Lz85v5VbbMqWqTpJ49e8rv9+vIkSPq06dPm9SxYcMGnThxQnfeeWe9fRr7/e4IGLEDAKADqDlaZIxp8D8X/PGPf5QxRj179pTP59Ozzz6r22+/vdb/JL3hhhs0aNAgLViwQOvXr9fgwYNj28rLy2uNQjXV/Pnz63wjQvy0c+fOOvdtqDap+v+tlpWV1dr3iSeeUOfOnWPTtm3bNG3atFptp7JixQpdd911pwy4jf1+JxsjdgAAK6V7XNr727FJe+7GysnJkcvlqjU6d/To0VqjePHOPvtsbdmyRSdPnlRxcbF69Oih2267Tf369Uvot3HjRn322Wd1jgrm5OTo+PHjja61Lvfff78mTZrUYJ/oO25raqg2Sfrxxx8lSd26dau1bdq0abr11ltj63fccYf+/u//Xj//+c9jbfGjf3X59ttv9Z//+Z969dVXG+wnNf77nWwEOwCAlRwOR6MvhyaT1+vVsGHDtHnzZt18882x9s2bN2vChAmn3L9Tp07q1KmTjh8/ro0bN+qpp56Kbfvoo490yy23aNmyZXr55Zf16KOP6pVXXoltv+iii7Rq1aoW1Z+Tk6OcnJwm73eq2iTpk08+Ua9evep8/K5du6pr166x9fT0dOXm5uqcc85pdA0rV65Ubm6uxo0b1+h9Gvp+dwQd/yceAADLzZ49W5MnT1ZBQYFGjBihF198UQcOHNC0adMkSYsXL9b69ev1X//1X7F9Nm7cKGOMzjvvPH311Vf69a9/rfPOO0933XWXpPD9c+PGjdOcOXM0efJkDRo0SJdccol27dqlYcOGSZLGjh2ruXPn6vjx4zrjjDMkSaWlpfrqq69iz7Nv3z7t2bNHXbt21VlnndUqX29japOkbdu21XpTSWsJhUJauXKlpkyZIre7dhyq+T0/1fe7w2i3998mGR93AgB2S+WPOzHGmCVLlpg+ffoYr9drLr74YrNly5bYtnnz5pk+ffok9F+3bp3p37+/8Xq9pnv37mbGjBmxjwk5duyYGThwoLn33nsT9rnxxhvN2LFjE9ouu+wy88ILL8TW3377bSOp1jRlypRW+TobW1t5ebnJysoy77//fqMet6kfd7Jx40YjyXz++ed1bq/5PW/o+12fZPxMOoxpwnuyU1hxcbGys7NVVFSkrKysZJcDAGhlFRUV2rdvX+y/N6Bx3njjDT344IP65JNP5HR2nPdULlmyRK+99po2bdqU7FKaLRk/k1yKBQDgNHb99dfryy+/1KFDh9S7d+9klxPj8Xj03HPPJbuMlEOwAwDgNDdz5sxkl1DLvffem+wSUlLHGXMFAABAixDsAAAALEGwAwAAsATBDgAAwBIEOwAAAEsQ7AAAACxBsAMAALAEwQ4AAMASBDsAAABLEOwAAEgBx44dU25urvbv35/sUmqZOHGiFi1alOwyIIIdAAApobCwUOPHj1ffvn0lSVu3btX48eOVn58vh8OhDRs2JK22xx57TAsXLlRxcXHSakAYwQ4AgA6uvLxcK1as0NSpU2NtJ0+e1NChQ7V48eIkVhY2ZMgQ9e3bV6tXr052Kac9gh0AAEm2du1apaWl6dChQ7G2qVOnasiQISoqKtKbb74pt9utESNGxLZfd911evzxx/Xzn/88qbVF3XjjjVq7dm2b1oJTI9gBAOxkjFR5MjmTMU0qddKkSTrvvPNUWFgoSVqwYIE2btyoN998U9nZ2dq6dasKCgra4rvU4tqihg8frg8//FB+vz8pdSLMnewCAABoE1Vl0hP5yXnu//c3ydup0d0dDocWLlyoiRMnKj8/X88884y2bdumnj17SpL279+v/PzkfC2nqi2qZ8+e8vv9OnLkiPr06ZOUWsGIHQAAHcINN9ygQYMGacGCBVq/fr0GDx4c21ZeXq60tLQWPf78+fPlcDganHbu3Nnk2qLS09MlSWVlZS2qEy3DiB0AwE6ejPDIWbKeu4k2btyozz77TMFgUHl5eQnbcnJydPz48RaVdP/992vSpEkN9om+47YptUX9+OOPkqRu3bq1qE60DMEOAGAnh6NJl0OT6aOPPtItt9yiZcuW6eWXX9ajjz6qV155Jbb9oosu0qpVq1r0HDk5OcrJyWn12qI++eQT9erVq1nPgdZDsAMAIIn279+vcePGac6cOZo8ebIGDRqkSy65RLt27dKwYcMkSWPHjtXcuXN1/PhxnXHGGZKk0tJSffXVV7HH2bdvn/bs2aOuXbvqrLPOarfaorZt26YxY8a0yvOi+RzGNPGtOymquLhY2dnZKioqUlZWVrLLAQC0soqKCu3bt0/9+vVr8f1o7eXHH3/UqFGj9NOf/lTLli2LtU+YMEF+v19vvfVWrG3EiBG68847dd9990mS3nnnHV111VW1HnPKlCl66aWX2rW2iooK5eXlaePGjbrsssta/Ny2SMbPJMEOAGCFVAx2TfHGG2/owQcf1CeffCKns2O993HJkiV67bXXtGnTpmSX0qEk42eSS7EAAKSA66+/Xl9++aUOHTqk3r17J7ucBB6PR88991yyy4AIdgAApIyZM2cmu4Q63XvvvckuAREdaywXAAAAzUawAwAAsATBDgAAwBIEOwCAVU6TD3tACkjGzyLBDgBgBZfLJUmqrKxMciVAWPT/5no8nnZ7Tt4VCwCwgtvtVkZGhr7//nt5PJ4O91lvOH0YY1RWVqajR4+qS5cusZOO9kCwAwBYweFwqEePHtq3b5++/fbbZJcDqEuXLurevXu7PifBDgBgDa/XqwEDBnA5Fknn8XjadaQuimAHALCK0+m08l+KAY3BDQgAAACWINgBAABYgmAHAABgCYIdAACAJQh2AAAAliDYAQAAWIJgBwAAYAmCHQAAgCUIdgAAAJYg2AEAAFiCYAcAAGAJgh0AAIAlCHYAAACWcCe7AAD2M8bIGClojIKh6uWQMQqFwm0ho/B6pE8oFF4PGiNjjIKRdRPpJyWum7jnCZnwcshIRuG2+H4hYyQTqS26oHCf+Hl4e+LXUbMtyiHJ4XDELUcmOWIdon0c0X0i2x2RbXJITocjMoX7OuPaHNFlp2r0qe7nqOMxXM64KW49uh2APQh2QAdjjFFV0KgqGFJlIKTKuHm0Lbo9EDSqCoXngWC4TyBoFAiF+wSCIQVCpro9GFJVKDKv6zEi+4VCRoFI4AqEQpF5zfbq7aGQEvoFg5F5JKQFQ3VFIXQETofkdjrldEouh0NOp0PuWPALLztrhEK3yxnr43FF587wNmdkm8shj9Mhl9NZRx+H3K5wX48r3O52OeV1hR/b46puD29zyBt5To/bKY/TKY87vL/XFV72upzyuiOTy0lgxWkrJYJdIBDQ/PnztXr1ah05ckQ9evTQnXfeqUceeUROJ1eT0ToCwZD8gegUlL8qbjkQiqwH695eR9/KYHUoi4W0yLI/2hYX1OJD3OkqOorkdFQHC6dDsWVHbBQqMjqlyAhYjdGq6hGzSP/oqFjc/tG2qIQYELfBUXdzQns0tsYGAuNG9oypHhWMjhxW969ulxJHFKMjjOFRzeoRyFB0JDJudNPEtcfvG4wsNyRkpMpgSAo23C/VeFw1wp47HBK9Lqd87sQQ6Inr56uzzaU0T3juczvl8zSyzR0OrEB7Solg9+STT+qFF17Qv/3bv2nw4MHauXOn7rrrLmVnZ2vmzJnJLg9tJBQyKq8KqqIqGJmHVBFZr6gKJWzz19FWURWSP7Zc92NUB7VQhx1Vio6KRP9IeWqMaMSPfLidzsiIRmRExBVejo6IeGqNkkTmTkdsu8vpkMcZGVlxVY/aRNddTmfcyE3NkZxo30ifyHp1UFN49Cd6qTA6ShQZKULriwbC6MhpdBQ1OvoaihtVDZnqkdn40dZgrF/cyGx0VDYyyhsMhUeAgyGjqpBRMDJaHB3ZjW0LhvcJhOJGjKOjx6GQKgPVy1WB8GhytF9lrH8oMiUuxwtvC+pkZXITq8vpkM/tVJqnOuyleVyRKbycHrfuc7uU7nUpLRISo8u+Ovqme8J90z0uZXjd8rmd/B4hNYLd+++/rwkTJmjcuHGSpL59+2rt2rXauXNnkis7vRkTfqEt8wdVVhVUeWVAZZVBlVWGQ1R5dLm+9qq49sqgyioDqqgKqSzS35/EkavoWb0v7uzb63bKF/fi7Iu82MaW4/p7XY7YaIDX7QoHs8h+nriAVt3HmRDc4tddvFCjBRwOh1yRUU+bhSK3HFTWGB2vjJy41TV6XhkZPa+rveZ2fyB8UhgekQ/WMbpfPXJfGax+7QqGTOx1rj2keZzK8LoTQl9iAHQpLW45w+uOzCPLPpcyPC518rlrtTH6mBpSIthdfvnleuGFF/TFF1/o3HPP1X//939r+/bt+v3vf5/s0lJKZSCkUn9AJ/0BnawM6KQ/HKZi88qgyvzx84b7nPQHFGinUS6v2xk5U3XGzlh9HpfS6ziLjZ4Np9dYr9UWd9kkdvnEEw5UnPUCqcXpdCjNGf49T7ZQyNR5G0dFVUgVgeorBvVdcYj1qwxG+odUHrccvRIRPVGOPwkOP25lm3xdXrdTGV6XOnndSve61MnriszdyvC5leFxKcMXXu/kc6uzLxwMw8tudfK51NkX7tvZG14nLLa+lAh2Dz30kIqKijRw4EC5XC4Fg0EtXLhQ//AP/1DvPn6/X36/P7ZeXFzcHqW2uvgwVlIRDlulFQGV+gOJ7ZEgFl0Obw+q1F+lk/6gSisCCWeRrc3rCl8yyIj8omdEzxS9kV/2+PbI2WR8W7i/O9YWvz3N7SJoAUgZTqcj/DrmbZ+QGQyZWEgsj1wZiV4JqaiKv1oSiMxDKqsKxK6eRK+ShK++BFTmD+pk3JWW6G0q0RHNE2VVrVa7z+2MhL7w6390ORoEO/ncykzzKCvNrcw0tzr7PMqMLIen8Hq6x8UbZiJSItitW7dOq1at0po1azR48GDt2bNHs2bNUn5+vqZMmVLnPoWFhVqwYEE7V5qoMhBSSUWVSioCKo7MSyqqVFwRDmDF5dVtNfuURPq0RRiL/iJFz6wyvOFfnk7euLaa23xudfJGz74S5xlelzycdQFAUricjtjrdGurectNmT8c+E5WhoNh9CpONCBG10v9wbirQ+GrPqVx69F7IsMjm5U6drJlo4wup0OdfdHw51ZWJPB1jguA4fbq5fhgGN3PhhFEhzGnes9U8vXu3Vtz5szRjBkzYm2PP/64Vq1apc8++6zOfeoasevdu7eKioqUlZV1yucMBMMjZcXltQNXfevF8W3lVa16j1i6x6XOaYnD2Z1jZzXhH97O3rjluG2ZaZF2hr4BAB1AZSAUu7oUDXul/mgojF6FCqqkIqBSf/VgR2nc39xSf/hvbmveEZTucdUaDcxMcyvT50kIiZlxwbBzWjgwdsnwKist+eEwJUbsysrKan2sicvlUihUf3Dy+Xzy+Xy12l/bfUhVrmM6UV6l4vIqFZVX6URZpYrKE0Naa97oWn1mED+k7KleT08cag6faXiqg5yXMAYAsEf4o2S8OqOTt0WPY0z4zSnRkFccCX/RwZdSf/WgS6zdX71cHAmOFVXhPBG9d/Foif8Uz1y/zj63stM9yk73qEuGJ7acHVnuku6NbRt1Tk6Lvv66pESwGz9+vBYuXKizzjpLgwcP1u7du7Vo0SLdfffdTX6shzd8Iqcvo9H949N7VronFsiy6gtpcetZkXBm+7vRAABIBoej+jJ0XlZasx8nej97XSOC0eVYe0Vie+zWKn9AkmL3wB86UX7K593/T+OaXXN9UiLYPffcc3r00Uc1ffp0HT16VPn5+brvvvv02GOPNfmxRpx9prp17ZKQpLuke5WVHh45y4oLaZlpbu4dAwDAcl63U13dXnVtwQhiIBhScUUg4UpgbCqr0oka60XlrfcmlHgpcY9dayguLlZ2dnaj77EDAABINQxHAQAAWIJgBwAAYAmCHQAAgCUIdgAAAJYg2AEAAFiCYAcAAGAJgh0AAIAlCHYAAACWINgBAABYgmAHAABgCYIdAACAJQh2AAAAliDYAQAAWIJgBwAAYAmCHQAAgCUIdgAAAJYg2AEAAFiCYAcAAGAJgh0AAIAlCHYAAACWINgBAABYgmAHAABgCYIdAACAJQh2AAAAliDYAQAAWIJgBwAAYAmCHQAAgCUIdgAAAJYg2AEAAFiCYAcAAGAJgh0AAIAlCHYAAACWINgBAABYgmAHAABgCYIdAACAJQh2AAAAliDYAQAAWIJgBwAAYAmCHQAAgCUIdgAAAJYg2AEAAFiCYAcAAGAJgh0AAIAlCHYAAACWINgBAABYgmAHAABgCYIdAACAJQh2AAAAliDYAQAAWIJgBwAAYAmCHQAAgCUIdgAAAJYg2AEAAFiCYAcAAGAJgh0AAIAlCHYAAACWINgBAABYgmAHAABgCYIdAACAJQh2AAAAliDYAQAAWIJgBwAAYAmCHQAAgCUIdgAAAJYg2AEAAFiCYAcAAGAJgh0AAIAlCHYAAACWINgBAABYImWC3aFDh/SP//iPOvPMM5WRkaELL7xQu3btSnZZAAAAHYY72QU0xvHjxzVq1ChdddVVevPNN5Wbm6uvv/5aXbp0SXZpAAAAHUZKBLsnn3xSvXv31sqVK2Ntffv2TV5BAAAAHVBKXIp9/fXXVVBQoFtuuUW5ubm66KKLtHz58mSXBQAA0KGkRLD75ptv9Pzzz2vAgAHauHGjpk2bpgceeED//u//Xu8+fr9fxcXFCRMAAIDNHMYYk+wiTsXr9aqgoEDvvfderO2BBx7Qjh079P7779e5z/z587VgwYJa7UVFRcrKymqzWgEAAJIlJUbsevTooUGDBiW0nX/++Tpw4EC9+8ydO1dFRUWx6eDBg21dJgAAQFKlxJsnRo0apc8//zyh7YsvvlCfPn3q3cfn88nn87V1aQAAAB1GSozY/epXv9IHH3ygJ554Ql999ZXWrFmjF198UTNmzEh2aQAAAB1GStxjJ0l/+ctfNHfuXH355Zfq16+fZs+erXvuuafR+xcXFys7O5t77AAAgLVSJti1FMEOAADYLiUuxQIAAODUCHYAAACWINgBAABYgmAHAABgCYIdAACAJQh2AAAAliDYAQAAWIJgBwAAYAmCHQAAgCUIdgAAAJYg2AEAAFiCYAcAAGAJgh0AAIAlCHYAAACWINgBAABYgmAHAABgCYIdAACAJQh2AAAAliDYAQAAWIJgBwAAYAmCHQAAgCUIdgAAAJYg2AEAAFjC3ZKdq6qqdOTIEZWVlalbt27q2rVra9UFAACAJmryiF1paamWLVumK6+8UtnZ2erbt68GDRqkbt26qU+fPrrnnnu0Y8eOtqgVAAAADWhSsPuXf/kX9e3bV8uXL9fPfvYzvfrqq9qzZ48+//xzvf/++5o3b54CgYCuueYaXXvttfryyy/bqm4AAADU4DDGmMZ2vuWWW/TYY4/pJz/5SYP9/H6/VqxYIa/Xq6lTp7a4yNZQXFys7OxsFRUVKSsrK9nlAAAAtLomBbt4JSUlyszMbO162gzBDgAA2K7Z74odPXq0jhw50pq1AAAAoAWaHewKCgp06aWX6rPPPkto3717t66//voWFwYAAICmaXaw+8Mf/qC7775bl19+ubZv364vvvhCt956qwoKCuTz+VqzRgAAADRCiz7Hbt68efJ6vbrmmmsUDAY1duxY7dixQxdffHFr1QcAAIBGavaI3eHDh/XAAw/od7/7nQYNGiSPx6NJkyYR6gAAAJKk2cGuf//+2rZtm1555RXt2rVLr776qqZPn64nn3yyNesDAABAIzX7UuzKlSs1adKk2PrYsWP19ttv64YbbtC3336rpUuXtkqBAAAAaJxmf45dffbv36/rr79ee/fubc2HbTE+xw4AANiu2Zdi69O3b1+9++67rf2wAAAAOIUmBbsDBw40qt8ZZ5whSTp06FDTKwIAAECzNCnYXXLJJbrnnnv04Ycf1tunqKhIy5cv1wUXXKBXX321xQUCAACgcZr05okJEyYoMzNT1157rTwejwoKCpSfn6+0tDQdP35ce/fu1aeffqqCggI9/fTTuu6669qqbgAAANTQpDdPeL1eHTx4UFlZWcrLy9Ott96qY8eOqby8XDk5Obrooos0duxYXXDBBW1Zc7Pw5gkAAGC7Jo3Y9ezZU7t379a1116r0tJSPfHEE8rNzW2r2gAAANAETbrH7sEHH9SNN96okSNHyuFwaPXq1dqxY4fKy8vbqj4AAAA0UpM/x+7TTz/Va6+9pkceeUT9+/fX/v375XA4dM4552jo0KG68MILNXTo0A53fx2XYgEAgO2a/QHF55xzjj744AN16tRJ//M//6M9e/bEpk8++UQlJSWtXWuLEOwAAIDtWv0/T0iSMUYOh6O1H7ZFCHYAAMB2rf6fJyR1uFAHAABwOmiTYAcAAID2R7ADAACwBMEOAADAEgQ7AAAASxDsAAAALEGwAwAAsATBDgAAwBIEOwAAAEsQ7AAAACxBsAMAALAEwQ4AAMASBDsAAABLEOwAAAAsQbADAACwBMEOAADAEgQ7AAAASxDsAAAALEGwAwAAsATBDgAAwBIEOwAAAEsQ7AAAACxBsAMAALAEwQ4AAMASKRnsCgsL5XA4NGvWrGSXAgAA0GGkXLDbsWOHXnzxRQ0ZMiTZpQAAAHQoKRXsSktLdccdd2j58uU644wzkl0OAABAh5JSwW7GjBkaN26crr766lP29fv9Ki4uTpgAAABs5k52AY318ssv66OPPtKOHTsa1b+wsFALFixo46oAAAA6jpQYsTt48KBmzpypVatWKS0trVH7zJ07V0VFRbHp4MGDbVwlAABAcjmMMSbZRZzKhg0bdPPNN8vlcsXagsGgHA6HnE6n/H5/wra6FBcXKzs7W0VFRcrKymrrkgEAANpdSlyK/bu/+zt9/PHHCW133XWXBg4cqIceeuiUoQ4AAOB0kBLBLjMzUxdccEFCW6dOnXTmmWfWagcAADhdpcQ9dgAAADi1lLjHrjVwjx0AALAdI3YAAACWINgBAABYgmAHAABgCYIdAACAJQh2AAAAliDYAQAAWIJgBwAAYAmCHQAAgCUIdgAAAJYg2AEAAFiCYAcAAGAJgh0AAIAlCHYAAACWINgBAABYgmAHAABgCYIdAACAJQh2AAAAliDYAQAAWIJgBwAAYAmCHQAAgCUIdgAAAJYg2AEAAFiCYAcAAGAJgh0AAIAlCHYAAACWINgBAABYgmAHAABgCYIdAACAJQh2AAAAliDYAQAAWIJgBwAAYAmCHQAAgCUIdgAAAJYg2AEAAFiCYAcAAGAJgh0AAIAlCHYAAACWINgBAABYgmAHAABgCYIdAACAJQh2AAAAliDYAQAAWIJgBwAAYAmCHQAAgCUIdgAAAJYg2AEAAFiCYAcAAGAJgh0AAIAlCHYAAACWINgBAABYgmAHAABgCYIdAACAJQh2AAAAliDYAQAAWIJgBwAAYAmCHQAAgCUIdgAAAJYg2AEAAFiCYAcAAGAJgh0AAIAlCHYAAACWINgBAABYgmAHAABgCYIdAACAJQh2AAAAliDYAQAAWIJgBwAAYAmCHQAAgCUIdgAAAJZIiWBXWFioSy65RJmZmcrNzdVNN92kzz//PNllAQAAdCgpEey2bNmiGTNm6IMPPtDmzZsVCAQ0ZswYnTx5MtmlAQAAdBgOY4xJdhFN9f333ys3N1dbtmzRT3/600btU1xcrOzsbBUVFSkrK6uNKwQAAGh/7mQX0BxFRUWSpK5du9bbx+/3y+/3x9aLi4vbvC4AAIBkSolLsfGMMZo9e7Yuv/xyXXDBBfX2KywsVHZ2dmzq3bt3O1YJAADQ/lLuUuyMGTP0H//xH9q+fbt69epVb7+6Rux69+7NpVgAAGCtlLoU+8tf/lKvv/66tm7d2mCokySfzyefz9dOlQEAACRfSgQ7Y4x++ctfav369XrnnXfUr1+/ZJcEAADQ4aREsJsxY4bWrFmj1157TZmZmTpy5IgkKTs7W+np6UmuDgAAoGNIiXvsHA5Hne0rV67UnXfe2ajH4ONOAACA7VJixC4FsicAAEDSpdzHnQAAAKBuBDsAAABLEOwAAAAsQbADAACwBMEOAADAEgQ7AAAASxDsAAAALEGwAwAAsATBDgAAwBIEOwAAAEsQ7AAAACxBsAMAALAEwQ4AAMASBDsAAABLEOwAAAAsQbADAACwBMEOAADAEgQ7AAAASxDsAAAALEGwAwAAsATBDgAAwBIEOwAAAEsQ7AAAACxBsAMAALAEwQ4AAMASBDsAAABLEOwAAAAsQbADAACwBMEOAADAEgQ7AAAASxDsAAAALEGwAwAAsATBDgAAwBIEOwAAAEsQ7AAAACxBsAMAALAEwQ4AAMASBDsAAABLEOwAAAAsQbADAACwBMEOAADAEgQ7AAAASxDsAAAALEGwAwAAsATBDgAAwBIEOwAAAEsQ7AAAACxBsAMAALAEwQ4AAMASBDsAAABLEOwAAAAsQbADAACwBMEOAADAEgQ7AAAASxDsAAAALEGwAwAAsATBDgAAwBIEOwAAAEsQ7AAAACxBsAMAALAEwQ4AAMASBDsAAABLuJNdAIDTRCgkhQKSCUqhYPU8YTkgmVBkMnHLoXCfhPUa20MNbJcJr8fmSmyTGtiuuO1xHI4ay44a7Y76l+P3cTgkhzOy7Kxej83jt8VPkTanS3K44padNZZd1X2c0ckdWXdLTs7vAZsQ7ICOzhgpWCkF/HFzvxSojJtHplAgslwVnkKReWxbVe1+9S0n7B/ZFpuCcctVNdZrbo8EN3RcTnftsJew7pJcHsnpCa+73PUse6ofq9ayJ9zX5ZVcvnCbyxs3b8Gy2xeuEQDBDmiQMeFwEqiQqirC84BfCpRH5vHt8ZNfqorrU197sKpGSPPXDnGhqmR/F9pe/MiS0117xKrOyVG9X4PboyNiUvXIWR2jZvVul2qNttUczZPqGekzjdhWz+hiQ6OTsbZg3EhlZB6KX47b1pBoCE9lTnc4MLojk8srudMkd2Te4LZIOHSnRebp4bknvXrdkxbZHpni1z3pkZ9bx6nrBNoYwQ6pKxiQqk5KlWVSVVk4MFWVxy3XmAcq6thWc7lGW6A88se2A4n9AfPGzeNGMJzREQ134rLLmzhq4vRERjw89fSL3xZtd1eP4MSWo+ueGuvxl/xqXAqsK8Sh7USDYexyd3RENVQd6mq2mRqjrrFR26q49ara24JxI7nB6GhuVY0R4crq0eNGLce1RUeoa57wRGutOpmc77HDGQmA6ZInIxz8osvutEhbJCBGl2v1z5C8narn8cvRffhdwSkQ7ND2glWSv0SqLI3MT4anqrIay2XhPnUtV0X6xZbLwiNc7c3liztb9yWewdc8w3f7apzZ12iPjRzUmNdqiw9vPu6JQtM5HNVhWt5kV9M6jKke8Q5WxY2mx92qEKioHgk/1bZgZR2j6uW1R+RrrsfqCYVfm9o0WDrqD36nXM6QvJ3rX3Z52rButCeCHWozJvyC5S+VKkvC8/hgFlsujcyL45ajfUuq2+Jf/NqCwxV58Yo/+42bJ5wtZ8T1q69/tD2yXzSIEaqAjsPhiFxKTWJQNSbx1oyqsnDwi472x0b/KxKvAlTVs62qLO7E9mT1SWygPPqE4dfUylKptfOj0xN+HfVlhoOeL1PyReeZkjezRltW7X7RPm4fI4tJRLCzSSgUDlkVReEpuhwLaHFhq2ZASxhRK22b+21cvvALgLdzM842G1h2eXkRAdD+HI7ICWBa2z5PKNjIKxk1rmrEh8P45arI41SWVV/SDlVJFSfCU0s5PbXDXl0B8FTB0ZfJSGIzpFSwW7p0qZ5++mkdPnxYgwcP1u9//3uNHj062WW1nkBlXCA7EQlodQS1+tr9xa1fk6dT3C9j59pnc974X8zONX5xa2znFxQAms7pqn4dVV7rPnagMjH81TrxL6m+KlNfW7S9sjT8mKEqqfx4eGopT4aU1kVKy27i1EVKyzot/+6kTLBbt26dZs2apaVLl2rUqFFatmyZrrvuOu3du1dnnXVWsssLC1ZJ5Seqf6Bjwauo4UAWbY8Nt7eQOy18tpOWHf7BTghj8QEsq3rZG1mPLUfmfIQAANgrejk7/YyWP1YoGA6HCcGwuPpqUew2nZIabXX0i/49jF6eLvlb82rydAr/LUzv0vRg6MsKv3EsxTiMqfme/Y7p0ksv1cUXX6znn38+1nb++efrpptuUmFh4Sn3Ly4uVnZ2toqKipSVldVw56qK6nDWqOlEeF5Z0sKvMsKXFRfMIuEsLbvutrRsyZed2O72tU4dAAAkQ/RNdxXxAyMnaqw3MEVHD1vK2zkx7KWfEZ4yIvP0rlJG1+rl9DPC65701nn+ZkiJKFpZWaldu3Zpzpw5Ce1jxozRe++917QH+2iV5KoZ3E4krrdo5MwRd3bQpZ4AFt9WI6z5shglAwCc3lyecEDK6Nq8/YOBGrc1NWIqj+sbfXdz9BJz8aGmPb87LTHopXepsR4Jguff0Lyvr6GnbvVHbAM//PCDgsGg8vIS7y3Iy8vTkSNH6tzH7/fL76/+OIyioiJJUvHrD0m+xtxo76oOZ/HzutrSukjp0Wv62c0PZlVK3mcwAQBgFbfkzpE650idm7hrsEqqKJH8JyK3UBWHb6uKDQSdCIfGhPXI3AQkf7l08pCkUwTCud8pMzNTjlZ8A2BKBLuoml+4Mabeb0ZhYaEWLFhQq733vzRlePZEE/oCAAA0wT9l6+jRo+rWrVurPWRKBLucnBy5XK5ao3NHjx6tNYoXNXfuXM2ePTu2fuLECfXp00cHDhxQdnZ2m9aL1lNcXKzevXvr4MGDp743Eh0Gxy01cdxSE8ctNUWPm9fbup/FmBLBzuv1atiwYdq8ebNuvvnmWPvmzZs1YcKEOvfx+Xzy+Wq/iSA7O5sf/BSUlZXFcUtBHLfUxHFLTRy31NSal2GlFAl2kjR79mxNnjxZBQUFGjFihF588UUdOHBA06ZNS3ZpAAAAHULKBLvbbrtNx44d029/+1sdPnxYF1xwgd544w316dMn2aUBAAB0CCkT7CRp+vTpmj59erP29fl8mjdvXp2XZ9FxcdxSE8ctNXHcUhPHLTW11XFLmQ8oBgAAQMOcyS4AAAAArYNgBwAAYAmCHQAAgCWsCnZLly5Vv379lJaWpmHDhmnbtm0N9t+yZYuGDRumtLQ09e/fXy+88EI7VYp4TTlur776qq655hp169ZNWVlZGjFihDZu3NiO1SKqqb9vUe+++67cbrcuvPDCti0QdWrqcfP7/Xr44YfVp08f+Xw+nX322frXf/3XdqoWUU09bqtXr9bQoUOVkZGhHj166K677tKxY8faqVps3bpV48ePV35+vhwOhzZs2HDKfVotkxhLvPzyy8bj8Zjly5ebvXv3mpkzZ5pOnTqZb7/9ts7+33zzjcnIyDAzZ840e/fuNcuXLzcej8f86U9/aufKT29NPW4zZ840Tz75pPnwww/NF198YebOnWs8Ho/56KOP2rny01tTj1vUiRMnTP/+/c2YMWPM0KFD26dYxDTnuN14443m0ksvNZs3bzb79u0zf/3rX827777bjlWjqcdt27Ztxul0mmeeecZ88803Ztu2bWbw4MHmpptuaufKT19vvPGGefjhh82f//xnI8msX7++wf6tmUmsCXbDhw8306ZNS2gbOHCgmTNnTp39f/Ob35iBAwcmtN13333msssua7MaUVtTj1tdBg0aZBYsWNDapaEBzT1ut912m3nkkUfMvHnzCHZJ0NTj9uabb5rs7Gxz7Nix9igP9WjqcXv66adN//79E9qeffZZ06tXrzarEfVrTLBrzUxixaXYyspK7dq1S2PGjEloHzNmjN57770693n//fdr9R87dqx27typqqqqNqsV1Zpz3GoKhUIqKSlR165d26JE1KG5x23lypX6+uuvNW/evLYuEXVoznF7/fXXVVBQoKeeeko9e/bUueeeqwcffFDl5eXtUTLUvOM2cuRIfffdd3rjjTdkjNH//d//6U9/+pPGjRvXHiWjGVozk6TUBxTX54cfflAwGFReXl5Ce15eno4cOVLnPkeOHKmzfyAQ0A8//KAePXq0Wb0Ia85xq+mf//mfdfLkSd16661tUSLq0Jzj9uWXX2rOnDnatm2b3G4rXnZSTnOO2zfffKPt27crLS1N69ev1w8//KDp06frxx9/5D67dtKc4zZy5EitXr1at912myoqKhQIBHTjjTfqueeea4+S0QytmUmsGLGLqvmPdI0xDf5z3br619WOttXU4xa1du1azZ8/X+vWrVNubm5blYd6NPa4BYNB3X777VqwYIHOPffc9ioP9WjK71soFJLD4dDq1as1fPhwXX/99Vq0aJFeeuklRu3aWVOO2969e/XAAw/oscce065du/TWW29p3759/G/1Dq61MokVp845OTlyuVy1zl6OHj1aKwFHde/evc7+brdbZ555ZpvVimrNOW5R69at0y9+8Qu98soruvrqq9uyTNTQ1ONWUlKinTt3avfu3br//vslhQODMUZut1ubNm3Sz372s3ap/XTWnN+3Hj16qGfPnsrOzo61nX/++TLG6LvvvtOAAQPatGY077gVFhZq1KhR+vWvfy1JGjJkiDp16qTRo0fr8ccf54pUB9SamcSKETuv16thw4Zp8+bNCe2bN2/WyJEj69xnxIgRtfpv2rRJBQUF8ng8bVYrqjXnuEnhkbo777xTa9as4Z6RJGjqccvKytLHH3+sPXv2xKZp06bpvPPO0549e3TppZe2V+mnteb8vo0aNUp/+9vfVFpaGmv74osv5HQ61atXrzatF2HNOW5lZWVyOhP/vLtcLknVo0DoWFo1kzT57RYdVPTt4CtWrDB79+41s2bNMp06dTL79+83xhgzZ84cM3ny5Fj/6FuLf/WrX5m9e/eaFStW8HEnSdDU47ZmzRrjdrvNkiVLzOHDh2PTiRMnkvUlnJaaetxq4l2xydHU41ZSUmJ69eplJk6caD799FOzZcsWM2DAADN16tRkfQmnpaYet5UrVxq3222WLl1qvv76a7N9+3ZTUFBghg8fnqwv4bRTUlJidu/ebXbv3m0kmUWLFpndu3fHPqKmLTOJNcHOGGOWLFli+vTpY7xer7n44ovNli1bYtumTJlirrjiioT+77zzjrnooouM1+s1ffv2Nc8//3w7VwxjmnbcrrjiCiOp1jRlypT2L/w019Tft3gEu+Rp6nH73//9X3P11Veb9PR006tXLzN79mxTVlbWzlWjqcft2WefNYMGDTLp6emmR48e5o477jDfffddO1d9+nr77bcb/FvVlpnEYQzjsgAAADaw4h47AAAAEOwAAACsQbADAACwBMEOAADAEgQ7AAAASxDsAAAALEGwAwAAsATBDgAAwBIEOwAAAEsQ7AAAACxBsAMAALAEwQ4AGmHt2rVKS0vToUOHYm1Tp07VkCFDVFRUlMTKAKCawxhjkl0EAHR0xhhdeOGFGj16tBYvXqwFCxboD3/4gz744AP17Nkz2eUBgCTJnewCACAVOBwOLVy4UBMnTlR+fr6eeeYZbdu2jVAHoENhxA4AmuDiiy/Wp59+qk2bNumKK65IdjkAkIB77ACgkTZu3KjPPvtMwWBQeXl5yS4HAGphxA4AGuGjjz7SlVdeqSVLlujll19WRkaGXnnllWSXBQAJuMcOAE5h//79GjdunObMmaPJkydr0KBBuuSSS7Rr1y4NGzYs2eUBQAwjdgDQgB9//FGjRo3ST3/6Uy1btizWPmHCBPn9fr311ltJrA4AEhHsAAAALMGbJwAAACxBsAMAALAEwQ4AAMASBDsAAABLEOwAAAAsQbADAACwBMEOAADAEgQ7AAAASxDsAAAALEGwAwAAsATBDgAAwBIEOwAAAEv8f2NOLTnGmcXPAAAAAElFTkSuQmCC\n",
  261 + "text/plain": [
  262 + "<Figure size 640x480 with 1 Axes>"
  263 + ]
  264 + },
  265 + "metadata": {},
  266 + "output_type": "display_data"
  267 + }
  268 + ],
  269 + "source": [
  270 + "p1 = plot(zx, xlim=(0.0, 1.0), ylim=(0,10), show=False, legend=True)\n",
  271 + "p2 = plot( (t*T).replace(t, x), xlim=(0.0,1.0), show=False)\n",
  272 + "p1.append(p2[0])\n",
  273 + "p1.show()"
  274 + ]
  275 + },
  276 + {
  277 + "cell_type": "code",
  278 + "execution_count": 78,
  279 + "id": "27da5481-766b-4062-a947-aa1d565a6735",
  280 + "metadata": {},
  281 + "outputs": [
  282 + {
  283 + "data": {
  284 + "text/plain": [
  285 + "{-2.50462606288666: 1, 3.50462606288666: 1}"
  286 + ]
  287 + },
  288 + "execution_count": 78,
  289 + "metadata": {},
  290 + "output_type": "execute_result"
  291 + }
  292 + ],
  293 + "source": [
  294 + "roots(z, t)"
  295 + ]
  296 + },
  297 + {
  298 + "cell_type": "code",
  299 + "execution_count": 101,
  300 + "id": "6927383c-e62a-436e-bbc9-79bbe7f4273f",
  301 + "metadata": {},
  302 + "outputs": [
  303 + {
  304 + "name": "stdout",
  305 + "output_type": "stream",
  306 + "text": [
  307 + "0.3⋅t⋅(1 - t) + 0.7\n",
  308 + "───────────────────\n",
  309 + "0.9⋅t⋅(1 - t) + 7.9\n",
  310 + "----------------------------------------------------------------------------------------------------\n",
  311 + "0.3⋅t⋅(t - 1) - 0.7\n",
  312 + "───────────────────\n",
  313 + "0.9⋅t⋅(t - 1) - 7.9\n",
  314 + "----------------------------------------------------------------------------------------------------\n",
  315 + " 2 \n",
  316 + " 0.3⋅t 0.3⋅t 0.7 \n",
  317 + "- ────────────────────── + ────────────────────── + ──────────────────────\n",
  318 + " 2 2 2 \n",
  319 + " - 0.9⋅t + 0.9⋅t + 7.9 - 0.9⋅t + 0.9⋅t + 7.9 - 0.9⋅t + 0.9⋅t + 7.9\n",
  320 + "----------------------------------------------------------------------------------------------------\n",
  321 + " ⎛ 2 ⎞\n",
  322 + "0.0886075949367088⋅⎝0.428571428571429⋅t - 0.428571428571429⋅t - 1.0⎠\n",
  323 + "─────────────────────────────────────────────────────────────────────\n",
  324 + " 2 \n",
  325 + " 0.113924050632911⋅t - 0.113924050632911⋅t - 1.0 \n",
  326 + "----------------------------------------------------------------------------------------------------\n",
  327 + "t⋅(0.3 - 0.3⋅t) + 0.7\n",
  328 + "─────────────────────\n",
  329 + "t⋅(0.9 - 0.9⋅t) + 7.9\n",
  330 + "----------------------------------------------------------------------------------------------------\n",
  331 + " 2 \n",
  332 + "0.3⋅t - 0.3⋅t - 0.7\n",
  333 + "────────────────────\n",
  334 + " 2 \n",
  335 + "0.9⋅t - 0.9⋅t - 7.9\n",
  336 + "----------------------------------------------------------------------------------------------------\n",
  337 + " 0.244725738396624 \n",
  338 + "0.333333333333333 + ────────────────────────────────────────────────\n",
  339 + " 2 \n",
  340 + " 0.113924050632911⋅t - 0.113924050632911⋅t - 1.0\n",
  341 + "----------------------------------------------------------------------------------------------------\n"
  342 + ]
  343 + }
  344 + ],
  345 + "source": [
  346 + "e = (0.7 + 0.3 * t * T)/z;\n",
  347 + "for ei in (e, simplify(e), expand(e), factor(e), collect(e, t), cancel(e), apart(e)):\n",
  348 + " pprint(ei, use_unicode=True)\n",
  349 + " print(100*\"-\")"
  350 + ]
  351 + },
  352 + {
  353 + "cell_type": "code",
  354 + "execution_count": 102,
  355 + "id": "ba9fc88f-028c-476f-aa94-22c2e15d6e2c",
  356 + "metadata": {},
  357 + "outputs": [
  358 + {
  359 + "data": {
  360 + "text/plain": [
  361 + "sympy.core.add.Add"
  362 + ]
  363 + },
  364 + "execution_count": 102,
  365 + "metadata": {},
  366 + "output_type": "execute_result"
  367 + }
  368 + ],
  369 + "source": [
  370 + "z.func"
  371 + ]
  372 + },
  373 + {
  374 + "cell_type": "code",
  375 + "execution_count": 103,
  376 + "id": "b4bc5ad7-3bb9-44d0-9b70-d27d6c9876f2",
  377 + "metadata": {},
  378 + "outputs": [
  379 + {
  380 + "data": {
  381 + "text/plain": [
  382 + "(7.90000000000000, 0.9*t*(1 - t))"
  383 + ]
  384 + },
  385 + "execution_count": 103,
  386 + "metadata": {},
  387 + "output_type": "execute_result"
  388 + }
  389 + ],
  390 + "source": [
  391 + "z.args"
  392 + ]
  393 + },
  394 + {
  395 + "cell_type": "code",
  396 + "execution_count": null,
  397 + "id": "74c9de1c-01fe-42b6-9b92-a787cfc246b2",
  398 + "metadata": {},
  399 + "outputs": [],
  400 + "source": []
  401 + }
  402 + ],
  403 + "metadata": {
  404 + "kernelspec": {
  405 + "display_name": "Python 3 (ipykernel)",
  406 + "language": "python",
  407 + "name": "python3"
  408 + },
  409 + "language_info": {
  410 + "codemirror_mode": {
  411 + "name": "ipython",
  412 + "version": 3
  413 + },
  414 + "file_extension": ".py",
  415 + "mimetype": "text/x-python",
  416 + "name": "python",
  417 + "nbconvert_exporter": "python",
  418 + "pygments_lexer": "ipython3",
  419 + "version": "3.9.15"
  420 + }
  421 + },
  422 + "nbformat": 4,
  423 + "nbformat_minor": 5
  424 +}
... ...
students/amartins/tarefas/bninput.py 0 → 100644
... ... @@ -0,0 +1,88 @@
  1 +from pgmpy.readwrite import BIFReader
  2 +import networkx as nx
  3 +import pydot
  4 +from networkx.drawing.nx_pydot import graphviz_layout
  5 +
  6 +def summary_dag(filename):
  7 + file = BIFReader(filename)
  8 + model = file.get_model() # Cria um objeto BayesianModel
  9 + nodes = model.nodes()
  10 +
  11 + asc = 0
  12 + des = 0
  13 + nodes_in = 0
  14 + nodes_out = 0
  15 +
  16 + for x in nodes:
  17 + # Obtem os nós pais e filhos de cada nós
  18 + parents = model.get_parents(x)
  19 + children = model.get_children(x)
  20 +
  21 + if len(parents) != 0:
  22 + des += 1
  23 + if len(children) != 0:
  24 + asc += 1
  25 + nodes_in += len(children)
  26 + nodes_out += len(parents)
  27 +
  28 + return {
  29 + 'dag_file': filename,
  30 + 'nodes': nodes,
  31 + 'count_parents': des,
  32 + 'count_children': asc,
  33 + 'count_in_edges': nodes_in,
  34 + 'count_out_edges': nodes_out,
  35 + 'bnmodel': model
  36 + }
  37 +
  38 +def summary_str(d):
  39 + s = "DAG file: " + d["dag_file"] + "\n"
  40 + s += " Number of nodes: " + str(len(d["nodes"])) + "\n"
  41 + s += " Number of parents: " + str(d["count_parents"]) + "\n"
  42 + s += " Number of children: " + str(d["count_children"]) + "\n"
  43 + s += " Average in-degree: " + str(d["count_in_edges"]/len(d["nodes"])) + "\n"
  44 + s += " Average out-degree: " + str(d["count_out_edges"]/len(d["nodes"])) + "\n"
  45 + s += " Nodes:" + "\n"
  46 + nodes = d["nodes"]
  47 + for x in nodes:
  48 + s += " " + str(x) + "\n"
  49 + return s
  50 +
  51 +def show_dag(model):
  52 + G = nx.DiGraph()
  53 + dot = pydot.Dot(graph_type='digraph')
  54 + for node in model['nodes']:
  55 + G.add_node(node)
  56 + dot.add_node(pydot.Node(node))
  57 + for edge in model['bnmodel'].edges:
  58 + G.add_edge(edge[0], edge[1])
  59 + dot.add_edge(pydot.Edge(edge[0], edge[1]))
  60 + # objeto pydot
  61 +
  62 + # defina o layout do grafo
  63 + pos = graphviz_layout(G, prog='dot')
  64 + # desenhe o grafo usando o networkx
  65 + nx.draw(G, pos, with_labels=True)
  66 +
  67 +def save_dag(model, target_filename):
  68 + G = nx.DiGraph()
  69 + for node in model.nodes:
  70 + G.add_node(node)
  71 + for edge in model.edges:
  72 + G.add_edge(edge[0], edge[1])
  73 + # objeto pydot
  74 + dot = pydot.Dot(graph_type='digraph')
  75 + for node in model.nodes:
  76 + dot.add_node(pydot.Node(node))
  77 + for edge in model.edges:
  78 + dot.add_edge(pydot.Edge(edge[0], edge[1]))
  79 + # defina o layout do grafo
  80 + pos = graphviz_layout(G, prog='dot')
  81 + # renderize o grafo com o pydot
  82 + graph = pydot.graph_from_dot_data(dot.to_string())[0]
  83 + graph.write_png(target_filename)
  84 +
  85 +if __name__ == "__main__":
  86 + summary = summary_dag("asia2.bif")
  87 + message = summary_str(summary)
  88 + print(message)
0 89 \ No newline at end of file
... ...
students/amartins/tarefas/tarefa2.py 0 → 100644
... ... @@ -0,0 +1,38 @@
  1 +from pgmpy.readwrite import BIFReader
  2 +import networkx as nx
  3 +import pydot
  4 +from networkx.drawing.nx_pydot import graphviz_layout
  5 +from bninput import *
  6 +
  7 +def get_yes_probabilities(model):
  8 + nodes = model.nodes()
  9 +
  10 + yes_probabilities = {}
  11 +
  12 + for node in nodes:
  13 + cpd = model.get_cpds(node)
  14 + state_names = cpd.state_names[node]
  15 + yes_index = state_names.index("yes")
  16 + yes_prob = cpd.values[yes_index]
  17 + yes_probabilities[node] = yes_prob
  18 +
  19 + return yes_probabilities
  20 +
  21 +if __name__ == "__main__":
  22 + summary = summary_dag("asia2.bif")
  23 + model = summary["bnmodel"]
  24 + probabilities = get_yes_probabilities(model)
  25 + for node, yes_prob in probabilities.items():
  26 + parents = model.get_parents(node)
  27 + s = ""
  28 + if len(parents) == 0:
  29 + s += str(yes_prob) + " :: " + str(node)
  30 + print(s)
  31 + elif len(parents) == 1:
  32 + s += str(yes_prob[0]) + " :: " + str(node) + " <- " + str(parents) + "\n"
  33 + s += str(yes_prob[1]) + " :: " + str(node) + " <- -" + str(parents) + "\n"
  34 + print(s)
  35 + else:
  36 + print("Node:", node)
  37 + print("Probability of 'yes':", yes_prob)
  38 + print()
... ...
text/paper_01/pre-paper.pdf
No preview for this file type
text/paper_01/pre-paper.tex
... ... @@ -38,6 +38,7 @@
38 38 \usepackage[nice]{nicefrac}
39 39 \usepackage{stmaryrd}
40 40 \usepackage{acronym}
  41 +\usepackage{multicol}
41 42 \usepackage{cleveref}
42 43 %
43 44 % Local commands
... ... @@ -68,34 +69,54 @@
68 69 \newcommand{\rep}[2]{\left\langle #1 \middle| #2 \right\rangle}
69 70 \newcommand{\inconsistent}{\bot}
70 71 \newcommand{\given}{\ensuremath{~\middle|~}}
  72 +\newcommand{\emptyevent}{\ensuremath{\vartriangle}}
  73 +\newcommand{\indepclass}{\ensuremath{\Diamond}}
  74 +\newcommand{\probfact}[2]{\ensuremath{#1\!::\!#2}}
  75 +
71 76 \newcommand{\todo}[1]{{\color{red!50!black}(\emph{#1})}}
72   -\newcommand{\remark}[2]{\dashuline{#1}~{\color{green!40!black}\emph{#2}}}
  77 +\newcommand{\remark}[2]{\uwave{#1}~{\color{green!40!black}(\emph{#2})}}
73 78 \newcommand{\replace}[2]{\sout{#1}/{\color{green!20!black}#2}}
74   -
  79 +\newcommand{\franc}[1]{{\color{orange!60!black}#1}}
75 80 \newcommand{\bruno}{\color{red!60!blue}}
76 81 %
77 82 % ACRONYMS
78 83 %
79 84 \acrodef{BK}[BK]{background knowledge}
80 85 \acrodef{ASP}[ASP]{answer set program}
81   -\acrodef{NP}[NP]{normal (logic) program}
  86 +\acrodef{NP}[NP]{normal program}
82 87 \acrodef{DS}[DS]{distribution semantics}
83 88 \acrodef{PF}[PF]{probabilistic fact}
84 89 \acrodef{TC}[TC]{total choice}
85 90 \acrodef{SM}[SM]{stable model}
86 91 \acrodef{SC}[SC]{stable core}
  92 +\acrodef{KL}[KL]{Kullback-Leibler}
87 93 %
88 94 %
89 95 %
90 96 \title{Zugzwang\\\emph{Logic and Artificial Intelligence}\\{\bruno Why this title?}}
91 97 \author{
92   - \begin{tabular}{cc}
93   - Francisco Coelho & Bruno Dinis\\
94   - \texttt{fc@uevora.pt} & \texttt{bruno.dinis@uevora.pt}\\
95   - \begin{minipage}{0.5\textwidth}\centering
96   - Universidade de Évora and NOVA\textbf{LINCS}
97   - \end{minipage}
98   - & Universidade de Évora
  98 + \begin{tabular}{ccc}
  99 + Francisco Coelho
  100 + \footnote{Universidade de Évora}
  101 + & Bruno Dinis
  102 + \footnote{Universidade de Évora}
  103 + & Salvador Abreu
  104 + \footnote{Universidade de Évora}
  105 + \\
  106 + \texttt{fc@uevora.pt}
  107 + & \texttt{bruno.dinis@uevora.pt}
  108 + & \texttt{spa@uevora.pt}
  109 + % \\
  110 + % \begin{minipage}{0.3\textwidth}\centering
  111 + % Universidade de Évora and NOVA\textbf{LINCS}
  112 + % \end{minipage}
  113 + % &
  114 + % \begin{minipage}{0.3\textwidth}\centering
  115 + % Universidade de Évora
  116 + % \end{minipage}
  117 + % & \begin{minipage}{0.3\textwidth}\centering
  118 + % Universidade de Évora and NOVA\textbf{LINCS}
  119 + % \end{minipage}
99 120 \end{tabular}
100 121 }
101 122  
... ... @@ -116,10 +137,10 @@
116 137 \todo{Define and/or give references to all necessary concepts used in the paper}
117 138  
118 139 \todo{state of the art; references}
119   -\Acf{ASP} is a logic programming paradigm based on the \ac{SM} semantics of \ac{NP} that can be implemented using the latest advances in SAT solving technology. Unlike ProLog, \ac{ASP} is a truly declarative language that supports language constructs such as disjunction in the head of a clause, choice rules, and hard and weak constraints.
  140 +\Acf{ASP} is a logic programming paradigm based on the \ac{SM} semantics of \acp{NP} that can be implemented using the latest advances in SAT solving technology. Unlike ProLog, \ac{ASP} is a truly declarative language that supports language constructs such as disjunction in the head of a clause, choice rules, and hard and weak constraints.
120 141  
121 142 \todo{references}
122   -The \ac{DS} is a key approach to extend logical representations with probabilistic reasoning. \Acp{PF} are the most basic stochastic \ac{DS} primitive and they take the form of logical facts, $a$, labelled with a probability, $p$, such as $p::a$; Each \ac{PF} represents a boolean random variable that is true with probability $p$ and false with probability $\co{p} = 1 - p$. A (consistent) combination of the \acp{PF} defines a \acf{TC} $c = \set{p::a, \ldots}$ such that
  143 +The \ac{DS} is a key approach to extend logical representations with probabilistic reasoning. \Acp{PF} are the most basic \ac{DS} stochastic primitives and take the form of logical facts, $a$, labelled with probabilities, $p$, such as $\probfact{p}{a}$; Each \ac{PF} represents a boolean random variable that is true with probability $p$ and false with probability $\co{p} = 1 - p$. A (consistent) combination of the \acp{PF} defines a \acf{TC} $c = \set{\probfact{p}{a}, \ldots}$ such that
123 144  
124 145 \begin{equation}
125 146 \pr{C = c} = \prod_{a\in c} p \prod_{a \not\in c} \co{p}.
... ... @@ -141,9 +162,11 @@ Our goal is to extend this probability, from \acp{TC}, to cover the \emph{specif
141 162 %
142 163 Our idea to extend probabilities starts with the stance that a specification describes an \emph{observable system} and that observed events must be related with the \acp{SM} of that specification. From here, probabilities must be extended from \aclp{TC} to \acp{SM} and then from \acp{SM} to any event.
143 164  
144   -Extending probability from \acp{TC} to \acp{SM} faces a critical problem, illustrated by the example in \cref{sec:example.1}, concerning situations where multiple \acp{SM}, $ab$ and $ac$, result from a given \ac{TC}, $a$, but there is not enough information to assign a single probability to each \ac{SM}. We propose to address this issue by using algebraic variables to describe that lack of information and then estimate the value of those variables from empirical data.
  165 +Extending probability from \acp{TC} to \acp{SM} faces a critical problem, illustrated by the example in \cref{sec:example.1}, concerning situations where multiple \acp{SM}, $ab$ and $ac$, result from a single \ac{TC}, $a$, but there is not enough information (in the specification) to assign a single probability to each \ac{SM}. We propose to address this issue by using algebraic variables to describe that lack of information and then estimate the value of those variables from empirical data.
  166 +
  167 +In a related work, \cite{verreet2022inference}, epistemic uncertainty (or model uncertainty) is considered as a lack of knowledge about the underlying model, that may be mitigated via further observations. This seems to presuppose a Bayesian approach to imperfect knowledge in the sense that having further observations allows to improve/correct the model. Indeed, the approach in that work uses Beta distributions in order to be able to learn the full distribution. This approach seems to be specially fitted to being able to tell when some probability lies beneath some given value. \todo{Our approach seems to be similar in spirit. If so, we should mention this in the introduction.}
145 168  
146   -In a related work, \cite{verreet2022inference}, epistemic uncertainty (or model uncertainty) is considered as a lack of knowledge about the underlying model. This lack of knowledge can be mitigated via further observations. This seems to presuppose a Bayesian approach to imperfect knowledge in the sense that having further observations allows to improve/correct the model. Indeed, the approach in the paper uses Beta distributions in order to be able to learn the full distribution. This approach seems to be specially fitted to being able to tell when some probability lies beneath some given value. \todo{Our approach seems to be similar in spirit. If so, we should mention this in the introduction.}
  169 +\todo{cite \cite{sympy} \franc{--- why? but cite \cite{cozman2020joy} and relate with our work.}}
147 170  
148 171 \todo{Discuss the least informed strategy and the corolary that \aclp{SM} should be conditionally independent on the \acl{TC}.}
149 172  
... ... @@ -157,12 +180,12 @@ In a related work, \cite{verreet2022inference}, epistemic uncertainty (or model
157 180 Consider the following specification
158 181 \begin{equation}
159 182 \begin{aligned}
160   - 0.3::a&,\cr
  183 + \probfact{0.3}{a}&,\cr
161 184 b \vee c& \leftarrow a.
162 185 \end{aligned}
163 186 \label{eq:example.1}
164 187 \end{equation}
165   -This specification has three stable models, $\co{a}, ab$ and $ac$ (see Figure~\ref{F:stableexample}). While it is straightforward to set $P(\co{a})=0.7$, there is \emph{no further information} to assign values to $P(ab)$ and $P(ac)$. Assuming that the \acf{SM} are (probabilistically) independent, we can use a parameter \replace{$\lambda$}{$\theta$} such that
  188 +This specification has three stable models, $\co{a}, ab$ and $ac$ (see \cref{fig:running.example}). While it is straightforward to set $P(\co{a})=0.7$, there is no further information to assign values to $P(ab)$ and $P(ac)$. Assuming that the \acfp{SM} are (probabilistically) independent, we can use a parameter $\theta$ such that
166 189 $$
167 190 \begin{aligned}
168 191 P(ab) &= 0.3 \theta,\cr
... ... @@ -171,15 +194,15 @@ P(ac) &amp;= 0.3 (1 - \theta).
171 194 $$
172 195 \end{example}
173 196  
174   -While uncertainty is inherent to the specification it can be mitigated with the help of a dataset: the parameter $\theta$ can be estimated from a empirical distribution \todo{or we can have a distribution of $\theta$}.
  197 +While uncertainty is inherent to the specification it can be mitigated with the help of a dataset: the parameter $\theta$ can be estimated from a empirical distribution \todo{or we can have a distribution of $\theta$}. \todo{point to examples of this in following sections.}
175 198  
176 199 In summary, if an \ac{ASP} specification is intended to describe some observable system then:
177 200  
178 201 \begin{enumerate}
179 202 \item Observations can be used to estimate the value of the parameters (such as $\theta$ above and others entailed from further clauses).
180 203 \item \todo{What about the case where we already know a distribution of $\theta$?}
181   - \item With a probability set for the stable models, we want to extend it to all the events of the \replace{specification}{domain}.
182   - \item This extended probability can then be related to the \emph{empirical distribution}, using a probability divergence, such as Kullback-Leibler; and the divergence value used as a \emph{performance} measure of the specification with respect to the observations.
  204 + \item With a probability set for the \aclp{SM}, we want to extend it to all the events of the specification domain.
  205 + \item This extended probability can then be related to the \emph{empirical distribution}, using a probability divergence, such as \ac{KL}; and the divergence value used as a \emph{performance} measure of the specification with respect to the observations.
183 206 \item If that specification is only but one of many possible candidates then that performance measure can be used, \emph{e.g.} as fitness, by algorithms searching (optimal) specifications of a dataset of observations.
184 207 \end{enumerate}
185 208  
... ... @@ -189,20 +212,20 @@ In summary, if an \ac{ASP} specification is intended to describe some observable
189 212  
190 213 Currently, we are addressing the problem of extending a probability function (possibly using parameters such as $\theta$), defined on the \acp{SM} of a specification, to all the events of that specification. Of course, this extension must satisfy the Kolmogorov axioms of probability so that probabilistic reasoning is consistent with the \ac{ASP} specification.
191 214  
192   -Conditional independence of stable worlds asserts a least informed strategy that we discussed in the introduction and make explicit here:
  215 +The conditional independence of stable worlds asserts the least informed strategy that we discussed in the introduction and make explicit here:
193 216  
194 217 \begin{assumption}\label{assumption:smodels.independence}
195   - Stable models are conditionally independent, given their total choices.
  218 + \Acl{SM} are conditionally independent, given their total choices.
196 219 \end{assumption}
197 220  
198   -The stable models $ab, ac$ from \cref{running.example} result from the clause $b \vee c \leftarrow a$ and the total choice $a$. These formulas alone impose no relation between $b$ and $c$ (given $a$), so none should be assumed. Dependence relations are further discussed in \cref{subsec:dependence}.
  221 +The stable models $ab, ac$ from \cref{running.example} result from the clause $b \vee c \leftarrow a$ and the total choice $a$. These formulas alone imposes no relation between $b$ and $c$ (given $a$), so none should be assumed. Dependence relations are further discussed in \cref{subsec:dependence}.
199 222  
200 223 \section{Extending Probabilities}\label{sec:extending.probalilities}
201 224  
202 225 \begin{figure}[t]
203 226 \begin{center}
204 227 \begin{tikzpicture}
205   - \node[event] (E) {$\set{}$};
  228 + \node[event] (E) {$\emptyevent$};
206 229 \node[tchoice, above left = of E] (a) {$a$};
207 230 \node[smodel, above left = of a] (ab) {$ab$};
208 231 \node[smodel, above right = of a] (ac) {$ac$};
... ... @@ -237,14 +260,16 @@ The stable models $ab, ac$ from \cref{running.example} result from the clause $b
237 260 \draw[doubt] (c) to[bend right] (Ac);
238 261 \end{tikzpicture}
239 262 \end{center}
240   - \caption{Events related to the stable models of \cref{running.example}. The circle nodes are the \acp{TC} and the shaded nodes are the \acp{SM}.}
  263 + \caption{Events related to the stable models of \cref{running.example}. The circle nodes are \aclp{TC} and shaded nodes are \aclp{SM}. The \emph{empty event}, with no literals, is denoted by $\emptyevent$. Notice that the event $bc$ is not related with any stable model.}
241 264 % \caption{Extending probabilities from total choice nodes to stable models and then to general events in a \emph{node-wise} process quickly leads to coherence problems concerning probability, with no clear systematic approach --- Instead, weight extension can be based in \emph{the relation an event has with the stable models}.{\bruno Why is this comment on the caption?}}
242   - \label{F:stableexample}
  265 + \label{fig:running.example}
243 266 \end{figure}
244 267  
245 268 \todo{Somewhere, we need to shift the language from extending \emph{probabilities} to extending \emph{measures}}
246 269  
247   -The diagram in \cref{F:stableexample} illustrates the problem of extending probabilities from total choice nodes to stable models and then to general events in a \emph{node-wise} process. This quickly leads to coherence problems concerning probability, with no clear systematic approach --- Instead, weight extension can be based in the relation an event has with the stable models.
  270 +\note{$\emptyevent$ notation introduced in \cref{fig:running.example}.}
  271 +
  272 +The diagram in \cref{fig:running.example} illustrates the problem of extending probabilities from total choice nodes to stable models and then to general events in a \emph{node-wise} process. This quickly leads to coherence problems concerning probability, with no clear systematic approach --- Instead, weight extension can be based in the relation an event has with the stable models.
248 273  
249 274 \subsection{An Equivalence Relation}\label{subsec:equivalence.relation}
250 275  
... ... @@ -259,7 +284,7 @@ Given an ASP specification
259 284 Our path starts with a perspective of stable models as playing a role similar to \emph{prime} factors.
260 285 The stable models of a specification are the irreducible events entailed from that specification and any event must be \replace{interpreted}{considered} under its relation with the stable models.
261 286  
262   -\remark{\todo{Introduce a structure with worlds, events, and stable models}}{seems irrelevant}
  287 +%\remark{\todo{Introduce a structure with worlds, events, and stable models}}{seems irrelevant}
263 288 This focus on the \acp{SM} leads to the following definition:
264 289  
265 290 \begin{definition}\label{def:stable.structure}
... ... @@ -269,7 +294,7 @@ This focus on the \acp{SM} leads to the following definition:
269 294  
270 295 \todo{expand this text to explain how the stable models form the basis of the equivalence relation}. %This \replace{stance}{} leads to definition \ref{def:rel.events}:
271 296  
272   -\begin{definition}\label{def:rel.events}
  297 +\begin{definition}\label{def:stable.core}
273 298 The \emph{\ac{SC}} of the event $e\in \fml{E}$ is
274 299  
275 300 % \begin{equation}
... ... @@ -282,12 +307,12 @@ This focus on the \acp{SM} leads to the following definition:
282 307 % \stablecore{e} = \uset{e} \cup \lset{e} \label{def:stable.core}
283 308 % \end{equation}
284 309 \begin{equation}
285   - \stablecore{e} := \set{s \in \fml{S} \given e \subseteq s \vee s \subseteq e} \label{eq:stable.core}
  310 + \stablecore{e} := \set{s \in \fml{S} \given s \subseteq e \vee e \subseteq s} \label{eq:stable.core}
286 311 \end{equation}
287 312  
288 313 \end{definition}
289 314  
290   -We now define an equivalence relation, $\sim$, so that two events are related if they are either both inconsistent or both consistent with the same stable core.
  315 +We now define an equivalence relation, $\sim$, so that two events are related if either both are inconsistent or both are consistent with the same stable core.
291 316  
292 317 \begin{definition}\label{def:equiv.rel}
293 318 For a given specification, let $u, v \in \fml{E}$. The equivalence relation $\sim$ is defined by
... ... @@ -296,7 +321,7 @@ For a given specification, let $u, v \in \fml{E}$. The equivalence relation $\si
296 321 \end{equation}
297 322 \end{definition}
298 323  
299   -Observe that the minimality of stable models implies that, in \cref{def:stable.core}, either $e$ is a stable model or one of $e \subseteq s, s \subseteq e$ is never true.
  324 +Observe that the minimality of stable models implies that, in \cref{def:stable.core}, either $e$ is a stable model or one of $s \subseteq e, e \subseteq s$ is never true.
300 325 %
301 326 % \begin{definition}\label{def:smodel.events}
302 327 % For $\set{s_1, \ldots, s_n} \subseteq \fml{S}$ define
... ... @@ -333,17 +358,17 @@ This relation defines a partition of the events space, where each class holds a
333 358 % \class{e} = \class{s_1 \cup \cdots \cup s_n}.
334 359 % \end{equation}
335 360 % We simplify the notation with $\class{s_1, \ldots, s_n} := \class{s_1 \cup \cdots \cup s_n}$.
336   -% \todo{This only works for consistent $s_1, \ldots, s_n$: $\set{\set{}} = \class{\co{a}, ab, ac} \not= \class{a\co{a}bc} = \inconsistent$.}
  361 +% \todo{This only works for consistent $s_1, \ldots, s_n$: $\set{\emptyevent} = \class{\co{a}, ab, ac} \not= \class{a\co{a}bc} = \inconsistent$.}
337 362 % \end{theorem}
338 363 % \begin{proof}
339 364 % \todo{tbd}
340 365 % \end{proof}
341 366  
342   -The subsets of the stable models, together with $\inconsistent$, form a set of representatives. Consider again Example~\ref{running.example}. As previously mentioned, the stable models are $\fml{S} = \co{a}, ab, ac$ so the quotient set of this relation is $\class{\fml{E}}:$
  367 +The subsets of the stable models, together with $\inconsistent$, form a set of representatives. Consider again Example~\ref{running.example}. As previously mentioned, the stable models are $\fml{S} = \co{a}, ab, ac$ so the quotient set of this relation is:
343 368 \begin{equation}
344   - \set{
  369 + \class{\fml{E}} = \set{
345 370 \inconsistent,
346   - \emptyset,
  371 + \indepclass,
347 372 \class{\co{a}},
348 373 \class{ab},
349 374 \class{ac},
... ... @@ -359,34 +384,73 @@ The subsets of the stable models, together with $\inconsistent$, form a set of r
359 384 % & \stablecore{\co{a}, ab, ac}.
360 385 % \end{aligned}
361 386 \end{equation}
362   -
363   -For example,
  387 +where $\indepclass$ denotes both the class of \emph{independent} events $e$ such that $\stablecore{e} = \emptyset$ and its core (which is the emptyset). We have:
364 388 \begin{equation*}
365   - \begin{aligned}
366   - \class{\set{}} &= \class{\co{a}, ab, ac},
367   - & \class{a} &= \class{ab, ac},
368   - & \class{b} &= \class{ab},
369   - & \class{\co{b}} &= \emptyset,
370   - \\ \class{a\co{c}} &= \emptyset,
371   - & \class{ab} &= \emptyset,
372   - & \class{b\co{b}} &= \inconsistent,
373   - & \class{\co{a}b} &=\class{\co{a}},
374   - \\ \class{\co{bc}} &=\emptyset,
375   - & \class{abc} &= \class{ab, ac},
376   - & \class{a\co{b}c} &= \class{ac},
377   - & \class{\co{a}bc} &= \class{\co{a}},
378   - % & \class{\co{a}} &= \class{\co{a}},
379   - % & \class{\set{}} &= \class{\co{a}, ac, ab}
380   - \end{aligned}
  389 + \begin{array}{l|lr}
  390 + \text{\textbf{Core}}
  391 + & \text{\textbf{Class}}
  392 + & \text{\textbf{Size}}\\
  393 + \hline
  394 + %
  395 + \inconsistent
  396 + & \text{inconsistent events}
  397 + & 37
  398 + \\
  399 + %
  400 + \indepclass
  401 + & \co{b}, \co{c}, bc, \co{b}a, \co{b}c, \co{b}\co{c}, \co{c}a, \co{c}b, \co{b}\co{c}a
  402 + & 9
  403 + \\
  404 + %
  405 + \co{a}
  406 + & \co{a}, \co{a}b, \co{a}c, \co{a}\co{b}, \co{a}\co{c}, \co{a}bc, \co{a}b\co{c}, \co{a}\co{b}c, \co{a}\co{b}\co{c}
  407 + & 9
  408 + \\
  409 + %
  410 + ab
  411 + & b, ab, ab\co{c}
  412 + & 3
  413 + \\
  414 + %
  415 + ac
  416 + & c, ac, a\co{b}c
  417 + & 3
  418 + \\
  419 + %
  420 + \co{a}, ab
  421 + & \emptyset
  422 + & 0
  423 + \\
  424 + %
  425 + \co{a}, ac
  426 + & \emptyset
  427 + & 0
  428 + %
  429 + \\
  430 + %
  431 + ab, ac
  432 + & a, abc
  433 + & 2
  434 + \\
  435 + %
  436 + \co{a}, ab, ac
  437 + & \emptyevent
  438 + & 1
  439 + \\
  440 + %
  441 + \hline
  442 + \Omega
  443 + & \text{all events}
  444 + & 64
  445 + \end{array}
381 446 \end{equation*}
382 447  
383   -
384 448 \begin{itemize}
385 449 \item Since all events within an equivalence class are in relation with a specific set of stable models, \emph{weights, including probability, should be constant within classes}:
386 450 \[
387 451 \forall u\in \class{e} \left(\pr{u} = \pr{e} \right).
388 452 \]
389   - \item So, instead of dealing with $64 = 2^6$ events, we need only to handle $9 = 2^3 + 1$ classes, well defined in terms of combinations of the stable models.
  453 + \item So, instead of dealing with $64 = 2^6$ events, we need only to \replace{handle}{handle, at most,} $9 = 2^3 + 1$ classes, well defined in terms of combinations of the stable models. \remark{This seems fine}{but, in general, we will get \emph{much more} stable models than literals, so the number of these classes is much larger than of events!} {\bruno Nevertheless, the equivalence classes alow us to propagate probabilities from total choices to events, as explained in the next subsection.}
390 454 % \item The extended probability \emph{events} are the \emph{classes}.
391 455 \end{itemize}
392 456  
... ... @@ -410,10 +474,10 @@ The ``extension&#39;&#39; phase, traced by equations (\ref{eq:prob.total.choice}) and (\
410 474 %
411 475 \item[Stable Models.] Each total choice $c$, together with the rules and the other facts of a specification, defines a set of stable models associated with that choice, that we denote by $S_c$.
412 476  
413   - Given a stable model $s \in \fml{S}$, a total choice $c$, and variables/values $\theta_{s,c} \in \intcc{0, 1}$,
  477 + Given a stable model $s \in \fml{S}$, a total choice $c$, and variables/values $\theta_{s,c} \in \intcc{0, 1}$,
414 478 \begin{equation}
415 479 \pw{s, c} := \begin{cases}
416   - \pw{c}\theta_{s,c} & \text{if~} s \in S_c\cr
  480 + \theta_{s,c}\remark{\pw{c}}{\text{maybe not!}} & \text{if~} s \in S_c\cr
417 481 0&\text{otherwise}
418 482 \end{cases}
419 483 \label{eq:weight.stablemodel}
... ... @@ -429,10 +493,10 @@ The ``extension&#39;&#39; phase, traced by equations (\ref{eq:prob.total.choice}) and (\
429 493 \end{equation}
430 494 \item \textbf{Independent Class.} A world that neither contains nor is contained in a stable model describes a case that, according to the specification, should never be observed. So the respective weight is set to zero:
431 495 \begin{equation}
432   - \pw{\class{e}, c} := 0,~\text{if}~\stablecore{e} = \emptyset.
  496 + \pw{\indepclass, c} := 0.
433 497 \label{eq:weight.class.independent}
434 498 \end{equation}
435   - \item \textbf{Other Classes.} The extension must be constant within a class, its value should result from the elements in the stable core, and respect the assumption \ref{assumption:smodels.independence}:
  499 + \item \textbf{Other Classes.} The extension must be constant within a class, its value should result from the elements in the stable core, and respect the assumption \ref{assumption:smodels.independence} (stable models independence):
436 500 \begin{equation}
437 501 \pw{\class{e}, c} := \prod_{k=1}^{n}\pw{s_k, c},~\text{if}~\stablecore{e} = \set{s_1, \ldots, s_n}.
438 502 \label{eq:weight.class.other}
... ... @@ -449,6 +513,15 @@ The ``extension&#39;&#39; phase, traced by equations (\ref{eq:prob.total.choice}) and (\
449 513 \pw{e} := \sum_{c\in\fml{C}} \pw{e, c}.
450 514 \label{eq:weight.events.unconditional}
451 515 \end{equation}
  516 + \remark{instead of that equation}{if we set $\pw{s,c} := \theta_{s,c}$ in equation \eqref{eq:weight.stablemodel} here we do:
  517 + $$
  518 + \pw{e} := \sum_{c\in\fml{C}} \pw{e, c}\pw{c}.
  519 + $$
  520 + By the way, this is the \emph{marginalization + bayes theorem} in statistics:
  521 + $$
  522 + P(A) = \sum_b P(A | B=b)P(B=b)
  523 + $$
  524 + }
452 525 \end{description}
453 526  
454 527 % PARAMETERS FOR UNCERTAINTY
... ... @@ -459,7 +532,7 @@ The ``extension&#39;&#39; phase, traced by equations (\ref{eq:prob.total.choice}) and (\
459 532 \end{itemize}
460 533  
461 534  
462   -The $\theta_{s,c}$ parameters in equation \eqref{eq:weight.stablemodel} express the \emph{specification's} lack of knowledge about the weight assignment, when a single total choice entails more than one stable model. In that case, how to distribute the respective weights? Our \replace{answer}{proposal} to \replace{}{address} this problem consists in assigning an unknown weight, $\theta_{s,c}$, conditional {\bruno depending???} on the total choice, $c$, to each stable model $s$. This approach allows the expression of an unknown quantity and future estimation, given observed data.
  535 +The $\theta_{s,c}$ parameters in equation \eqref{eq:weight.stablemodel} express the \emph{specification's} lack of knowledge about the weight assignment, when a single total choice entails more than one stable model. In that case, how to distribute the respective weights? Our proposal to address this problem consists in assigning an unknown weight, $\theta_{s,c}$, conditional on the total choice, $c$, to each stable model $s$. This approach allows the expression of an unknown quantity and future estimation, given observed data.
463 536  
464 537 % SUPERSET
465 538 Equation \eqref{eq:weight.class.other} results from conditional independence of stable models.
... ... @@ -471,97 +544,281 @@ Equation \eqref{eq:weight.class.other} results from conditional independence of
471 544  
472 545 We continue with the specification from Equation \eqref{eq:example.1}.
473 546  
474   -\textbf{Total Choices.} The total choices, and respective stable models, are
475   -\begin{center}
476   - \begin{tabular}{l|r|r}
477   - Total Choice ($c$) & $\pw{c}$ & Stable Models ($s$)\\
478   - \hline
479   - $a$ & $0.3$ & $ab$ and $ac$.\\
480   - $\co{a} = \neg a$ & $\co{0.3} = 0.7$ & $\co{a}$.
481   - \end{tabular}
482   -\end{center}
  547 +\begin{description}
  548 + %
  549 + \item[Total Choices.] The total choices, and respective stable models, are
  550 + \begin{center}
  551 + \begin{tabular}{llr}
  552 + \textbf{Total Choice} & \textbf{Stable Models} & \textbf{$\pw{\cdot}$}\\
  553 + \hline
  554 + $a$ & $ab, ac$ & $0.3$\\
  555 + $\co{a} = \neg a$ & $\co{a}$ & $\co{0.3} = 0.7$
  556 + \end{tabular}
  557 + \end{center}
  558 + %
  559 + \item[Stable Models.] \todo{Enter the $\theta$ parameters.}
  560 + \begin{equation*}
  561 + \begin{array}{ll|r}
  562 + \text{\textbf{Stable Model}}
  563 + & \text{\textbf{Total Choice}}
  564 + & \pw{s,c}
  565 + \\
  566 + \hline
  567 + \co{a}
  568 + & \co{a}
  569 + & 1.0
  570 + \\
  571 + ab
  572 + & a
  573 + & \theta
  574 + \\
  575 + ac
  576 + & a
  577 + & \co{\theta}
  578 + \end{array}
  579 + \end{equation*}
  580 + \item[Classes.] Following the definitions in \cref{eq:stable.core,eq:equiv.rel,eq:event.class} and in \cref{eq:weight.class.inconsistent,eq:weight.class.independent,eq:weight.class.other} we get the following quotient set, and weights:
  581 + \begin{equation*}
  582 + \begin{array}{l|rrr|r}
  583 + \text{\textbf{Core}}
  584 + & \pw{c}
  585 + & \pw{s,c}
  586 + & \pw{\class{e}, c}
  587 + & \pw{e}
  588 + \\
  589 + \hline
  590 + %
  591 + \inconsistent
  592 + &
  593 + & 0.0
  594 + & 0.0
  595 + & 0.0
  596 + \\
  597 + %
  598 + \indepclass
  599 + &
  600 + & 0.0
  601 + & 0.0
  602 + & 0.0
  603 + \\
  604 + %
  605 + \co{a}
  606 + & 0.7
  607 + & 1.0
  608 + & 1.0
  609 + & 0.7
  610 + \\
  611 + %
  612 + ab
  613 + & 0.3
  614 + & \theta
  615 + & \theta
  616 + & 0.3\theta
  617 + \\
  618 + %
  619 + ac
  620 + & 0.3
  621 + & \co{\theta}
  622 + & \co{\theta}
  623 + & 0.3\co{\theta}
  624 + \\
  625 + %
  626 + \co{a}, ab
  627 + & 0.7, 0.3
  628 + & 1.0, \theta
  629 + & 1.0, \theta
  630 + & 0.7 + 0.3\theta
  631 + \\
  632 + %
  633 + \co{a}, ac
  634 + & 0.7, 0.3
  635 + & 1.0, \co{\theta}
  636 + & 1.0, \co{\theta}
  637 + & 0.7 + 0.3\co{\theta}
  638 + \\
  639 + %
  640 + ab, ac
  641 + & 0.3, 0.3
  642 + & \theta, \co{\theta}
  643 + & \theta\co{\theta}
  644 + & 0.3\theta\co{\theta}
  645 + \\
  646 + %
  647 + \co{a}, ab, ac
  648 + & 0.7, 0.3, 0.3
  649 + & 1.0, \theta, \co{\theta}
  650 + & 1.0, \theta\co{\theta}
  651 + & 0.7 + 0.3\theta\co{\theta}
  652 + \end{array}
  653 + \end{equation*}
  654 + \item[Normalization.] To get a weight that sums up to one, we compute the \emph{normalization factor}
  655 + \begin{equation*}
  656 + Z := \sum_{e\in\fml{E}} \pw{e}
  657 + = \sum_{e\in\fml{E}} \sum_{c\in\fml{C}}\pw{e,c}\pw{c}
  658 + = \sum_{e\in\fml{E}} \sum_{c\in\fml{C}} \del{\prod_{s\in\stablecore{e}}\pw{s,c}}\pw{c}
  659 + \end{equation*}
  660 + to divide the weight function into a normalized weight:
  661 + \begin{equation*}
  662 + \nu\at{e} := \frac{\pw{e}}{Z}.
  663 + \end{equation*}
  664 + Since $\pw{\cdot}$ is constant on classes we have:
  665 + \begin{equation*}
  666 + \begin{array}{lr|r}
  667 + \text{\textbf{Core}}
  668 + & \text{\textbf{Size}}
  669 + & \pw{\class{\cdot}}
  670 + \\
  671 + \hline
  672 + %
  673 + \inconsistent
  674 + & 37
  675 + & 0.0
  676 + \\
  677 + %
  678 + \indepclass
  679 + & 9
  680 + & 0.0
  681 + \\
  682 + %
  683 + \co{a}
  684 + & 9
  685 + & 0.7
  686 + \\
  687 + %
  688 + ab
  689 + & 3
  690 + & 0.3\theta
  691 + \\
  692 + %
  693 + ac
  694 + & 3
  695 + & 0.3\co{\theta}
  696 + \\
  697 + %
  698 + \co{a}, ab
  699 + & 0
  700 + & 0.3\theta + 0.7
  701 + \\
  702 + %
  703 + \co{a}, ac
  704 + & 0
  705 + & 0.3\co{\theta} + 0.7
  706 + %
  707 + \\
  708 + %
  709 + ab, ac
  710 + & 2
  711 + & 0.3\theta\co{\theta}
  712 + \\
  713 + %
  714 + \co{a}, ab, ac
  715 + & 1
  716 + & 0.3\theta\co{\theta} + 0.7
  717 + \\
  718 + %
  719 + \hline
  720 + Z
  721 + &
  722 + & 0.9\theta\co{\theta} + 7.9
  723 + \end{array}
  724 + \end{equation*}
  725 +\end{description}
  726 +%
  727 +%
  728 +%
  729 +\subsection{A Not So Simple Example}
  730 +
  731 +\todo{this subsection}
  732 +
  733 +In this section we see how the classical example of the Burglary, Earthquake, Alarm \cite{Judea88} works in our setting. This example is a commonly used example in Bayesian networks because it illustrates reasoning under uncertainty. The gist of example is given in \cref{Figure_Alarm}. It involves a simple network of events and conditional probabilities.
  734 +
  735 +The events are: Burglary ($B$), Earthquake ($E$), Alarm ($A$), Mary calls ($M$) and John calls ($J$). The initial events $B$ and $E$ are assumed to be independent events that occur with probabilities $P(B)$ and $P(E)$, respectively. There is an alarm system that can be triggered by either of the initial events $B$ and $E$. The probability of the alarm going off is a conditional probability depending on whether $B$, or $E$ as occurred. One denotes these probabilities, as per usual, by $P(A|B)$, and $P(A|E)$. There are two neighbours, Mary and John who have agreed to call if they hear the alarm. The probability that they do actually call is also a conditional probability denoted by $P(M|A)$ and $P(J|A)$, respectively.
  736 +
  737 +Considering the probabilities given in \cref{Figure_Alarm} we obtain the following specification
483 738  
484   -\textbf{Stable Models.} The weights from equation \eqref{eq:weight.stablemodel} can be tabulated by a matrix where a column represents a total choice and a row a stable model. We get:
485   -\begin{multline*}
486   - \pw{s, c} =
487   - \begin{pmatrix}
488   - \pw{ab, a} & \pw{ab, \co{a}} \\
489   - \pw{ac, a} & \pw{ac, \co{a}} \\
490   - \pw{\co{a}, a} & \pw{\co{a}, \co{a}}
491   - \end{pmatrix}
492   - =
493   - \begin{pmatrix}
494   - \pw{a} \theta_{ab, a} & \pw{\co{a}} \theta_{ab, \co{a}} \\
495   - \pw{a} \theta_{ac, a} & \pw{\co{a}} \theta_{ac, \co{a}} \\
496   - \pw{a} \theta_{\co{a}, a} & \pw{\co{a}} \theta_{\co{a}, \co{a}}
497   - \end{pmatrix}
498   - \\
499   - =
500   - \begin{pmatrix}
501   - 0.3 \times \theta_{ab, a} & 0.7 \times 0.0 \\
502   - 0.3 \times \theta_{ac, a} & 0.7 \times 0.0 \\
503   - 0.3 \times 0.0 & 0.7 \times 1.0
504   - \end{pmatrix}
505   - =
506   - \begin{pmatrix}
507   - 0.3\theta & 0.0 \\
508   - 0.3\co{\theta} & 0.0 \\
509   - 0.0 & 7.0
510   - \end{pmatrix}
511   -\end{multline*}
512   -where we set $\theta = \theta_{ab, a}$ to simplify the notation.
513   -
514   -\textbf{Classes.} Following the definitions in \cref{eq:stable.core,eq:equiv.rel,eq:event.class} and in \cref{eq:weight.class.inconsistent,eq:weight.class.independent,eq:weight.class.other} we get the following quotient set, and weights:
515 739 \begin{equation*}
516   - \begin{array}{ll|rr}
517   - \text{\textbf{Core}} & \text{\textbf{Class}} & \text{\textbf{Parameters}} & \text{\textbf{Weights}}\\
518   - \hline
519   - %
520   - \inconsistent
521   - & \text{inconsistent events}
522   - & 0.0
523   - \\
524   - %
525   - \emptyset
526   - & \co{b}, \co{c}, bc, \co{b}a, \co{b}c, \co{b}\co{c}, \co{c}a, \co{c}b, \co{b}\co{c}a
527   - & 0.0
528   - \\
529   - %
530   - \co{a}
531   - & \co{a}, \co{a}b, \co{a}c, \co{a}\co{b}, \co{a}\co{c}, \co{a}bc, \co{a}b\co{c}, \co{a}\co{b}c, \co{a}\co{b}\co{c}
532   - & 1.0
533   - & 0.7
534   - \\
535   - %
536   - ab
537   - & b, ab, ab\co{c}
538   - & \theta
539   - & 0.3
540   - \\
541   - %
542   - ac
543   - & c, ac, a\co{b}c
544   - & \co{\theta}
545   - & 0.3
546   - \\
547   - %
548   - ab, ac
549   - & a, abc
550   - & \co{\theta}\theta
551   - & 0.3
552   - \\
553   - %
554   - \co{a}, ab, ac
555   - & \set{}
556   - & \co{\theta}\theta, 1.0
557   - & 0.3, 0.7
558   - \end{array}
  740 + \begin{aligned}
  741 + \probfact{0.001}{B}&,\cr
  742 + \probfact{0.002}{E}&,\cr
  743 + \probfact{??}{A}&,\cr
  744 + ... &. \cr
  745 + \end{aligned}
  746 + \label{eq:not_so_simple_example}
559 747 \end{equation*}
560   -\remark{fc}{I really don't like those squares}
561 748  
562   -\subsection{A Not So Simple Example}
563 749  
564   -\todo{this subsection}
  750 +
  751 +
  752 +
  753 +\begin{figure}
  754 +\begin{center}
  755 +\begin{tikzpicture}[node distance=2.5cm]
  756 +
  757 +% Nodes
  758 +\node[smodel, circle] (A) {A};
  759 +\node[tchoice, above right of=A] (B) {B};
  760 +\node[tchoice, above left of=A] (E) {E};
  761 +\node[tchoice, below left of=A] (M) {M};
  762 +\node[tchoice, below right of=A] (J) {J};
  763 +
  764 +% Edges
  765 +\draw[->] (B) to[bend left] (A) node[right,xshift=1.1cm,yshift=0.8cm] {\footnotesize{$P(B)=0,001$}} ;
  766 +\draw[->] (E) to[bend right] (A) node[left, xshift=-1.4cm,yshift=0.8cm] {\footnotesize{$P(E)=0,002$}} ;
  767 +\draw[->] (A) to[bend right] (M) node[left,xshift=0.2cm,yshift=0.7cm] {\footnotesize{$P(M|A)$}};
  768 +\draw[->] (A) to[bend left] (J) node[right,xshift=-0.2cm,yshift=0.7cm] {\footnotesize{$P(J|A)$}} ;
  769 +\end{tikzpicture}
  770 +\end{center}
  771 +
  772 +\begin{multicols}{3}
  773 +
  774 +\footnotesize{
  775 + \begin{equation*}
  776 + \begin{split}
  777 + &P(M|A)\\
  778 + & \begin{array}{c|cc}
  779 + A & T & F \\
  780 + \hline
  781 + T & 0,9 & 0,1\\
  782 + F& 0,05 & 0,95
  783 + \end{array}
  784 + \end{split}
  785 +\end{equation*}
  786 +}
  787 +
  788 +\footnotesize{
  789 + \begin{equation*}
  790 + \begin{split}
  791 + &P(J|A)\\
  792 + & \begin{array}{c|cc}
  793 + A & T & F \\
  794 + \hline
  795 + T & 0,7 & 0,3\\
  796 + F& 0,01 & 0,99
  797 + \end{array}
  798 + \end{split}
  799 +\end{equation*}
  800 +}
  801 +\footnotesize{
  802 + \begin{equation*}
  803 + \begin{split}
  804 + P(A|B \vee E)\\
  805 + \begin{array}{c|c|cc}
  806 + B & E& T & F \\
  807 + \hline
  808 + T & T & 0,95 & 0,05\\
  809 + T & F & 0,94 & 0,06\\
  810 + F & T & 0,29 & 0,71\\
  811 + F & F & 0,001 & 0,999
  812 + \end{array}
  813 +\end{split}
  814 +\end{equation*}
  815 +}
  816 +\end{multicols}
  817 +\caption{The Earthquake, Burglary, Alarm model}
  818 +\label{Figure_Alarm}
  819 +\end{figure}
  820 +
  821 +
565 822  
566 823 \section{Discussion}
567 824  
... ... @@ -610,7 +867,7 @@ Our basic assertion about dependence relations between atoms of the underlying s
610 867  
611 868 For example, a dependence relation between $b$ and $c$ can be expressed by $b \leftarrow c \wedge d$, where $d$ is an atomic choice that explicitly expresses the dependence between $b$ and $c$. One would get, for example, a specification such as
612 869 $$
613   -0.3::a, b \vee c \leftarrow a, 0.2::d, b \leftarrow c \wedge d.
  870 +\probfact{0.3}{a}, b \vee c \leftarrow a, \probfact{0.2}{d}, b \leftarrow c \wedge d.
614 871 $$
615 872 with stable models
616 873 $
... ... @@ -647,7 +904,7 @@ $$
647 904 &\not= \pr{W = b}\pr{W = c}
648 905 \end{aligned}
649 906 $$
650   -\emph{i.e.} the events $W = b$ and $W = c$ are dependent and that dependence results directly from the segment $0.2::d, b \leftarrow c \wedge d$ in the specification.
  907 +\emph{i.e.} the events $W = b$ and $W = c$ are dependent and that dependence results directly from the segment $\probfact{0.2}{d}, b \leftarrow c \wedge d$ in the specification.
651 908  
652 909 {\bruno Why does this not contradict Assumption 1?}
653 910  
... ...
text/paper_01/temp.fc/LecBayesNetsAndInference.pdf 0 → 100644
No preview for this file type
text/paper_01/temp.fc/hj18.pdf 0 → 100644
No preview for this file type
text/paper_01/temp.fc/lec15.pdf 0 → 100644
No preview for this file type
text/paper_01/zugzwang.bib
  1 +@book {Judea88,
  2 + AUTHOR = {Pearl, Judea},
  3 + TITLE = {Probabilistic reasoning in intelligent systems: networks of
  4 + plausible inference},
  5 + SERIES = {The Morgan Kaufmann Series in Representation and Reasoning},
  6 + PUBLISHER = {Morgan Kaufmann, San Mateo, CA},
  7 + YEAR = {1988},
  8 + PAGES = {xx+552},
  9 + ISBN = {0-934613-73-7},
  10 + MRCLASS = {68-02 (68T01 92A25)},
  11 + MRNUMBER = {965765},
  12 +MRREVIEWER = {V. Yu. Trakhtman},
  13 +}
  14 +
  15 + @article{sympy,
  16 + title = {SymPy: symbolic computing in Python},
  17 + author = {Meurer, Aaron and Smith, Christopher P. and Paprocki, Mateusz and \v{C}ert\'{i}k, Ond\v{r}ej and Kirpichev, Sergey B. and Rocklin, Matthew and Kumar, AMiT and Ivanov, Sergiu and Moore, Jason K. and Singh, Sartaj and Rathnayake, Thilina and Vig, Sean and Granger, Brian E. and Muller, Richard P. and Bonazzi, Francesco and Gupta, Harsh and Vats, Shivam and Johansson, Fredrik and Pedregosa, Fabian and Curry, Matthew J. and Terrel, Andy R. and Rou\v{c}ka, \v{S}t\v{e}p\'{a}n and Saboo, Ashutosh and Fernando, Isuru and Kulal, Sumith and Cimrman, Robert and Scopatz, Anthony},
  18 + year = 2017,
  19 + month = jan,
  20 + keywords = {Python, Computer algebra system, Symbolics},
  21 + abstract = {
  22 + SymPy is an open source computer algebra system written in pure Python. It is built with a focus on extensibility and ease of use, through both interactive and programmatic applications. These characteristics have led SymPy to become a popular symbolic library for the scientific Python ecosystem. This paper presents the architecture of SymPy, a description of its features, and a discussion of select submodules. The supplementary material provide additional examples and further outline details of the architecture and features of SymPy.
  23 + },
  24 + volume = 3,
  25 + pages = {e103},
  26 + journal = {PeerJ Computer Science},
  27 + issn = {2376-5992},
  28 + url = {https://doi.org/10.7717/peerj-cs.103},
  29 + doi = {10.7717/peerj-cs.103}
  30 + }
  31 +
1 32 @inproceedings{verreet2022inference,
2 33 title={Inference and learning with model uncertainty in probabilistic logic programs},
3 34 author={Verreet, Victor and Derkinderen, Vincent and Dos Martires, Pedro Zuidberg and De Raedt, Luc},
... ... @@ -46,3 +77,20 @@
46 77 year={2012},
47 78 publisher={Morgan \& Claypool Publishers}
48 79 }
  80 +
  81 +@article{10.7717/peerj-cs.103,
  82 + title = {SymPy: symbolic computing in Python},
  83 + author = {Meurer, Aaron and Smith, Christopher P. and Paprocki, Mateusz and \v{C}ert\'{i}k, Ond\v{r}ej and Kirpichev, Sergey B. and Rocklin, Matthew and Kumar, AMiT and Ivanov, Sergiu and Moore, Jason K. and Singh, Sartaj and Rathnayake, Thilina and Vig, Sean and Granger, Brian E. and Muller, Richard P. and Bonazzi, Francesco and Gupta, Harsh and Vats, Shivam and Johansson, Fredrik and Pedregosa, Fabian and Curry, Matthew J. and Terrel, Andy R. and Rou\v{c}ka, \v{S}t\v{e}p\'{a}n and Saboo, Ashutosh and Fernando, Isuru and Kulal, Sumith and Cimrman, Robert and Scopatz, Anthony},
  84 + year = 2017,
  85 + month = jan,
  86 + keywords = {Python, Computer algebra system, Symbolics},
  87 + abstract = {
  88 + SymPy is an open source computer algebra system written in pure Python. It is built with a focus on extensibility and ease of use, through both interactive and programmatic applications. These characteristics have led SymPy to become a popular symbolic library for the scientific Python ecosystem. This paper presents the architecture of SymPy, a description of its features, and a discussion of select submodules. The supplementary material provide additional examples and further outline details of the architecture and features of SymPy.
  89 + },
  90 + volume = 3,
  91 + pages = {e103},
  92 + journal = {PeerJ Computer Science},
  93 + issn = {2376-5992},
  94 + url = {https://doi.org/10.7717/peerj-cs.103},
  95 + doi = {10.7717/peerj-cs.103}
  96 + }
... ...