Blame view

text/00_PASP.tex 23.1 KB
808facfe   Francisco Coelho   Main text adapted...
1
\documentclass{beamer}
b43c061c   Francisco Coelho   rewriting 00_PASP...
2
3
4
5
6

\setbeamertemplate{navigation symbols}{}
\setbeamertemplate{itemize items}[circle]


808facfe   Francisco Coelho   Main text adapted...
7
\usepackage[overridenote]{pdfpc}
b43c061c   Francisco Coelho   rewriting 00_PASP...
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

\usepackage{tikz}

\usepackage{commath}
\usepackage{amssymb}
\usepackage[T1]{fontenc}
\usepackage{hyperref}
\hypersetup{%
  colorlinks=true,
  allcolors=blue,
}
%
% Local commands
%
\newcommand{\todo}[1]{{\color{orange}TODO #1}}
808facfe   Francisco Coelho   Main text adapted...
23
24
25
\newcommand{\naf}{\ensuremath{\sim\!}}
\newcommand{\larr}{\ensuremath{\leftarrow}}
\newcommand{\at}[1]{\ensuremath{\!\del{#1}}}
53b3b48c   Francisco Coelho   Started pre-paper...
26
27
28
29
30
31
\newcommand{\co}[1]{\ensuremath{\overline{#1}}}
\newcommand{\fml}[1]{\ensuremath{{\cal #1}}}
\newcommand{\deft}[1]{\textbf{#1}}
\newcommand{\pset}[1]{\ensuremath{\mathbb{P}\at{#1}}}
\newcommand{\ent}{\ensuremath{\lhd}}
\newcommand{\langof}[1]{\ensuremath{\fml{L}\at{#1}}}
237d62bd   Francisco Coelho   Further rewriting...
32
\newcommand{\uset}[1]{\ensuremath{\left|{#1}\right>}}
53b3b48c   Francisco Coelho   Started pre-paper...
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
\newcommand{\lset}[1]{\ensuremath{\left<{#1}\right|}}

\begin{document}

\begin{frame}
The goal of this text is to \textbf{explore how ASP programs with probabilistic facts} can lead to characterizations of the \textbf{joint distributions} of the program's atoms.
\end{frame}

\section{Introduction}


\begin{frame}{Notation}
    \note{
- We start with **common notations and assumptions** such as:\\
- Hi\\
- There\\
- And another note}
    \begin{itemize}
        \item The \textbf{complement} of $x$ is $\co{x} = 1 - x$.
        \item A \textbf{probabilistic atomic choice} $\alpha:a$ defines the disjunction $a \lor \neg a$ and assigns probabilities $P\at{a} = \alpha, P\at{\neg a} = \co{\alpha}$. 
        \item $\delta a$ denotes the disjunction $a \lor \neg a$ associated to the probabilistic choice $\alpha : a$ and $\delta\! \set{\alpha: a, a \in A} = \set{\delta a, a \in A}$ for any set of atoms $A$.
        \item Start with the \textbf{closed world assumption}, where $\naf x \models \neg x$.
        \item Also assume that \textbf{probabilistic choices} and \textbf{subgoals} are iid.
    \end{itemize}
\end{frame}
237d62bd   Francisco Coelho   Further rewriting...
58

808facfe   Francisco Coelho   Main text adapted...
59
\begin{frame}    
808facfe   Francisco Coelho   Main text adapted...
60
61
62
63
64
65
    \note{Next, we consider the following **general setting**}
    \begin{itemize}        
        \item  Let $\fml{A}$ be a set of \textbf{atoms}, $\fml{Z}$ the respective set of \textbf{observations},
        $\fml{Z} = \set{z = \alpha \cup \nu \middle| \alpha \subseteq \fml{A} \land \nu \subseteq \set{\neg a \middle| a \in \fml{A}} }$ and $\fml{I}$ the set of consistent observations or \textbf{interpretations}, $\fml{I} = \set{z \in \fml{Z} \middle| \forall a \in \fml{A}~\abs{ \set{a, \neg a} \cap z} \leq 1}$.
        
        \item A \textbf{PASP program} is $P = C \land F \land R$ and the sets of atoms, observations and interpretations of program $P$ are denoted $\fml{A}_P, \fml{Z}_P$ and $\fml{I}_P$.
53b3b48c   Francisco Coelho   Started pre-paper...
66
67
        
        \item $C = C_P = \set{\alpha_i : a_i \middle| i = 1:n}$ is a set of probabilistic atomic choices and $\delta C_P$ the set of associated disjunctions, $F = F_P$ is a set of (common) facts and $R = R_P$ is a set of (common) rules.
808facfe   Francisco Coelho   Main text adapted...
68
69
70
71
72
73
74
75
76
77
78
79
        
        \item The \textbf{stable models} of $P = C \land F \land R$ are the stable models of $\delta P = \delta C + F + R$ and denoted $\fml{S} = \fml{S}_P$.
    \end{itemize}
\end{frame}

\begin{frame}    
    \note{A model x has lower and upper "bounds".}
    \begin{itemize}
        \item \textbf{Proposition.} Let $x\in\fml{I}$ be an interpretation and $\lset{x} = \set{s\in \fml{S} \middle| s \subseteq x}$ and $\uset{x} = \set{s\in \fml{S} \middle| x \subseteq s}$. Exactly one of the following cases takes place 
        \begin{enumerate}
            %
            \item\label{prop:lucases.a} $\lset{x} = \set{x} = \uset{x}$. If $a \in \lset{x}$ and $b \in \uset{x}$ then $a \subseteq b$. Since stable models are minimal must be $a = b = x$ and $x$ is a stable model.
b43c061c   Francisco Coelho   rewriting 00_PASP...
80
            %
808facfe   Francisco Coelho   Main text adapted...
81
82
83
            \item\label{prop:lucases.b} $\lset{x} \neq \emptyset \land \uset{x} = \emptyset$. 
            %
            \item\label{prop:lucases.c} $\lset{x} = \emptyset \land \uset{x} \neq \emptyset$.
b43c061c   Francisco Coelho   rewriting 00_PASP...
84
            %
241956f9   Francisco Coelho   continuing 00_PASP
85
            \item\label{prop:lucases.d} $\lset{x} = \emptyset = \uset{x}$. 
eb584496   Francisco Coelho   presentation, as ...
86
87
88
89
        \end{enumerate}
    \end{itemize}
\end{frame}

b43c061c   Francisco Coelho   rewriting 00_PASP...
90
\begin{frame}
eb584496   Francisco Coelho   presentation, as ...
91
92
    \note{Total choice are key to define probability of a clause.}
    \begin{itemize}
b43c061c   Francisco Coelho   rewriting 00_PASP...
93
94
95
        \item The probabilistic facts $C$ define a set $\Theta = \Theta_C$ of \textbf{total choices}, with $2^n$ elements, each one a set $\theta = \set{c_1, \ldots, c_n}$ where $c_i$ is either $a_i$ or $\neg a_i$.  
        
        \item For each stable model $s\in\fml{S}$ let $\theta_s$ be the unique \textbf{total choice} contained in $s$ and $\fml{S}_\theta \subseteq \fml{S}$ the set of stable models that contains $\theta$.
eb584496   Francisco Coelho   presentation, as ...
96
        
808facfe   Francisco Coelho   Main text adapted...
97
98
        \item Define 
        \begin{equation}
eb584496   Francisco Coelho   presentation, as ...
99
100
101
            p\at{\theta} = \prod_{a_i \in \theta}\alpha_i \prod_{\neg a_i \in \theta}\co{\alpha_i}.\label{eq:prob.tc}
        \end{equation}
    \end{itemize}
808facfe   Francisco Coelho   Main text adapted...
102
103
104
105
106
\end{frame}


\begin{frame}
    \note{Relate stable models with Sato's probabilistic semantics}
eb584496   Francisco Coelho   presentation, as ...
107
    \begin{quotation}
b43c061c   Francisco Coelho   rewriting 00_PASP...
108
        The problem we address is how to \textbf{assign probabilities to observations} given that a total choice might entail zero or many stable models \emph{i.e.} How to assign probabilities to the stable models of $\fml{S}_\theta$ when $\envert{\fml{S}_\theta} \not= 1$?
808facfe   Francisco Coelho   Main text adapted...
109
    \end{quotation}
b43c061c   Francisco Coelho   rewriting 00_PASP...
110
111
112
\end{frame}

\begin{frame}
53b3b48c   Francisco Coelho   Started pre-paper...
113
    \note{There are some problems}
b43c061c   Francisco Coelho   rewriting 00_PASP...
114
    
53b3b48c   Francisco Coelho   Started pre-paper...
115
    As it turns out, it is quite easy to come out with a program from which result no single probability distribution. For example
b43c061c   Francisco Coelho   rewriting 00_PASP...
116
    $$
53b3b48c   Francisco Coelho   Started pre-paper...
117
    \begin{aligned}
b43c061c   Francisco Coelho   rewriting 00_PASP...
118
119
120
        0.3:a,& \cr 
        b \lor c \larr& a.
    \end{aligned}
808facfe   Francisco Coelho   Main text adapted...
121
    $$
b43c061c   Francisco Coelho   rewriting 00_PASP...
122
    has three stable models
808facfe   Francisco Coelho   Main text adapted...
123
    $$
b43c061c   Francisco Coelho   rewriting 00_PASP...
124
    \begin{aligned}
eb584496   Francisco Coelho   presentation, as ...
125
        s_1 &= \set{\neg a} \cr
b43c061c   Francisco Coelho   rewriting 00_PASP...
126
        s_2 &= \set{a, b} \cr
eb584496   Francisco Coelho   presentation, as ...
127
        s_3 &= \set{a, c}
b43c061c   Francisco Coelho   rewriting 00_PASP...
128
129
    \end{aligned}
    $$
53b3b48c   Francisco Coelho   Started pre-paper...
130
    and while $p\at{\set{\neg a}} = 0.7$ is quite natural, we have no further information to support the choice of a singular $\alpha\in\intcc{0,1}$ in the assignment 
b43c061c   Francisco Coelho   rewriting 00_PASP...
131
    $$
53b3b48c   Francisco Coelho   Started pre-paper...
132
    \begin{aligned}
b43c061c   Francisco Coelho   rewriting 00_PASP...
133
        p\at{\set{a, b}} &= 0.3 \alpha \cr
53b3b48c   Francisco Coelho   Started pre-paper...
134
135
        p\at{\set{a, c}} &= 0.3 \co{\alpha}
    \end{aligned}
b43c061c   Francisco Coelho   rewriting 00_PASP...
136
137
138
139
140
    $$
\end{frame}

\begin{frame}
    
53b3b48c   Francisco Coelho   Started pre-paper...
141
    Next we try to formalize the possible configurations of this scenario. Consider the ASP program $P = C \land F \land R$ with total choices $\Theta $ and stable models $\fml{S}$. Let $d : \fml{S} \to \intcc{0,1}$ such that $\sum_{s\in\fml{S}_\theta} d\at{s} = 1$. 
b43c061c   Francisco Coelho   rewriting 00_PASP...
142
143
144
145
146
\end{frame}

\begin{frame}
    
    \begin{enumerate}
53b3b48c   Francisco Coelho   Started pre-paper...
147
        \item For each $z\in\fml{Z}$ only one of the following cases takes place 
b43c061c   Francisco Coelho   rewriting 00_PASP...
148
149
150
151
152
153
154
155
156
157
158
159
        \begin{enumerate}
            \item $z$ is inconsistent. Then \textbf{define}
            \begin{equation}
                w_d\at{x} = 0.\label{def:w.inconsistent}
            \end{equation}
            %
            \item $z$ is an interpretation and $\lset{z} = \set{z} = \uset{x}$. Then $z = s$ is a stable model and \textbf{define}
            \begin{equation}
                w_d\at{z} = w\at{s} = d\at{s} p\at{\theta_s}.\label{eq:prob.sm}
            \end{equation}
            %
            \item $z$ is an interpretation and $\lset{z} \neq \emptyset \land \uset{x} = \emptyset$. Then \textbf{define} 
53b3b48c   Francisco Coelho   Started pre-paper...
160
            \begin{equation}
b43c061c   Francisco Coelho   rewriting 00_PASP...
161
162
163
164
                w_d\at{z} = \sum_{s \in \lset{z}} w_d\at{s}.\label{def:w.disj}
            \end{equation}
            %
            \item $z$ is an interpretation and $\lset{z} = \emptyset \land \uset{z} \neq \emptyset$. Then \textbf{define} 
808facfe   Francisco Coelho   Main text adapted...
165
            \begin{equation}
b43c061c   Francisco Coelho   rewriting 00_PASP...
166
167
168
                w_d\at{z} = \prod_{s \in \uset{z}} w_d\at{s}.\label{def:w.conj}
            \end{equation}
            %
53b3b48c   Francisco Coelho   Started pre-paper...
169
            \item $z$ is an interpretation and $\lset{z} = \emptyset \land \uset{z} = \emptyset$. Then \textbf{define} 
b43c061c   Francisco Coelho   rewriting 00_PASP...
170
171
            \begin{equation}
                w_d\at{z} = 0.\label{def:w.empty}
808facfe   Francisco Coelho   Main text adapted...
172
            \end{equation}
b43c061c   Francisco Coelho   rewriting 00_PASP...
173
        \end{enumerate}
241956f9   Francisco Coelho   continuing 00_PASP
174
        %
808facfe   Francisco Coelho   Main text adapted...
175
        \item The last point defines a ``weight'' function on the observations that depends not only on the total choices and stable models of a PASP but also on a certain function $d$ that must respect some conditions. To simplify the notation we use the subscript in $w_d$ only when necessary.
b43c061c   Francisco Coelho   rewriting 00_PASP...
176
        %
237d62bd   Francisco Coelho   Further rewriting...
177
178
179
        \item At first, it may seem counter-intuitive that $w\at{\emptyset} = \sum_{s\in\fml{S}} w\at{s}$ is the largest ``weight'' in the lattice. But $\emptyset$, as an interpretation, sets zero restrictions on the ``compatible'' stable models. The ``complement'' of $\bot = \emptyset$ is the \emph{maximal inconsistent} observation $\top = \fml{A} \cup \set{\neg a \middle| a \in \fml{A}}$.
        %
        \item \textbf{We haven't yet defined a probability measure.} To do so we must define a set of samples $\Omega$, a set of events $F\subseteq \pset{\Omega}$ and a function $P:F\to\intcc{0,1}$ such that:
53b3b48c   Francisco Coelho   Started pre-paper...
180
        \begin{enumerate}
237d62bd   Francisco Coelho   Further rewriting...
181
            \item $P\at{E} \in \intcc{0, 1}$ for any $E \in F$.
b43c061c   Francisco Coelho   rewriting 00_PASP...
182
183
            \item $P\at{\Omega} = 1$.
            \item if $E_1 \cap E_2 = \emptyset$ then $P\at{E_1 \cup E_2} = P\at{E_1} + P\at{E_2}$. 
241956f9   Francisco Coelho   continuing 00_PASP
184
        \end{enumerate} 
b43c061c   Francisco Coelho   rewriting 00_PASP...
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
        %
        \item In the following, assume that the stable models are iid.
        %
        \item Let the sample space $\Omega = \fml{Z}$ and the event space $F = \pset{\Omega}$. Define $Z = \sum_{\zeta\in\fml{Z}} w\at{\zeta}$ and
        \begin{equation}
            P\at{z} = \frac{w\at{z}}{Z}, z \in \Omega \label{eq:def.prob}
        \end{equation}
        and
        \begin{equation}
            P\at{E} = \sum_{x\in E} P\at{x}, E \subseteq \Omega. \label{eq:def.prob.event}
        \end{equation}
        Now:
        \begin{enumerate}
            \item $P(E) \in \intcc{0,1}$ results directly from the definitions of $P$ and $w$.
            \item $P\at{\Omega} = 1$ also results directly from the definitions.
            \item Consider two disjunct events $A, B \subset \Omega \land A \cap B = \emptyset$. Then 
            $$
            \begin{aligned}
                P\at{A \cup B} &= \sum_{x \in A \cup B} P\at{x} \cr
                    &= \sum_{x \in A} P\at{x} + \sum_{x \in B} P\at{x} - \sum_{x \in A \cap B} P\at{x}  \cr
                    &= \sum_{x \in A} P\at{x} + \sum_{x \in B} P\at{x} &\text{because}~A\cap B = \emptyset \cr
                    &= P\at{A} + P\at{B}.
            \end{aligned}
            $$
            \item So $\del{\Omega = \fml{Z}, F = \pset{\Omega}, P}$ is a probability space. {$\blacksquare$}
        \end{enumerate}
    \end{enumerate}
    
\end{frame}

\section{Cases \& Examples}
53b3b48c   Francisco Coelho   Started pre-paper...
216
\subsection{Programs with disjunctive heads}
b43c061c   Francisco Coelho   rewriting 00_PASP...
217
218

\begin{frame}
53b3b48c   Francisco Coelho   Started pre-paper...
219
220
    
    Consider the program:
b43c061c   Francisco Coelho   rewriting 00_PASP...
221
222
223
224
225
226
227
    $$
    \begin{aligned}
    c_1 &= a \lor \neg a, \cr
    c_2 &= b \lor c \larr a.
    \end{aligned}
    $$
    This program has two total choices,
241956f9   Francisco Coelho   continuing 00_PASP
228
229
230
231
    $$
    \begin{aligned}
    \theta_1&= \set{ \neg a }, \cr
    \theta_2&= \set{ a }.
53b3b48c   Francisco Coelho   Started pre-paper...
232
    \end{aligned}
241956f9   Francisco Coelho   continuing 00_PASP
233
234
    $$
    and three stable models,
53b3b48c   Francisco Coelho   Started pre-paper...
235
236
    $$
    \begin{aligned}
241956f9   Francisco Coelho   continuing 00_PASP
237
238
    s_1 &= \set{ \neg a }, \cr
    s_2 &= \set{ a, b }, \cr
53b3b48c   Francisco Coelho   Started pre-paper...
239
    s_3 &= \set{ a, c }.
241956f9   Francisco Coelho   continuing 00_PASP
240
241
    \end{aligned}
    $$
53b3b48c   Francisco Coelho   Started pre-paper...
242
243
244
\end{frame}


241956f9   Francisco Coelho   continuing 00_PASP
245
246
\begin{frame}
    Suppose that we add an annotation $\alpha:a$, which entails $\co{\alpha}:\neg a$. This is enough to get $w\at{s_1} = \co{\alpha}$ but, on the absence of further information, no fixed probability can be assigned to either model $s_2, s_3$ except that the respective sum must be $\alpha$. So, expressing our lack of knowledge using a parameter $d \in \intcc{0, 1}$ we get:
53b3b48c   Francisco Coelho   Started pre-paper...
247
    $$
241956f9   Francisco Coelho   continuing 00_PASP
248
    \begin{cases}
53b3b48c   Francisco Coelho   Started pre-paper...
249
        w\at{s_1 } = &\co{\alpha}\cr
241956f9   Francisco Coelho   continuing 00_PASP
250
251
252
        w\at{s_2 } = &d\alpha\cr
        w\at{s_3} = &\co{d}\alpha.
    \end{cases}
53b3b48c   Francisco Coelho   Started pre-paper...
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
    $$
\end{frame}

\begin{frame}
    
    Now consider all the interpretations for this program:
    \begin{center}
    \begin{tikzpicture}
        %\draw [help lines] grid (11,3);
        %
        \node [draw, circle] (E) at (5.5,0) {$\emptyset$};
        %
        \node [draw, circle] (a) at (2,2) {$a$};
        \node [draw, circle] (b) at (3,2) {$b$};
        \node [draw, circle] (c) at (4,2) {$c$};
        \node [fill=gray!50] (A) at (9,2) {$\co{a}$};
241956f9   Francisco Coelho   continuing 00_PASP
269
270
271
        \node (B) at (8,2) {$\co{b}$};
        \node (C) at (7,2) {$\co{c}$};
        %
237d62bd   Francisco Coelho   Further rewriting...
272
        \node [fill=gray!50] (ab) at (0,4) {$ab$};
241956f9   Francisco Coelho   continuing 00_PASP
273
        \node [fill=gray!50] (ac) at (1,4) {$ac$};
237d62bd   Francisco Coelho   Further rewriting...
274
        \node (aB) at (2,4) {$a\co{b}$};
241956f9   Francisco Coelho   continuing 00_PASP
275
276
        \node (aC) at (3,4) {$a\co{c}$};
        \node [draw] (Ab) at (4,4) {$\co{a}b$};
53b3b48c   Francisco Coelho   Started pre-paper...
277
278
279
        \node [draw] (Ac) at (5,4) {$\co{a}c$};
        \node [draw] (AB) at (6,4) {$\co{a}\co{b}$};
        \node [draw] (AC) at (7,4) {$\co{a}\co{c}$};
241956f9   Francisco Coelho   continuing 00_PASP
280
281
282
283
284
285
286
287
288
        \node [fill=white] (bc) at (10,4) {$bc$};
        \node [fill=white] (bC) at (11,4) {$b\co{c}$};
        \node [fill=white] (Bc) at (12,4) {$\co{b}c$};
        \node [fill=white] (BC) at (13,4) {$\co{b}\co{c}$};
        %
        \node [draw] (abc) at (0.5,6) {$abc$};
        \node (abC) at (3,6) {$ab\co{c}$};
        \node (aBc) at (4,6) {$a\co{b}c$};
        \node (aBC) at (5,6) {$a\co{b}\co{c}$};
237d62bd   Francisco Coelho   Further rewriting...
289
290
291
        \node [draw] (Abc) at (7,6) {$\co{a}bc$};
        \node [draw] (AbC) at (8,6) {$\co{a}b\co{c}$};
        \node [draw] (ABc) at (9,6) {$\co{a}\co{b}c$};
241956f9   Francisco Coelho   continuing 00_PASP
292
        \node [draw] (ABC) at (10,6) {$\co{a}\co{b}\co{c}$};
237d62bd   Francisco Coelho   Further rewriting...
293
294
295
296
297
        %
        \draw [->] (ab) to [out=270,in=180] (E);
        \draw [->] (ab) to [out=270,in=90] (a);
        \draw [->] (ab) to [out=270,in=90] (b);
        \draw [->] (ab) to [out=90,in=270] (abc);
241956f9   Francisco Coelho   continuing 00_PASP
298
299
300
301
302
        %
        \draw [->] (ac) to [out=270,in=180] (E);
        \draw [->] (ac) to [out=270,in=90] (a);
        \draw [->] (ac) to [out=270,in=90] (c);
        \draw [->] (ac) to [out=90,in=270] (abc);
53b3b48c   Francisco Coelho   Started pre-paper...
303
        %
b43c061c   Francisco Coelho   rewriting 00_PASP...
304
        \draw [->] (A) to [out=270,in=0] (E);
237d62bd   Francisco Coelho   Further rewriting...
305
        %
b43c061c   Francisco Coelho   rewriting 00_PASP...
306
307
308
        \draw [->] (A) to [out=90,in=270] (Abc);
        \draw [->] (A) to [out=90,in=270] (AbC);
        \draw [->] (A) to [out=90,in=270] (ABc);
53b3b48c   Francisco Coelho   Started pre-paper...
309
        \draw [->] (A) to [out=90,in=270] (ABC);
b43c061c   Francisco Coelho   rewriting 00_PASP...
310
311
312
313
314
315
        %
        \draw [->] (A) to [out=90,in=270] (Ab);
        \draw [->] (A) to [out=90,in=270] (Ac);
        \draw [->] (A) to [out=90,in=270] (AB);
        \draw [->] (A) to [out=90,in=270] (AC);
    \end{tikzpicture}    
237d62bd   Francisco Coelho   Further rewriting...
316
    \end{center}
53b3b48c   Francisco Coelho   Started pre-paper...
317
318
319
320
321
322
323
324
325
326
327
328
\end{frame}

\begin{frame}
    
    In this diagram:
    \begin{itemize}
        \item Negations are represented as \emph{e.g.} $\co{a}$ instead of $\neg a$; Stable models are denoted by shaded nodes as \tikz{\node[fill=gray!50] {$ab$}}.
        
        \item Interpretations in $\lset{x}$ are \emph{e.g.} \tikz{\node[draw, circle] {$a$}} and those in $\uset{x}$ are \emph{e.g.}  \tikz{\node[draw] {$\co{a}b$}}. The remaining are simply denoted by \emph{e.g.}  \tikz{\node {$a\co{b}$}}.
        
        \item The edges connect stable models with related interpretations. Up arrow indicate links to $\uset{s}$ and down arrows to $\lset{s}$.
        
237d62bd   Francisco Coelho   Further rewriting...
329
        \item The \emph{weight propagation} sets:
b43c061c   Francisco Coelho   rewriting 00_PASP...
330
331
332
        $$
        \begin{aligned}
            w\at{abc} &= w\at{ab} w\at{ac} =  \alpha^2d\co{d}, \cr
237d62bd   Francisco Coelho   Further rewriting...
333
            w\at{\co{a}\cdot\cdot} &= w\at{\neg a} = \co{\alpha}, \cr
b43c061c   Francisco Coelho   rewriting 00_PASP...
334
            w\at{a} &= w\at{ab} + w\at{ac} = \alpha(d + \co{d}) = \alpha, \cr
241956f9   Francisco Coelho   continuing 00_PASP
335
            w\at{b} &= w\at{ab} = d\alpha, \cr
237d62bd   Francisco Coelho   Further rewriting...
336
            w\at{c} &= w\at{ac} = \co{d}\alpha, \cr
241956f9   Francisco Coelho   continuing 00_PASP
337
            w\at{\emptyset} &= w\at{ab} + w\at{ac} + w\at{\neg a} = d\alpha + \co{d}\alpha + \co{\alpha} = 1, \cr
53b3b48c   Francisco Coelho   Started pre-paper...
338
339
340
341
342
343
            w\at{a\co{b}} &= 0.
        \end{aligned}
        $$
        \item The total weight is
        $$
        \begin{aligned}
241956f9   Francisco Coelho   continuing 00_PASP
344
            Z   &= w\at{abc} + 8 w\at{\co{a}b}\cr
53b3b48c   Francisco Coelho   Started pre-paper...
345
                &+ w\at{ab} + w\at{ac} + w\at{\co{a}}\cr
241956f9   Francisco Coelho   continuing 00_PASP
346
                &+ w\at{a}+ w\at{b}+ w\at{c}\cr
53b3b48c   Francisco Coelho   Started pre-paper...
347
348
                &+ w\at{\emptyset}\cr
                %
b43c061c   Francisco Coelho   rewriting 00_PASP...
349
                &= - \alpha^{2} d^{2} + \alpha^{2} d + 2 \alpha d - 7 \alpha + 10       
808facfe   Francisco Coelho   Main text adapted...
350
        \end{aligned}
b43c061c   Francisco Coelho   rewriting 00_PASP...
351
        $$
53b3b48c   Francisco Coelho   Started pre-paper...
352
        \item Now, if $\alpha$ has an annotation to \emph{e.g.} $0.3$ we get
b43c061c   Francisco Coelho   rewriting 00_PASP...
353
        $$
eb584496   Francisco Coelho   presentation, as ...
354
        Z = - 0.09 d^{2} + 0.69 d + 7.9
b43c061c   Francisco Coelho   rewriting 00_PASP...
355
356
357
358
359
        $$ 
        \item Now some statistics are possible. For example we get 
        $$
        P\at{abc \mid \alpha = 0.3} = \frac{0.09 d \left(d - 1\right)}{0.09 d^{2} - 0.69 d - 7.9}
        $$. 
eb584496   Francisco Coelho   presentation, as ...
360
    
b43c061c   Francisco Coelho   rewriting 00_PASP...
361
        \item This expression can be plotted for $d\in\intcc{0,1}$
237d62bd   Francisco Coelho   Further rewriting...
362
        \begin{center}
b43c061c   Francisco Coelho   rewriting 00_PASP...
363
            \includegraphics[height=15em]{Pabc_alpha03.pdf}
808facfe   Francisco Coelho   Main text adapted...
364
        \end{center} 
b43c061c   Francisco Coelho   rewriting 00_PASP...
365
        
53b3b48c   Francisco Coelho   Started pre-paper...
366
367
368
369
        \item If a data set $E$ entails \emph{e.g.} $P\at{abc \mid E} = 0.0015$ we can numerically solve
        $$
        \begin{aligned}
            P\at{abc \mid \alpha = 0.3} &= P\at{abc \mid E} \cr
b43c061c   Francisco Coelho   rewriting 00_PASP...
370
            \iff\cr
53b3b48c   Francisco Coelho   Started pre-paper...
371
372
373
374
            \frac{0.09 d \del{d - 1}}{0.09 d^{2} - 0.69 d - 7.9} &= 0.0015
        \end{aligned}
        $$
        which has two solutions, $d \approx 0.15861$ or $d \approx 0.83138$.
b43c061c   Francisco Coelho   rewriting 00_PASP...
375
    \end{itemize}
53b3b48c   Francisco Coelho   Started pre-paper...
376
377
378
379
\end{frame}

\subsection{Non-stratified programs}

b43c061c   Francisco Coelho   rewriting 00_PASP...
380

53b3b48c   Francisco Coelho   Started pre-paper...
381
382
383
384
\begin{frame}
    The following LP is non-stratified, because has a cycle with negated arcs:
    $$
    \begin{aligned}
b43c061c   Francisco Coelho   rewriting 00_PASP...
385
        c_1 &= a\lor \neg a,\cr
808facfe   Francisco Coelho   Main text adapted...
386
        c_2 &= b \larr \naf c \land \naf a, \cr
237d62bd   Francisco Coelho   Further rewriting...
387
        c_3 &= c \larr \naf b.
b43c061c   Francisco Coelho   rewriting 00_PASP...
388
    \end{aligned}
808facfe   Francisco Coelho   Main text adapted...
389
    $$    
b43c061c   Francisco Coelho   rewriting 00_PASP...
390
    This program has three stable models
808facfe   Francisco Coelho   Main text adapted...
391
    $$
b43c061c   Francisco Coelho   rewriting 00_PASP...
392
    \begin{aligned}
53b3b48c   Francisco Coelho   Started pre-paper...
393
394
395
396
397
398
399
400
401
402
403
404
405
406
    s_1 &= \set{ a, c }, \cr
    s_2 &= \set{ \neg a, b }, \cr
    s_3 &= \set{ \neg a, c }.
    \end{aligned}
    $$
\end{frame}

\begin{frame}    
    The disjunctive clause $a\lor\neg a$ defines a set of \textbf{total choices}
    $$
    \Theta = \set{
        \theta_1 = \set{ a },
        \theta_2 = \set{ \neg a }
    }.
237d62bd   Francisco Coelho   Further rewriting...
407
408
    $$
\end{frame}
53b3b48c   Francisco Coelho   Started pre-paper...
409
410
411
412
413
414
415
416
417
418
419
420
421
422

\begin{frame}
    
    Looking into probabilistic interpretations of the program and/or its models, we define $\alpha = P\at{\Theta = \theta_1}\in\intcc{0, 1}$ and $P\at{\Theta = \theta_2} = \co{\alpha}$.
    
    Since $s_1$ is the only stable model that results from $\Theta = \theta_1$, it is natural to extend $P\at{ s_1 } = P\at{\Theta = \theta_1}  = \alpha$. However, there is no clear way to assign $P\at{s_2}, P\at{s_3}$ since \emph{both models result from the single total choice} $\Theta = \theta_2$. Clearly, 
    $$P\at{s_2 \mid \Theta} + P\at{s_3 \mid \Theta} =
    \begin{cases}
        0 & \text{if}~\Theta = \theta_1\cr
        1 & \text{if}~\Theta = \theta_2
    \end{cases}
    $$
    but further assumptions are not supported \emph{a priori}. So let's \textbf{parameterize} the equation above,
    $$
237d62bd   Francisco Coelho   Further rewriting...
423
    \begin{cases}
53b3b48c   Francisco Coelho   Started pre-paper...
424
425
426
427
428
        P\at{s_2 \mid \Theta = \theta_2} = &\beta \in \intcc{0, 1} \cr
        P\at{s_3 \mid \Theta = \theta_2} = &\co{\beta},
    \end{cases}
    $$
    in order to explicit our knowledge, or lack of, with numeric values and relations.
237d62bd   Francisco Coelho   Further rewriting...
429
\end{frame}
53b3b48c   Francisco Coelho   Started pre-paper...
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454


\begin{frame}
    Now we are able to define the \textbf{joint distribution} of the boolean random variables $A,B,C$, :
    
    $$
    \begin{array}{cc|l}
        A, B, C& P & \text{Obs.}\cr
        \hline
        a, \neg b, c & \alpha & s_1, \Theta=\theta_1\cr
        \neg a, b, \neg c & \co{\alpha}\beta  & s_2, \Theta=\theta_2\cr
        \neg a, \neg b, c & \co{\alpha}\co{\beta} & s_3, \Theta=\theta_2\cr
        \ast & 0&\text{not stable models}
    \end{array}
    $$
    where $\alpha, \beta\in\intcc{0,1}$.
\end{frame}

\section{Conclusions}


\begin{frame}
    \begin{itemize}
        \item We can use the basics of probability theory and logic programming to assign explicit \emph{parameterized} probabilities to the (stable) models of a program.
        \item In the covered cases it was possible to define a (parameterized) \emph{family of joint distributions}.
237d62bd   Francisco Coelho   Further rewriting...
455
        \item How far this approach can cover all the cases on logic programs is (still) an issue \emph{under investigation}.
53b3b48c   Francisco Coelho   Started pre-paper...
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
        \item However, it is non-restrictive since \emph{no unusual assumptions are made}.
    \end{itemize}
\end{frame}

\section*{ASP \& related definitions}


\begin{frame}
    
    \begin{itemize}
        \item An \deft{atom} is $r(t_1, \ldots t_n)$ where
        \begin{itemize}
            \item $r$ is a $n$-ary predicate symbol and each $t_i$ is a constant or a variable.
            \item A \deft{ground atom} has no variables; A \deft{literal} is either an atom $a$ or a negated atom $\neg a$.
        \end{itemize}
        
        \item An \deft{ASP Program} is a set of \deft{rules} such as $h_1 \vee \cdots \vee h_m \leftarrow b_1 \wedge \cdots \wedge b_n$.
        \begin{itemize}
            \item The \deft{head} of this rule is $h_1 \vee \cdots \vee h_m$, the \deft{body} is $b_1 \wedge \cdots \wedge b_n$ and each $b_i$ is a \deft{subgoal}.
            \item Each $h_i$ is a literal, each subgoal $b_j$ is a literal or a literal preceded by $\naf\;$ and $m + n > 0$.
            \item A \deft{propositional program} has no variables.
            \item A \deft{non-disjunctive rule} has $m \leq 1$; A \deft{normal rule} has $m = 1$; A \deft{constraint} has $m = 0$; A \deft{fact} is a normal rule with $n = 0$.
        \end{itemize}
        
        \item The \deft{Herbrand base} of a program is the set of ground literals that result from combining all the predicates and constants of the program.     
        \begin{itemize}
            \item An \deft{interpretation} is a consistent subset (\emph{i.e.} doesn't contain $\set{a, \neg a}$) of the Herbrand base.
            \item Given an interpretation $I$, a ground literal $a$ is \deft{true}, $I \models a$, if $a \in I$; otherwise the literal is \deft{false}.
            \item A ground subgoal, $\naf b$, where $b$ is a ground literal, is \deft{true}, $I \models \naf b$, if $b \not\in I$; otherwise, if $b \in I$,  it is \deft{false}.
            \item A ground rule $r = h_1 \vee \cdots \vee h_m \leftarrow b_1 \wedge \cdots \wedge b_n$ is \deft{satisfied} by the interpretation $I$, \emph{i.e.} $I \models r$, iff 
            $$
            \forall j \exists i~I \models b_j \implies I \models h_i.
            $$
            \item A \deft{model} of a program is an interpretation that satisfies all its rules. Denote $\fml{M}_P$ the set of all models of $P$.
        \end{itemize}
        
        \item The \deft{dependency graph} of a program is a digraph where:
        \begin{itemize}
            \item Each grounded atom is a node.
            \item For each grounded rule there are edges from the atoms in the body to the atoms in the head.
            \item A \deft{negative edge} results from an atom with $\naf\;$; Otherwise it is a \deft{positive edge}.
            \item An \deft{acyclic program} has an acyclic dependency graph; A \deft{normal program} has only normal rules; A \deft{definite program} is a normal program that doesn't contains $\neg$ neither $\naf\;$.
            \item In the dependency graph of a \deft{stratified program} no cycle contains a negative edge.
            \item \textbf{A stratified program has a single minimal model} that assigns either true or false to each atom.
        \end{itemize}
        \item Every \emph{definite program} has a unique minimal model: its \deft{semantic}.
        \item Programs with negation may have no unique minimal model.
        \item Given a program $P$ and an interpretation $I$, their \deft{reduct}, $P^I$, is the propositional program that results from
        \begin{enumerate}
237d62bd   Francisco Coelho   Further rewriting...
505
            \item Removing all the rules with $\naf b$ in the body where $b \in I$.
53b3b48c   Francisco Coelho   Started pre-paper...
506
507
508
509
510
511
512
513
514
515
516
            \item Removing all the $\naf b$ subgoals from the remaining rules.
        \end{enumerate}
        \item A \deft{stable model} (or \deft{answer set}) of the program $P$ is an interpretation $I$ that is the minimal model of the reduct $P^I$.  
        \item Denote $\fml{S}_P$ the set of all stable models of program $P$. The \deft{semantics} (or \deft{answer sets}) of a program $P$ is the set $\fml{S}_P$.
        \begin{itemize}
            \item Some programs, such as $a \leftarrow \naf a$, have no stable models.
            \item A stable model is an interpretation closed under the rules of the program.
        \end{itemize}
    \end{itemize}
\end{frame}
\end{document}
237d62bd   Francisco Coelho   Further rewriting...

53b3b48c   Francisco Coelho   Started pre-paper...

237d62bd   Francisco Coelho   Further rewriting...

53b3b48c   Francisco Coelho   Started pre-paper...

237d62bd   Francisco Coelho   Further rewriting...

53b3b48c   Francisco Coelho   Started pre-paper...

237d62bd   Francisco Coelho   Further rewriting...

808facfe   Francisco Coelho   Main text adapted...

237d62bd   Francisco Coelho   Further rewriting...

808facfe   Francisco Coelho   Main text adapted...

b43c061c   Francisco Coelho   rewriting 00_PASP...

808facfe   Francisco Coelho   Main text adapted...

237d62bd   Francisco Coelho   Further rewriting...

808facfe   Francisco Coelho   Main text adapted...

237d62bd   Francisco Coelho   Further rewriting...

53b3b48c   Francisco Coelho   Started pre-paper...

237d62bd   Francisco Coelho   Further rewriting...

53b3b48c   Francisco Coelho   Started pre-paper...

237d62bd   Francisco Coelho   Further rewriting...

53b3b48c   Francisco Coelho   Started pre-paper...

237d62bd   Francisco Coelho   Further rewriting...

53b3b48c   Francisco Coelho   Started pre-paper...

237d62bd   Francisco Coelho   Further rewriting...

808facfe   Francisco Coelho   Main text adapted...

808facfe   Francisco Coelho   Main text adapted...

237d62bd   Francisco Coelho   Further rewriting...

808facfe   Francisco Coelho   Main text adapted...

53b3b48c   Francisco Coelho   Started pre-paper...

808facfe   Francisco Coelho   Main text adapted...

b43c061c   Francisco Coelho   rewriting 00_PASP...

808facfe   Francisco Coelho   Main text adapted...

b43c061c   Francisco Coelho   rewriting 00_PASP...

808facfe   Francisco Coelho   Main text adapted...

b43c061c   Francisco Coelho   rewriting 00_PASP...

808facfe   Francisco Coelho   Main text adapted...

b43c061c   Francisco Coelho   rewriting 00_PASP...

808facfe   Francisco Coelho   Main text adapted...

b43c061c   Francisco Coelho   rewriting 00_PASP...

808facfe   Francisco Coelho   Main text adapted...

b43c061c   Francisco Coelho   rewriting 00_PASP...

808facfe   Francisco Coelho   Main text adapted...

b43c061c   Francisco Coelho   rewriting 00_PASP...

808facfe   Francisco Coelho   Main text adapted...

b43c061c   Francisco Coelho   rewriting 00_PASP...

808facfe   Francisco Coelho   Main text adapted...

b43c061c   Francisco Coelho   rewriting 00_PASP...

808facfe   Francisco Coelho   Main text adapted...

53b3b48c   Francisco Coelho   Started pre-paper...

808facfe   Francisco Coelho   Main text adapted...

53b3b48c   Francisco Coelho   Started pre-paper...

808facfe   Francisco Coelho   Main text adapted...

b43c061c   Francisco Coelho   rewriting 00_PASP...

808facfe   Francisco Coelho   Main text adapted...

808facfe   Francisco Coelho   Main text adapted...

53b3b48c   Francisco Coelho   Started pre-paper...

808facfe   Francisco Coelho   Main text adapted...

53b3b48c   Francisco Coelho   Started pre-paper...

808facfe   Francisco Coelho   Main text adapted...

53b3b48c   Francisco Coelho   Started pre-paper...

808facfe   Francisco Coelho   Main text adapted...

53b3b48c   Francisco Coelho   Started pre-paper...

808facfe   Francisco Coelho   Main text adapted...

53b3b48c   Francisco Coelho   Started pre-paper...

808facfe   Francisco Coelho   Main text adapted...

53b3b48c   Francisco Coelho   Started pre-paper...

808facfe   Francisco Coelho   Main text adapted...

b43c061c   Francisco Coelho   rewriting 00_PASP...

808facfe   Francisco Coelho   Main text adapted...

53b3b48c   Francisco Coelho   Started pre-paper...

808facfe   Francisco Coelho   Main text adapted...

b43c061c   Francisco Coelho   rewriting 00_PASP...

808facfe   Francisco Coelho   Main text adapted...

b43c061c   Francisco Coelho   rewriting 00_PASP...

808facfe   Francisco Coelho   Main text adapted...

b43c061c   Francisco Coelho   rewriting 00_PASP...

808facfe   Francisco Coelho   Main text adapted...

53b3b48c   Francisco Coelho   Started pre-paper...

808facfe   Francisco Coelho   Main text adapted...

53b3b48c   Francisco Coelho   Started pre-paper...

b43c061c   Francisco Coelho   rewriting 00_PASP...

808facfe   Francisco Coelho   Main text adapted...

b43c061c   Francisco Coelho   rewriting 00_PASP...

808facfe   Francisco Coelho   Main text adapted...

b43c061c   Francisco Coelho   rewriting 00_PASP...

808facfe   Francisco Coelho   Main text adapted...

b43c061c   Francisco Coelho   rewriting 00_PASP...

808facfe   Francisco Coelho   Main text adapted...

53b3b48c   Francisco Coelho   Started pre-paper...

808facfe   Francisco Coelho   Main text adapted...

53b3b48c   Francisco Coelho   Started pre-paper...

808facfe   Francisco Coelho   Main text adapted...

b43c061c   Francisco Coelho   rewriting 00_PASP...

808facfe   Francisco Coelho   Main text adapted...

b43c061c   Francisco Coelho   rewriting 00_PASP...

808facfe   Francisco Coelho   Main text adapted...

b43c061c   Francisco Coelho   rewriting 00_PASP...

808facfe   Francisco Coelho   Main text adapted...

b43c061c   Francisco Coelho   rewriting 00_PASP...

808facfe   Francisco Coelho   Main text adapted...

53b3b48c   Francisco Coelho   Started pre-paper...

808facfe   Francisco Coelho   Main text adapted...

53b3b48c   Francisco Coelho   Started pre-paper...

808facfe   Francisco Coelho   Main text adapted...

53b3b48c   Francisco Coelho   Started pre-paper...

808facfe   Francisco Coelho   Main text adapted...

53b3b48c   Francisco Coelho   Started pre-paper...

808facfe   Francisco Coelho   Main text adapted...

53b3b48c   Francisco Coelho   Started pre-paper...

808facfe   Francisco Coelho   Main text adapted...

53b3b48c   Francisco Coelho   Started pre-paper...

808facfe   Francisco Coelho   Main text adapted...

b43c061c   Francisco Coelho   rewriting 00_PASP...

808facfe   Francisco Coelho   Main text adapted...