README
5.66 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
PaCCS version 0.90c
All files Copyright (C) 2009-2014 Vasco Pedro <vp@di.uevora.pt>
All rights reserved.
* Compiling
Type
make <program>
to build the parallel solver version, and
make <program>-mpi
to build the distributed version (you need an MPI implementation for
this).
Bad things happen if you give make more than one target.
** Compilation options
Use
make EXTRA_DEFINES=...
to add extra definitions to the compilation command, or
make DEFINES=...
to tweak the default compilation options.
Useful options include:
-DCOMPACT_DOMAINS bitmap based representation of the domains (REQUIRED)
-DINLINE_DOMAINS fit domain (which is a bitmap) in a C integer type
-DDOMAIN_BITS=N bitmap size (domains are {0, ..., N-1})
-DDOMAIN_BOUNDS include the domain's current minimum and maximum values
in its representation (DEFAULT)
-DFAST be quiet (DEFAULT)
For other options, take a look at the Makefile, at src/options.c, or
at the full solver source.
The TUNING file says what options to use for the different
applications.
* Executing
Use mpirun to run the distributed versions.
** Runtime options
General:
--workers=N how many workers to use per process (the default is 4)
(may also be set through the FDC_AGENTS environment
variable)
--count-solutions count the solutions of the problem
(does not work for optimisation problems)
(the DEFAULT is to stop as soon as a solution has
been found, or a best solution, in the case of
optimisation problems)
Variable selection heuristics:
--first-var choose variables in order of creation (DEFAULT)
--first-fail choose first variables with the smallest domain
--most-constrained prefer variables involved in the most constraints
--size-degree choose the variable with the least ratio between
the domain size and the number of constraints it
appears in
--most-connected prefer variables which are connected by constraints
with the most variables (approximately implemented)
--random-var select a variable randomly
--min-value select the variable with the least value in its domain
--max-value select the variable with the greatest value in its
domain
Value selection heuristics:
--val-min instantiate the selected variable with the smallest
value from its domain (DEFAULT)
--val-max instantiate the selected variable with the greatest
value from its domain
Problem splitting:
--split-eager problem splitting works like variable labelling:
the variable whose domain is split has a singleton
domain in one subproblem, and the remaining values
in the other (DEFAULT)
--split-even try to divide the search space evenly amongst the
subproblems
--split-even1 same as above, but try to split the domain of just
one variable
--team-split-eager as above, for assigning work to the workers (only
--team-split-even useful if one wishes to have a strategy which is
--team-split-even1 different from the one used when assigning work to
teams)
See the TUNING file for the options to use with the different
problems.
* Programming
The <paccs.h> header file should be included by the program.
** Types
fd_int variable
fd_constraint constraint (not very useful)
** Constants
Integer constants
FD_OK
FD_NOSOLUTION
** Functions
fd_init(int *argc, char **argv[]) initialise the solver
fd_end(void) stop the solver and clean up
fd_solve(void) start the solver (returns FD_OK or
FD_NOSOLUTION, which is only
meaningful when not counting
solutions)
fd_int fd_new(int min, int max) create a new variable with domain
[min, max]
fd_label(fd_int vars[], int nvars) set variables to be labelled (the
DEFAULT is to label all variables)
fd_var_single(fd_int var, int *val) tests whether the variable domain
is a singleton, in which case its
value is stored at the specified
address
fd_var_value(fd_int var) return the variable's value
fd_print(fd_int var) print the variable's domain
fd_println(fd_int var) the same, followed by a newline
** Constraints
Arithmetic constraints
fd_eq(fd_int x, fd_int y) x = y
fd_ne(fd_int x, fd_int y) x != y
fd_lt(fd_int x, fd_int y) x < y
fd_le(fd_int x, fd_int y) x <= y
fd_gt(fd_int x, fd_int y) x > y
fd_ge(fd_int x, fd_int y) x >= y
fd_minus_eq(fd_int x, fd_int y, int k) x - y = k
fd_minus_ne(fd_int x, fd_int y, int k) x - y != k
fd_var_eq_minus(fd_int x, fd_int y, fd_int z) x = y - z
fd_var_eq_times(fd_int x, fd_int y, fd_int z) x = y * z
Global constraints
fd_all_different(fd_int X[], int n)
all n variables in X have different values
fd_element(fd_int X[], int n, fd_int y, int k) X[y] = k
fd_element_var(fd_int X[], int n, fd_int y, fd_int z) X[y] = z
fd_sum(fd_int X[], int n, int k) sum(X) = k
fd_sum2(fd_int X[], int n, fd_int y) sum(X) = y
fd_sum_prod(fd_int X[], fd_int Y[], int n, int k) X . Y = k
fd_poly_eq(int C[], fd_int Y[], int n, fd_int z) z <= C . Y <= z
fd_poly_eq_k(int C[], fd_int Y[], int n, int k) C . Y = k
fd_poly_ne(int C[], fd_int Y[], int n, fd_int z) C . Y != z
fd_poly_ne_k(int C[], fd_int Y[], int n, int k) C . Y != k
fd_knapsack2(fd_int X[], fd_int Y[], int n, fd_int z) z <= X . Y <= z
fd_exactly(fd_int X[], int n, int c, int k) #{ i | X[i] = k } = c
fd_exactly_var(fd_int X[], int n, fd_int y, int k) #{ i | X[i] = k } = y
fd_exactly_vars(fd_int X[], int n, fd_int y, fd_int z) #{ i | X[i] = z } = y
(A . B is the dot product of A and B.)
** Optimisation
fd_min(fd_int x) Minimise the value of x
fd_max(fd_int x) Maximise the value of x
* Miscellaneous
Use `ident <application>' (if available) to find which compilation
options were used for compiling the application.