00_PASP.tex 23.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
\documentclass{beamer}

\setbeamertemplate{navigation symbols}{}
\setbeamertemplate{itemize items}[circle]


\usepackage[overridenote]{pdfpc}

\usepackage{tikz}

\usepackage{commath}
\usepackage{amssymb}
\usepackage[T1]{fontenc}
\usepackage{hyperref}
\hypersetup{%
  colorlinks=true,
  allcolors=blue,
}
%
% Local commands
%
\newcommand{\todo}[1]{{\color{orange}TODO #1}}
\newcommand{\naf}{\ensuremath{\sim\!}}
\newcommand{\larr}{\ensuremath{\leftarrow}}
\newcommand{\at}[1]{\ensuremath{\!\del{#1}}}
\newcommand{\co}[1]{\ensuremath{\overline{#1}}}
\newcommand{\fml}[1]{\ensuremath{{\cal #1}}}
\newcommand{\deft}[1]{\textbf{#1}}
\newcommand{\pset}[1]{\ensuremath{\mathbb{P}\at{#1}}}
\newcommand{\ent}{\ensuremath{\lhd}}
\newcommand{\langof}[1]{\ensuremath{\fml{L}\at{#1}}}
\newcommand{\uset}[1]{\ensuremath{\left|{#1}\right>}}
\newcommand{\lset}[1]{\ensuremath{\left<{#1}\right|}}

\begin{document}

\begin{frame}
The goal of this text is to \textbf{explore how ASP programs with probabilistic facts} can lead to characterizations of the \textbf{joint distributions} of the program's atoms.
\end{frame}

\section{Introduction}


\begin{frame}{Notation}
    \note{
- We start with **common notations and assumptions** such as:\\
- Hi\\
- There\\
- And another note}
    \begin{itemize}
        \item The \textbf{complement} of $x$ is $\co{x} = 1 - x$.
        \item A \textbf{probabilistic atomic choice} $\alpha:a$ defines the disjunction $a \lor \neg a$ and assigns probabilities $P\at{a} = \alpha, P\at{\neg a} = \co{\alpha}$. 
        \item $\delta a$ denotes the disjunction $a \lor \neg a$ associated to the probabilistic choice $\alpha : a$ and $\delta\! \set{\alpha: a, a \in A} = \set{\delta a, a \in A}$ for any set of atoms $A$.
        \item Start with the \textbf{closed world assumption}, where $\naf x \models \neg x$.
        \item Also assume that \textbf{probabilistic choices} and \textbf{subgoals} are iid.
    \end{itemize}
\end{frame}

\begin{frame}    
    \note{Next, we consider the following **general setting**}
    \begin{itemize}        
        \item  Let $\fml{A}$ be a set of \textbf{atoms}, $\fml{Z}$ the respective set of \textbf{observations},
        $\fml{Z} = \set{z = \alpha \cup \nu \middle| \alpha \subseteq \fml{A} \land \nu \subseteq \set{\neg a \middle| a \in \fml{A}} }$ and $\fml{I}$ the set of consistent observations or \textbf{interpretations}, $\fml{I} = \set{z \in \fml{Z} \middle| \forall a \in \fml{A}~\abs{ \set{a, \neg a} \cap z} \leq 1}$.
        
        \item A \textbf{PASP program} is $P = C \land F \land R$ and the sets of atoms, observations and interpretations of program $P$ are denoted $\fml{A}_P, \fml{Z}_P$ and $\fml{I}_P$.
        
        \item $C = C_P = \set{\alpha_i : a_i \middle| i = 1:n}$ is a set of probabilistic atomic choices and $\delta C_P$ the set of associated disjunctions, $F = F_P$ is a set of (common) facts and $R = R_P$ is a set of (common) rules.
        
        \item The \textbf{stable models} of $P = C \land F \land R$ are the stable models of $\delta P = \delta C + F + R$ and denoted $\fml{S} = \fml{S}_P$.
    \end{itemize}
\end{frame}

\begin{frame}    
    \note{A model x has lower and upper "bounds".}
    \begin{itemize}
        \item \textbf{Proposition.} Let $x\in\fml{I}$ be an interpretation and $\lset{x} = \set{s\in \fml{S} \middle| s \subseteq x}$ and $\uset{x} = \set{s\in \fml{S} \middle| x \subseteq s}$. Exactly one of the following cases takes place 
        \begin{enumerate}
            %
            \item\label{prop:lucases.a} $\lset{x} = \set{x} = \uset{x}$. If $a \in \lset{x}$ and $b \in \uset{x}$ then $a \subseteq b$. Since stable models are minimal must be $a = b = x$ and $x$ is a stable model.
            %
            \item\label{prop:lucases.b} $\lset{x} \neq \emptyset \land \uset{x} = \emptyset$. 
            %
            \item\label{prop:lucases.c} $\lset{x} = \emptyset \land \uset{x} \neq \emptyset$.
            %
            \item\label{prop:lucases.d} $\lset{x} = \emptyset = \uset{x}$. 
        \end{enumerate}
    \end{itemize}
\end{frame}

\begin{frame}
    \note{Total choice are key to define probability of a clause.}
    \begin{itemize}
        \item The probabilistic facts $C$ define a set $\Theta = \Theta_C$ of \textbf{total choices}, with $2^n$ elements, each one a set $\theta = \set{c_1, \ldots, c_n}$ where $c_i$ is either $a_i$ or $\neg a_i$.  
        
        \item For each stable model $s\in\fml{S}$ let $\theta_s$ be the unique \textbf{total choice} contained in $s$ and $\fml{S}_\theta \subseteq \fml{S}$ the set of stable models that contains $\theta$.
        
        \item Define 
        \begin{equation}
            p\at{\theta} = \prod_{a_i \in \theta}\alpha_i \prod_{\neg a_i \in \theta}\co{\alpha_i}.\label{eq:prob.tc}
        \end{equation}
    \end{itemize}
\end{frame}


\begin{frame}
    \note{Relate stable models with Sato's probabilistic semantics}
    \begin{quotation}
        The problem we address is how to \textbf{assign probabilities to observations} given that a total choice might entail zero or many stable models \emph{i.e.} How to assign probabilities to the stable models of $\fml{S}_\theta$ when $\envert{\fml{S}_\theta} \not= 1$?
    \end{quotation}
\end{frame}

\begin{frame}
    \note{There are some problems}
    
    As it turns out, it is quite easy to come out with a program from which result no single probability distribution. For example
    $$
    \begin{aligned}
        0.3:a,& \cr 
        b \lor c \larr& a.
    \end{aligned}
    $$
    has three stable models
    $$
    \begin{aligned}
        s_1 &= \set{\neg a} \cr
        s_2 &= \set{a, b} \cr
        s_3 &= \set{a, c}
    \end{aligned}
    $$
    and while $p\at{\set{\neg a}} = 0.7$ is quite natural, we have no further information to support the choice of a singular $\alpha\in\intcc{0,1}$ in the assignment 
    $$
    \begin{aligned}
        p\at{\set{a, b}} &= 0.3 \alpha \cr
        p\at{\set{a, c}} &= 0.3 \co{\alpha}
    \end{aligned}
    $$
\end{frame}

\begin{frame}
    
    Next we try to formalize the possible configurations of this scenario. Consider the ASP program $P = C \land F \land R$ with total choices $\Theta $ and stable models $\fml{S}$. Let $d : \fml{S} \to \intcc{0,1}$ such that $\sum_{s\in\fml{S}_\theta} d\at{s} = 1$. 
\end{frame}

\begin{frame}
    
    \begin{enumerate}
        \item For each $z\in\fml{Z}$ only one of the following cases takes place 
        \begin{enumerate}
            \item $z$ is inconsistent. Then \textbf{define}
            \begin{equation}
                w_d\at{x} = 0.\label{def:w.inconsistent}
            \end{equation}
            %
            \item $z$ is an interpretation and $\lset{z} = \set{z} = \uset{x}$. Then $z = s$ is a stable model and \textbf{define}
            \begin{equation}
                w_d\at{z} = w\at{s} = d\at{s} p\at{\theta_s}.\label{eq:prob.sm}
            \end{equation}
            %
            \item $z$ is an interpretation and $\lset{z} \neq \emptyset \land \uset{x} = \emptyset$. Then \textbf{define} 
            \begin{equation}
                w_d\at{z} = \sum_{s \in \lset{z}} w_d\at{s}.\label{def:w.disj}
            \end{equation}
            %
            \item $z$ is an interpretation and $\lset{z} = \emptyset \land \uset{z} \neq \emptyset$. Then \textbf{define} 
            \begin{equation}
                w_d\at{z} = \prod_{s \in \uset{z}} w_d\at{s}.\label{def:w.conj}
            \end{equation}
            %
            \item $z$ is an interpretation and $\lset{z} = \emptyset \land \uset{z} = \emptyset$. Then \textbf{define} 
            \begin{equation}
                w_d\at{z} = 0.\label{def:w.empty}
            \end{equation}
        \end{enumerate}
        %
        \item The last point defines a ``weight'' function on the observations that depends not only on the total choices and stable models of a PASP but also on a certain function $d$ that must respect some conditions. To simplify the notation we use the subscript in $w_d$ only when necessary.
        %
        \item At first, it may seem counter-intuitive that $w\at{\emptyset} = \sum_{s\in\fml{S}} w\at{s}$ is the largest ``weight'' in the lattice. But $\emptyset$, as an interpretation, sets zero restrictions on the ``compatible'' stable models. The ``complement'' of $\bot = \emptyset$ is the \emph{maximal inconsistent} observation $\top = \fml{A} \cup \set{\neg a \middle| a \in \fml{A}}$.
        %
        \item \textbf{We haven't yet defined a probability measure.} To do so we must define a set of samples $\Omega$, a set of events $F\subseteq \pset{\Omega}$ and a function $P:F\to\intcc{0,1}$ such that:
        \begin{enumerate}
            \item $P\at{E} \in \intcc{0, 1}$ for any $E \in F$.
            \item $P\at{\Omega} = 1$.
            \item if $E_1 \cap E_2 = \emptyset$ then $P\at{E_1 \cup E_2} = P\at{E_1} + P\at{E_2}$. 
        \end{enumerate} 
        %
        \item In the following, assume that the stable models are iid.
        %
        \item Let the sample space $\Omega = \fml{Z}$ and the event space $F = \pset{\Omega}$. Define $Z = \sum_{\zeta\in\fml{Z}} w\at{\zeta}$ and
        \begin{equation}
            P\at{z} = \frac{w\at{z}}{Z}, z \in \Omega \label{eq:def.prob}
        \end{equation}
        and
        \begin{equation}
            P\at{E} = \sum_{x\in E} P\at{x}, E \subseteq \Omega. \label{eq:def.prob.event}
        \end{equation}
        Now:
        \begin{enumerate}
            \item $P(E) \in \intcc{0,1}$ results directly from the definitions of $P$ and $w$.
            \item $P\at{\Omega} = 1$ also results directly from the definitions.
            \item Consider two disjunct events $A, B \subset \Omega \land A \cap B = \emptyset$. Then 
            $$
            \begin{aligned}
                P\at{A \cup B} &= \sum_{x \in A \cup B} P\at{x} \cr
                    &= \sum_{x \in A} P\at{x} + \sum_{x \in B} P\at{x} - \sum_{x \in A \cap B} P\at{x}  \cr
                    &= \sum_{x \in A} P\at{x} + \sum_{x \in B} P\at{x} &\text{because}~A\cap B = \emptyset \cr
                    &= P\at{A} + P\at{B}.
            \end{aligned}
            $$
            \item So $\del{\Omega = \fml{Z}, F = \pset{\Omega}, P}$ is a probability space. {$\blacksquare$}
        \end{enumerate}
    \end{enumerate}
    
\end{frame}

\section{Cases \& Examples}
\subsection{Programs with disjunctive heads}

\begin{frame}
    
    Consider the program:
    $$
    \begin{aligned}
    c_1 &= a \lor \neg a, \cr
    c_2 &= b \lor c \larr a.
    \end{aligned}
    $$
    This program has two total choices,
    $$
    \begin{aligned}
    \theta_1&= \set{ \neg a }, \cr
    \theta_2&= \set{ a }.
    \end{aligned}
    $$
    and three stable models,
    $$
    \begin{aligned}
    s_1 &= \set{ \neg a }, \cr
    s_2 &= \set{ a, b }, \cr
    s_3 &= \set{ a, c }.
    \end{aligned}
    $$
\end{frame}


\begin{frame}
    Suppose that we add an annotation $\alpha:a$, which entails $\co{\alpha}:\neg a$. This is enough to get $w\at{s_1} = \co{\alpha}$ but, on the absence of further information, no fixed probability can be assigned to either model $s_2, s_3$ except that the respective sum must be $\alpha$. So, expressing our lack of knowledge using a parameter $d \in \intcc{0, 1}$ we get:
    $$
    \begin{cases}
        w\at{s_1 } = &\co{\alpha}\cr
        w\at{s_2 } = &d\alpha\cr
        w\at{s_3} = &\co{d}\alpha.
    \end{cases}
    $$
\end{frame}

\begin{frame}
    
    Now consider all the interpretations for this program:
    \begin{center}
    \begin{tikzpicture}
        %\draw [help lines] grid (11,3);
        %
        \node [draw, circle] (E) at (5.5,0) {$\emptyset$};
        %
        \node [draw, circle] (a) at (2,2) {$a$};
        \node [draw, circle] (b) at (3,2) {$b$};
        \node [draw, circle] (c) at (4,2) {$c$};
        \node [fill=gray!50] (A) at (9,2) {$\co{a}$};
        \node (B) at (8,2) {$\co{b}$};
        \node (C) at (7,2) {$\co{c}$};
        %
        \node [fill=gray!50] (ab) at (0,4) {$ab$};
        \node [fill=gray!50] (ac) at (1,4) {$ac$};
        \node (aB) at (2,4) {$a\co{b}$};
        \node (aC) at (3,4) {$a\co{c}$};
        \node [draw] (Ab) at (4,4) {$\co{a}b$};
        \node [draw] (Ac) at (5,4) {$\co{a}c$};
        \node [draw] (AB) at (6,4) {$\co{a}\co{b}$};
        \node [draw] (AC) at (7,4) {$\co{a}\co{c}$};
        \node [fill=white] (bc) at (10,4) {$bc$};
        \node [fill=white] (bC) at (11,4) {$b\co{c}$};
        \node [fill=white] (Bc) at (12,4) {$\co{b}c$};
        \node [fill=white] (BC) at (13,4) {$\co{b}\co{c}$};
        %
        \node [draw] (abc) at (0.5,6) {$abc$};
        \node (abC) at (3,6) {$ab\co{c}$};
        \node (aBc) at (4,6) {$a\co{b}c$};
        \node (aBC) at (5,6) {$a\co{b}\co{c}$};
        \node [draw] (Abc) at (7,6) {$\co{a}bc$};
        \node [draw] (AbC) at (8,6) {$\co{a}b\co{c}$};
        \node [draw] (ABc) at (9,6) {$\co{a}\co{b}c$};
        \node [draw] (ABC) at (10,6) {$\co{a}\co{b}\co{c}$};
        %
        \draw [->] (ab) to [out=270,in=180] (E);
        \draw [->] (ab) to [out=270,in=90] (a);
        \draw [->] (ab) to [out=270,in=90] (b);
        \draw [->] (ab) to [out=90,in=270] (abc);
        %
        \draw [->] (ac) to [out=270,in=180] (E);
        \draw [->] (ac) to [out=270,in=90] (a);
        \draw [->] (ac) to [out=270,in=90] (c);
        \draw [->] (ac) to [out=90,in=270] (abc);
        %
        \draw [->] (A) to [out=270,in=0] (E);
        %
        \draw [->] (A) to [out=90,in=270] (Abc);
        \draw [->] (A) to [out=90,in=270] (AbC);
        \draw [->] (A) to [out=90,in=270] (ABc);
        \draw [->] (A) to [out=90,in=270] (ABC);
        %
        \draw [->] (A) to [out=90,in=270] (Ab);
        \draw [->] (A) to [out=90,in=270] (Ac);
        \draw [->] (A) to [out=90,in=270] (AB);
        \draw [->] (A) to [out=90,in=270] (AC);
    \end{tikzpicture}    
    \end{center}
\end{frame}

\begin{frame}
    
    In this diagram:
    \begin{itemize}
        \item Negations are represented as \emph{e.g.} $\co{a}$ instead of $\neg a$; Stable models are denoted by shaded nodes as \tikz{\node[fill=gray!50] {$ab$}}.
        
        \item Interpretations in $\lset{x}$ are \emph{e.g.} \tikz{\node[draw, circle] {$a$}} and those in $\uset{x}$ are \emph{e.g.}  \tikz{\node[draw] {$\co{a}b$}}. The remaining are simply denoted by \emph{e.g.}  \tikz{\node {$a\co{b}$}}.
        
        \item The edges connect stable models with related interpretations. Up arrow indicate links to $\uset{s}$ and down arrows to $\lset{s}$.
        
        \item The \emph{weight propagation} sets:
        $$
        \begin{aligned}
            w\at{abc} &= w\at{ab} w\at{ac} =  \alpha^2d\co{d}, \cr
            w\at{\co{a}\cdot\cdot} &= w\at{\neg a} = \co{\alpha}, \cr
            w\at{a} &= w\at{ab} + w\at{ac} = \alpha(d + \co{d}) = \alpha, \cr
            w\at{b} &= w\at{ab} = d\alpha, \cr
            w\at{c} &= w\at{ac} = \co{d}\alpha, \cr
            w\at{\emptyset} &= w\at{ab} + w\at{ac} + w\at{\neg a} = d\alpha + \co{d}\alpha + \co{\alpha} = 1, \cr
            w\at{a\co{b}} &= 0.
        \end{aligned}
        $$
        \item The total weight is
        $$
        \begin{aligned}
            Z   &= w\at{abc} + 8 w\at{\co{a}b}\cr
                &+ w\at{ab} + w\at{ac} + w\at{\co{a}}\cr
                &+ w\at{a}+ w\at{b}+ w\at{c}\cr
                &+ w\at{\emptyset}\cr
                %
                &= - \alpha^{2} d^{2} + \alpha^{2} d + 2 \alpha d - 7 \alpha + 10       
        \end{aligned}
        $$
        \item Now, if $\alpha$ has an annotation to \emph{e.g.} $0.3$ we get
        $$
        Z = - 0.09 d^{2} + 0.69 d + 7.9
        $$ 
        \item Now some statistics are possible. For example we get 
        $$
        P\at{abc \mid \alpha = 0.3} = \frac{0.09 d \left(d - 1\right)}{0.09 d^{2} - 0.69 d - 7.9}
        $$. 
    
        \item This expression can be plotted for $d\in\intcc{0,1}$
        \begin{center}
            \includegraphics[height=15em]{Pabc_alpha03.pdf}
        \end{center} 
        
        \item If a data set $E$ entails \emph{e.g.} $P\at{abc \mid E} = 0.0015$ we can numerically solve
        $$
        \begin{aligned}
            P\at{abc \mid \alpha = 0.3} &= P\at{abc \mid E} \cr
            \iff\cr
            \frac{0.09 d \del{d - 1}}{0.09 d^{2} - 0.69 d - 7.9} &= 0.0015
        \end{aligned}
        $$
        which has two solutions, $d \approx 0.15861$ or $d \approx 0.83138$.
    \end{itemize}
\end{frame}

\subsection{Non-stratified programs}


\begin{frame}
    The following LP is non-stratified, because has a cycle with negated arcs:
    $$
    \begin{aligned}
        c_1 &= a\lor \neg a,\cr
        c_2 &= b \larr \naf c \land \naf a, \cr
        c_3 &= c \larr \naf b.
    \end{aligned}
    $$    
    This program has three stable models
    $$
    \begin{aligned}
    s_1 &= \set{ a, c }, \cr
    s_2 &= \set{ \neg a, b }, \cr
    s_3 &= \set{ \neg a, c }.
    \end{aligned}
    $$
\end{frame}

\begin{frame}    
    The disjunctive clause $a\lor\neg a$ defines a set of \textbf{total choices}
    $$
    \Theta = \set{
        \theta_1 = \set{ a },
        \theta_2 = \set{ \neg a }
    }.
    $$
\end{frame}

\begin{frame}
    
    Looking into probabilistic interpretations of the program and/or its models, we define $\alpha = P\at{\Theta = \theta_1}\in\intcc{0, 1}$ and $P\at{\Theta = \theta_2} = \co{\alpha}$.
    
    Since $s_1$ is the only stable model that results from $\Theta = \theta_1$, it is natural to extend $P\at{ s_1 } = P\at{\Theta = \theta_1}  = \alpha$. However, there is no clear way to assign $P\at{s_2}, P\at{s_3}$ since \emph{both models result from the single total choice} $\Theta = \theta_2$. Clearly, 
    $$P\at{s_2 \mid \Theta} + P\at{s_3 \mid \Theta} =
    \begin{cases}
        0 & \text{if}~\Theta = \theta_1\cr
        1 & \text{if}~\Theta = \theta_2
    \end{cases}
    $$
    but further assumptions are not supported \emph{a priori}. So let's \textbf{parameterize} the equation above,
    $$
    \begin{cases}
        P\at{s_2 \mid \Theta = \theta_2} = &\beta \in \intcc{0, 1} \cr
        P\at{s_3 \mid \Theta = \theta_2} = &\co{\beta},
    \end{cases}
    $$
    in order to explicit our knowledge, or lack of, with numeric values and relations.
\end{frame}


\begin{frame}
    Now we are able to define the \textbf{joint distribution} of the boolean random variables $A,B,C$, :
    
    $$
    \begin{array}{cc|l}
        A, B, C& P & \text{Obs.}\cr
        \hline
        a, \neg b, c & \alpha & s_1, \Theta=\theta_1\cr
        \neg a, b, \neg c & \co{\alpha}\beta  & s_2, \Theta=\theta_2\cr
        \neg a, \neg b, c & \co{\alpha}\co{\beta} & s_3, \Theta=\theta_2\cr
        \ast & 0&\text{not stable models}
    \end{array}
    $$
    where $\alpha, \beta\in\intcc{0,1}$.
\end{frame}

\section{Conclusions}


\begin{frame}
    \begin{itemize}
        \item We can use the basics of probability theory and logic programming to assign explicit \emph{parameterized} probabilities to the (stable) models of a program.
        \item In the covered cases it was possible to define a (parameterized) \emph{family of joint distributions}.
        \item How far this approach can cover all the cases on logic programs is (still) an issue \emph{under investigation}.
        \item However, it is non-restrictive since \emph{no unusual assumptions are made}.
    \end{itemize}
\end{frame}

\section*{ASP \& related definitions}


\begin{frame}
    
    \begin{itemize}
        \item An \deft{atom} is $r(t_1, \ldots t_n)$ where
        \begin{itemize}
            \item $r$ is a $n$-ary predicate symbol and each $t_i$ is a constant or a variable.
            \item A \deft{ground atom} has no variables; A \deft{literal} is either an atom $a$ or a negated atom $\neg a$.
        \end{itemize}
        
        \item An \deft{ASP Program} is a set of \deft{rules} such as $h_1 \vee \cdots \vee h_m \leftarrow b_1 \wedge \cdots \wedge b_n$.
        \begin{itemize}
            \item The \deft{head} of this rule is $h_1 \vee \cdots \vee h_m$, the \deft{body} is $b_1 \wedge \cdots \wedge b_n$ and each $b_i$ is a \deft{subgoal}.
            \item Each $h_i$ is a literal, each subgoal $b_j$ is a literal or a literal preceded by $\naf\;$ and $m + n > 0$.
            \item A \deft{propositional program} has no variables.
            \item A \deft{non-disjunctive rule} has $m \leq 1$; A \deft{normal rule} has $m = 1$; A \deft{constraint} has $m = 0$; A \deft{fact} is a normal rule with $n = 0$.
        \end{itemize}
        
        \item The \deft{Herbrand base} of a program is the set of ground literals that result from combining all the predicates and constants of the program.     
        \begin{itemize}
            \item An \deft{interpretation} is a consistent subset (\emph{i.e.} doesn't contain $\set{a, \neg a}$) of the Herbrand base.
            \item Given an interpretation $I$, a ground literal $a$ is \deft{true}, $I \models a$, if $a \in I$; otherwise the literal is \deft{false}.
            \item A ground subgoal, $\naf b$, where $b$ is a ground literal, is \deft{true}, $I \models \naf b$, if $b \not\in I$; otherwise, if $b \in I$,  it is \deft{false}.
            \item A ground rule $r = h_1 \vee \cdots \vee h_m \leftarrow b_1 \wedge \cdots \wedge b_n$ is \deft{satisfied} by the interpretation $I$, \emph{i.e.} $I \models r$, iff 
            $$
            \forall j \exists i~I \models b_j \implies I \models h_i.
            $$
            \item A \deft{model} of a program is an interpretation that satisfies all its rules. Denote $\fml{M}_P$ the set of all models of $P$.
        \end{itemize}
        
        \item The \deft{dependency graph} of a program is a digraph where:
        \begin{itemize}
            \item Each grounded atom is a node.
            \item For each grounded rule there are edges from the atoms in the body to the atoms in the head.
            \item A \deft{negative edge} results from an atom with $\naf\;$; Otherwise it is a \deft{positive edge}.
            \item An \deft{acyclic program} has an acyclic dependency graph; A \deft{normal program} has only normal rules; A \deft{definite program} is a normal program that doesn't contains $\neg$ neither $\naf\;$.
            \item In the dependency graph of a \deft{stratified program} no cycle contains a negative edge.
            \item \textbf{A stratified program has a single minimal model} that assigns either true or false to each atom.
        \end{itemize}
        \item Every \emph{definite program} has a unique minimal model: its \deft{semantic}.
        \item Programs with negation may have no unique minimal model.
        \item Given a program $P$ and an interpretation $I$, their \deft{reduct}, $P^I$, is the propositional program that results from
        \begin{enumerate}
            \item Removing all the rules with $\naf b$ in the body where $b \in I$.
            \item Removing all the $\naf b$ subgoals from the remaining rules.
        \end{enumerate}
        \item A \deft{stable model} (or \deft{answer set}) of the program $P$ is an interpretation $I$ that is the minimal model of the reduct $P^I$.  
        \item Denote $\fml{S}_P$ the set of all stable models of program $P$. The \deft{semantics} (or \deft{answer sets}) of a program $P$ is the set $\fml{S}_P$.
        \begin{itemize}
            \item Some programs, such as $a \leftarrow \naf a$, have no stable models.
            \item A stable model is an interpretation closed under the rules of the program.
        \end{itemize}
    \end{itemize}
\end{frame}
\end{document}