variables.c
15.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "fdc_int.h"
#include "values.h"
#include "store.h"
#include "constraints.h"
int fd_variables_count = 0;
__thread fd_int _fd_variables[MAX_VARIABLES];
fd_int *fd__label_vars = 0; // variables subject to labelling
int fd__label_vars_count = 0;
bool *fd__var_labelled; // identifies the variables subject to labelling
fd_int fd_new(int min, int max)
{
fd_int v = malloc(sizeof(struct fd_int));
assert(fd_variables_count < MAX_VARIABLES);
if (v)
{
v->index = fd_variables_count++;
_fd_init_domain(DOMAIN(v), min, max);
v->constraints = NULL;
v->nconstraints = 0;
v->nconnections = 0;
v->epoch = 0;
v->assigned = false;
v->flags = 0;
_fd_variables[v->index] = v;
}
return v;
}
#ifdef SPLITGO
/* create a skeletal copy of VARIABLE */ // XXX: description
fd_int _fd_var_copy(fd_int variable)
{
fd_int v = malloc(sizeof(struct fd_int));
if (v)
{
v->index = variable->index;
#ifdef USE_STORE
// v->domain = variable->domain;
#else
v->domain = 0;
#endif
v->constraints = variable->constraints;
v->nconstraints = variable->nconstraints;
v->nconnections = variable->nconnections;
v->epoch = 0;
v->assigned = false;
v->flags = 0;
}
return v;
}
#endif /* SPLITGO */
#ifndef USE_STORE
void _fd_var_copy_domain(fd_int to, fd_int from)
{
if (DOMAIN(to))
_fd_free_value(DOMAIN(to));
DOMAIN(to) = _fd_val_clone(DOMAIN(from));
}
void _fd_var_copy_domains(fd_int to[], fd_int from[])
{
int i;
for (i = 0; i < fd_variables_count; ++i)
_fd_val_copy(DOMAIN_REF(to[i]), DOMAIN(from[i]));
}
#endif /* USE_STORE */
/* Add the CONSTRAINT to the VARIABLE's constraints. */
void _fd_var_add_constraint(fd_int variable, fd_constraint constraint)
{
// first make sure there is room for one more constraint
/* initially make room for 4 constraints; everytime the number of
constraints reaches a power of 2 (not less than 4), double the
size of the array */
if (variable->nconstraints == 0)
variable->constraints = malloc(4 * sizeof(*variable->constraints)); // XXX
else
{
// a variable may appear more than once in some constraints
// check if this is the case
if (variable->constraints[variable->nconstraints - 1] ==
_fd_constraint_count - 1)
{
variable->nconnections--;
return;
}
if (variable->nconstraints >= 4 &&
variable->nconstraints ==
(variable->nconstraints & -variable->nconstraints))
variable->constraints =
realloc(variable->constraints,
2 * variable->nconstraints * sizeof(*variable->constraints));
}
// then add the constraint
variable->constraints[variable->nconstraints] = _fd_constraint_count - 1; // XXX
variable->nconstraints++;
// update the number of connections of the variable
variable->nconnections += constraint->nvariables - 1;
}
#ifndef fd_domain_empty // XXX: ???
/* Check if VARIABLE's domain is empty. */
int fd_domain_empty(fd_int variable)
{
return _fd_val_empty(DOMAIN(variable));
}
#endif
/* Check if VARIABLE's domain is a singleton. If it is, store the
value in the address pointed to by VALUE (if any). */
int fd_var_single(fd_int variable, int *value)
{
return _fd_val_single(DOMAIN(variable), value);
}
/* Return the value assigned to VARIABLE. */
int fd_var_value(fd_int variable)
{
#ifndef USE_VALUE
int value;
#ifndef NDEBUG
assert( _fd_val_single(DOMAIN(variable), &value) );
#else
_fd_val_single(DOMAIN(variable), &value);
#endif
return value;
#else /* USE_VALUE */
#ifndef COMPACT_DOMAINS
assert(DOMAIN(variable)->kind == FD_SINGLETON && DOMAIN(variable)->next == 0
&& DOMAIN(variable)->value.value == variable->value);
#elif defined(INLINE_DOMAINS)
assert(DOMAIN(variable) == ((unsigned) 0x80000000 >> variable->value));
#else
assert(*DOMAIN(variable) == ((unsigned) 0x80000000 >> variable->value));
#endif
return variable->value;
#endif /* USE_VALUE */
}
void _fd_revise_connected(fd_constraint constraint, fd_int variable)
{
#ifdef REVISION_IS_VAR
_fd_add_new_revision(variable);
#else
_fd_add_new_revision(variable, constraint);
#endif
}
/* print variable domain */
void fd_print(fd_int variable)
{
_fd_val_print(DOMAIN(variable));
}
/* print variable domain + \n */
void fd_println(fd_int variable)
{
fd_print(variable);
putchar('\n');
}
// print all variables domains (and their epoch)
void _fd_print()
{
int i;
for (i = 0; i < fd_variables_count; ++i)
{
fd_print(_fd_variables[i]);
printf("\t(%d)\n", _fd_variables[i]->epoch);
}
}
// print all variables domains (and their epoch) on a single line
void _fd_cprint()
{
int i;
for (i = 0; i < fd_variables_count; ++i)
{
fd_print(_fd_variables[i]);
putchar(' '); //printf("/%d ", _fd_variables[i]->epoch);
}
putchar('\n');
}
void _fd_gprint()
{
int i, value;
for (i = 0; i < fd_variables_count; ++i)
{
i % 9 == 0 ? putchar('\n') : 0;
_fd_val_single(DOMAIN(_fd_variables[i]), &value);
printf("%d ", value);
}
putchar('\n');
}
/* wrappers for functions dealing directly with the domains */
int _fd_var_max(fd_int variable)
{
return _fd_val_max(DOMAIN(variable));
}
int _fd_var_min(fd_int variable)
{
return _fd_val_min(DOMAIN(variable));
}
int _fd_var_del_ge(int value, fd_int variable)
{
// _fd_var_save(variable);
return _fd_val_del_ge(value, DOMAIN_REF(variable));
}
int _fd_var_del_gt(int value, fd_int variable)
{
// _fd_var_save(variable);
return _fd_val_del_gt(value, DOMAIN_REF(variable));
}
int _fd_var_del_le(int value, fd_int variable)
{
// _fd_var_save(variable);
return _fd_val_del_le(value, DOMAIN_REF(variable));
}
int _fd_var_del_lt(int value, fd_int variable)
{
// _fd_var_save(variable);
return _fd_val_del_lt(value, DOMAIN_REF(variable));
}
int _fd_var_del_val(int value, fd_int variable)
{
// _fd_var_save(variable);
return _fd_val_del_val(value, DOMAIN_REF(variable));
}
int _fd_var_del_other(fd_int variable, int value)
{
// _fd_var_save(variable);
return _fd_val_del_other(DOMAIN_REF(variable), value);
}
int _fd_var_intersect(fd_int variable1, fd_int variable2)
{
// _fd_var_save(variable1);
return _fd_val_intersect(DOMAIN_REF(variable1), DOMAIN(variable2));
}
int _fd_var_contains_val(fd_int variable, int value)
{
return _fd_val_contains_val(DOMAIN(variable), value);
}
// XXX: only used by exactly-*?
void _fd_var_set_value(fd_int variable, int value)
{
_fd_val_set_value(DOMAIN_REF(variable), value);
}
// SEARCH
/* select the variables which are candidate to be assigned */
void fd_label(fd_int variables[], int n)
{
if (fd__label_vars)
_fd_fatal("fd_label() can only be called once");
fd__label_vars = malloc(n * sizeof(*fd__label_vars)); // XXX: NULL
fd__label_vars_count = n;
memcpy(fd__label_vars, variables, n * sizeof(*fd__label_vars));
}
// XXX: variables addresses change when packing; reflect that on the
// labelled variables
static void relocate_label_vars()
{
int i;
for (i = 0; i < fd__label_vars_count; ++i)
fd__label_vars[i] = _fd_variables[fd__label_vars[i]->index];
}
#ifndef ASSIGNED_AFTER
// assigned variables should come before non-assigned ones, and
// relative order between assigned variables doesn't matter
#define cmp_var_assigned(a, b) \
do \
{ \
if (fd_var_single(a, NULL)) \
return -1; \
\
if (fd_var_single(b, NULL)) \
return 1; \
} \
while (0);
#else
// assigned variables should come after non-assigned ones, and
// relative order between assigned variables doesn't matter
#define cmp_var_assigned(a, b) \
do \
{ \
if (fd_var_single(a, NULL)) \
return fd_var_single(b, NULL) ? -1 : 1; \
\
if (fd_var_single(b, NULL)) \
return -1; \
} \
while (0);
#endif
// variables with smaller domains come before variables with greater
int fd__cmp_var_size(fd_int a, fd_int b)
{
cmp_var_assigned(a, b);
return _fd_val_size(DOMAIN(a)) - _fd_val_size(DOMAIN(b));
}
// variables involved in more constraints come before variables
// involved in less
int fd__cmp_var_constraints(fd_int a, fd_int b)
{
cmp_var_assigned(a, b);
return b->nconstraints - a->nconstraints;
}
// variables involved in more constraints come before variables
// involved in less; in case of a tie, variables with smaller domains
// come before variables with greater
int fd__cmp_var_size_degree(fd_int a, fd_int b)
{
cmp_var_assigned(a, b);
if (a->nconstraints != b ->nconstraints)
return b->nconstraints - a->nconstraints;
return _fd_val_size(DOMAIN(a)) - _fd_val_size(DOMAIN(b));
}
// variables connected to more variables come before variables
// connected to less
int fd__cmp_var_connections(fd_int a, fd_int b)
{
int ac, bc;
cmp_var_assigned(a, b);
return b->nconnections - a->nconnections;
}
// variables with smaller minimum value come before variables with
// greater
int fd__cmp_var_min(fd_int a, fd_int b)
{
cmp_var_assigned(a, b);
return _fd_var_min(a) - _fd_var_min(b);
}
// variables with greater maximum value come before variables with
// smaller
int fd__cmp_var_max(fd_int a, fd_int b)
{
cmp_var_assigned(a, b);
return _fd_var_max(b) - _fd_var_max(a);
}
int (*fd__cmp_variables)(fd_int, fd_int) = NULL;
// ascending stable merge
static void merge_vars(fd_int vs[], fd_int vt[], int f, int l,
int (*cmp)(fd_int, fd_int))
{
int f0 = f, l0 = (f + l) / 2;
int f1 = l0 + 1, l1 = l;
while (f <= l && f0 <= l0 && f1 <= l1)
vs[f++] = cmp(vt[f0], vt[f1]) < 1 ? vt[f0++] : vt[f1++];
while (f0 <= l0)
vs[f++] = vt[f0++];
while (f1 <= l1)
vs[f++] = vt[f1++];
}
static void merge_sort_vars(fd_int vs[], fd_int vt[], int f, int l,
int (*cmp)(fd_int, fd_int))
{
if (f == l)
return;
merge_sort_vars(vt, vs, f, (f + l) / 2, cmp);
merge_sort_vars(vt, vs, (f + l) / 2 + 1, l, cmp);
merge_vars(vs, vt, f, l, cmp);
}
void fd__sort_variables(fd_int vars[], int nvars, int (*cmp)(fd_int, fd_int))
{
fd_int *aux;
aux = alloca(nvars * sizeof(*aux));
memcpy(aux, vars, nvars * sizeof(*aux));
merge_sort_vars(vars, aux, 0, nvars - 1, cmp);
}
void fd__sort_label_vars()
{
fd_int *aux;
if (!fd__cmp_variables)
return;
fd__sort_variables(fd__label_vars, fd__label_vars_count, fd__cmp_variables);
}
void fd__setup_label_vars()
{
int i;
assert(PACK_PROBLEM); // XXX: variables addresses are shared
if (!fd__label_vars)
{
fd__label_vars = malloc(fd_variables_count * sizeof(*fd__label_vars));
memcpy(fd__label_vars, _fd_variables,
fd_variables_count * sizeof(*fd__label_vars));
fd__label_vars_count = fd_variables_count;
}
else
relocate_label_vars();
fd__sort_label_vars();
fd__var_labelled = calloc(fd_variables_count, sizeof(*fd__var_labelled)); // XXX: NULL
for (i = 0; i < fd__label_vars_count; ++i)
fd__var_labelled[fd__label_vars[i]->index] = true;
}
/* select the next variable to be instantiated (search) */
fd_int (*_fd_var_select2)(fd_int[]);
fd_int _fd_select_first_var(fd_int _fd_variables[])
{
int i;
for (i = 0; i < fd__label_vars_count; ++i)
if (!fd_var_single(_fd_variables[i], NULL))
{
return _fd_variables[i];
}
return NULL;
}
fd_int _fd_select_first_fail(fd_int _fd_variables[])
{
// select the first variable with the smallest domain
fd_int variable = NULL;
int i, domain_size, s;
i = 0;
while (i < fd__label_vars_count && fd_var_single(_fd_variables[i], NULL))
++i;
if (i == fd__label_vars_count)
return NULL; // all variables' domains are singletons
variable = _fd_variables[i++];
domain_size = _fd_val_size(DOMAIN(variable));
for (; i < fd__label_vars_count; ++i)
if ((s = _fd_val_size(DOMAIN(_fd_variables[i]))) > 1 && s < domain_size)
{
variable = _fd_variables[i];
domain_size = s;
}
return variable;
}
fd_int _fd_select_most_constrained(fd_int _fd_variables[])
{
// select the first variable with the most constraints
// XXX: should global constraints count as more than one?
fd_int variable = NULL;
int i, nconstraints;
i = 0;
while (i < fd__label_vars_count && fd_var_single(_fd_variables[i], NULL))
++i;
if (i == fd__label_vars_count)
return NULL; // all variables' domains are singletons
variable = _fd_variables[i++];
nconstraints = variable->nconstraints;
for (; i < fd__label_vars_count; ++i)
if (_fd_variables[i]->nconstraints > nconstraints &&
!fd_var_single(_fd_variables[i], NULL))
{
variable = _fd_variables[i];
nconstraints = variable->nconstraints;
}
return variable;
}
fd_int _fd_select_size_degree(fd_int _fd_variables[])
{
// select the first variable with the smallest domain size / constraints
// (seen in Gecode)
fd_int variable = NULL;
double ratio;
int i, s;
i = 0;
while (i < fd__label_vars_count && fd_var_single(_fd_variables[i], NULL))
++i;
if (i == fd__label_vars_count)
return NULL; // all variables' domains are singletons
variable = _fd_variables[i++];
ratio = (double) _fd_val_size(DOMAIN(variable)) /
(double) variable->nconstraints;
for (; i < fd__label_vars_count; ++i)
if ((s = _fd_val_size(DOMAIN(_fd_variables[i]))) > 1)
{
double r = (double) s / (double) _fd_variables[i]->nconstraints;
if (r < ratio)
{
variable = _fd_variables[i];
ratio = r;
}
}
return variable;
}
fd_int _fd_select_most_connected(fd_int _fd_variables[])
{
// select the first variable with the most connections
fd_int variable = NULL;
int i, j, connections;
i = 0;
while (i < fd__label_vars_count && fd_var_single(_fd_variables[i], NULL))
++i;
if (i == fd__label_vars_count)
return NULL; // all variables' domains are singletons
variable = _fd_variables[i++];
connections = variable->nconnections;
for (; i < fd__label_vars_count; ++i)
if (!fd_var_single(_fd_variables[i], NULL))
if (_fd_variables[i]->nconnections > connections)
{
variable = _fd_variables[i];
connections = _fd_variables[i]->nconnections;
}
return variable;
}
fd_int _fd_select_random_var(fd_int _fd_variables[])
{
fd_int *vs;
int i, n;
vs = alloca(fd__label_vars_count * sizeof(*vs)); // XXX: may be too big?
for (i = n = 0; i < fd__label_vars_count; ++i)
if (!fd_var_single(_fd_variables[i], NULL))
vs[n++] = _fd_variables[i];
return n ? vs[random() % n] : 0;
}
/* select the first variable with the smallest value in its domain */
fd_int _fd_select_min_value(fd_int _fd_variables[])
{
fd_int variable = NULL;
int i, k, min;
i = 0;
while (i < fd__label_vars_count && fd_var_single(_fd_variables[i], NULL))
++i;
if (i == fd__label_vars_count)
return NULL; // all variables' domains are singletons
variable = _fd_variables[i++];
min = _fd_val_min(DOMAIN(variable));
for (; i < fd__label_vars_count; ++i)
if (!fd_var_single(_fd_variables[i], NULL) &&
(k = _fd_val_min(DOMAIN(_fd_variables[i]))) < min)
{
variable = _fd_variables[i];
min = k;
}
return variable;
}
/* select the first variable with the greatest value in its domain */
fd_int _fd_select_max_value(fd_int _fd_variables[])
{
fd_int variable = NULL;
int i, k, max;
i = 0;
while (i < fd__label_vars_count && fd_var_single(_fd_variables[i], NULL))
++i;
if (i == fd__label_vars_count)
return NULL; // all variables' domains are singletons
variable = _fd_variables[i++];
max = _fd_val_max(DOMAIN(variable));
for (; i < fd__label_vars_count; ++i)
if (!fd_var_single(_fd_variables[i], NULL) &&
(k = _fd_val_max(DOMAIN(_fd_variables[i]))) > max)
{
variable = _fd_variables[i];
max = k;
}
return variable;
}
/* select the next variable to be instantiated (search) */
fd_int _fd_var_select()
{
return _fd_var_select2(_fd_variables);
}