poly-ne.c
5.87 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
/* poly-ne(C, X, y) == sum(C . X) != y */
static int fd_poly_ne_filter(fd_constraint this)
{
int ub, lb;
int min, max;
int terms = this->nconstants;
int *mins, *maxs;
int unset = 0; // non-singleton variables
int i;
#ifdef CONSTRAINT_TEMPS
int *base;
assert(!fd__constraint_data_valid(this));
if (!constraint_memory[this->index])
constraint_memory[this->index] = malloc((2 * terms + 5) * sizeof(int));
base = constraint_memory[this->index];
mins = base + 5;
maxs = mins + terms;
#else
mins = alloca(terms * sizeof(*mins));
maxs = alloca(terms * sizeof(*maxs));
#endif
lb = _fd_var_min(VAR(this, this->nvariables - 1)); // lower bound
ub = _fd_var_max(VAR(this, this->nvariables - 1)); // upper bound
// sum the minima and the maxima of the terms
min = max = 0;
for (i = 0; i < terms; ++i)
{
int vl, vh;
int c = this->constants[i];
if (c > 0)
{
vl = mins[i] = _fd_var_min(VAR(this, i));
vh = maxs[i] = _fd_var_max(VAR(this, i));
}
else
{
vl = maxs[i] = _fd_var_max(VAR(this, i));
vh = mins[i] = _fd_var_min(VAR(this, i));
}
if (c && vl != vh)
unset++;
min += c * vl;
max += c * vh;
}
if (min > ub || max < lb)
{
fd__constraint_set_entailed(this);
return FD_OK;
}
if (min == max)
{
fd_update_domain_and_check(del_val, min, VAR(this, this->nvariables - 1));
fd__constraint_set_entailed(this);
}
else if (unset == 1 && lb == ub)
{
int m, v;
// find out which is the non-singleton variable
for (i = terms - 1; i >= 0; --i)
if (this->constants[i] && mins[i] != maxs[i])
break;
if (this->constants[i] > 0)
m = min - this->constants[i] * mins[i];
else
m = min - this->constants[i] * maxs[i];
v = (lb - m) / this->constants[i];
if (v * this->constants[i] + m == lb)
fd_update_domain_and_check(del_val, v, VAR(this, i));
fd__constraint_set_entailed(this);
}
#ifdef CONSTRAINT_TEMPS
// save values
*base = lb;
*(base + 1) = ub;
*(base + 2) = min;
*(base + 3) = max;
*(base + 4) = unset;
fd__constraint_remember(this);
#endif
return FD_OK;
}
static int fd_poly_ne_propagate2(fd_constraint this, fd_int culprit)
{
#ifdef CONSTRAINT_TEMPS
int ub, lb;
int min, max;
int terms = this->nconstants;
int *mins, *maxs;
int unset;
int i;
int *base;
int x, c;
int nmin, nmin_x, nmax, nmax_x;
if (!fd__constraint_data_valid(this))
return fd_poly_ne_filter(this); // ignores culprit
// bounds filtering
base = constraint_memory[this->index];
mins = base + 5;
maxs = mins + terms;
lb = *base;
ub = *(base + 1);
min = *(base + 2);
max = *(base + 3);
unset = *(base + 4);
if (culprit == VAR(this, this->nvariables - 1))
{
// the culprit is the sum variable
int nlb, nub;
nlb = _fd_var_min(culprit);
nub = _fd_var_max(culprit);
if (nlb == lb && nub == ub)
return FD_OK;
if (min > nub || max < nlb)
fd__constraint_set_entailed(this);
if (unset == 1 && nlb == nub)
{
int m, v;
// find out which is the non-singleton variable
for (i = this->nvariables - 2; i >= 0; --i)
if (this->constants[i] && mins[i] != maxs[i])
break;
if (this->constants[i] > 0)
m = min - this->constants[i] * mins[i];
else
m = min - this->constants[i] * maxs[i];
v = (nlb - m) / this->constants[i];
if (v * this->constants[i] + m == nlb)
fd_update_domain_and_check(del_val, v, VAR(this, i));
fd__constraint_set_entailed(this);
}
*base = nlb;
*(base + 1) = nub;
return FD_OK;
}
// the culprit appears in one of the terms, find out which one(s)
for (x = 0; culprit != VAR(this, x); ++x)
;
nmin_x = _fd_var_min(VAR(this, x));
nmax_x = _fd_var_max(VAR(this, x));
if (nmin_x == mins[x] && nmax_x == maxs[x])
return FD_OK;
nmin = min;
nmax = max;
do
{
c = this->constants[x];
if (c && nmin_x == nmax_x)
unset--;
if (c > 0)
{
nmin = nmin + (nmin_x - mins[x]) * c;
nmax = nmax - (maxs[x] - nmax_x) * c;
}
else if (c < 0)
{
nmin = nmin - (maxs[x] - nmax_x) * c;
nmax = nmax + (nmin_x - mins[x]) * c;
}
mins[x] = nmin_x;
maxs[x] = nmax_x;
while (++x < terms && culprit != VAR(this, x))
;
}
while (x < terms);
if (nmin > ub || nmax < lb)
{
fd__constraint_set_entailed(this);
return FD_OK;
}
if (nmin == nmax)
{
fd_update_domain_and_check(del_val, nmin, VAR(this, this->nvariables - 1));
fd__constraint_set_entailed(this);
}
else if (unset == 1 && lb == ub)
{
int m, v;
// find out which is the non-singleton variable
for (i = terms - 1; i >= 0; --i)
if (this->constants[i] && mins[i] != maxs[i])
break;
if (this->constants[i] > 0)
m = min - this->constants[i] * mins[i];
else
m = min - this->constants[i] * maxs[i];
v = (lb - m) / this->constants[i];
if (v * this->constants[i] + m == lb)
fd_update_domain_and_check(del_val, v, VAR(this, i));
fd__constraint_set_entailed(this);
}
*(base + 2) = nmin;
*(base + 3) = nmax;
*(base + 4) = unset;
return FD_OK;
#else /* CONSTRAINT_TEMPS */
return fd_poly_ne_filter(this); // ignores culprit
#endif /* CONSTRAINT_TEMPS */
}
fd_constraint fd_poly_ne(int cs[], fd_int xs[], int nterms, fd_int y)
{
fd_constraint c = _fd_constraint_new(nterms + 1, nterms);
int i;
if (c)
{
for (i = 0; i < nterms; ++i)
c->variables[i] = FD_INT2C_VAR(xs[i]);
c->variables[nterms] = FD_INT2C_VAR(y);
for (i = 0; i < nterms; ++i)
c->constants[i] = cs[i];
#ifdef CONSTRAINT_CLASS
c->kind = FD_CONSTR_POLY_NE;
#else /* CONSTRAINT_CLASS */
c->propagator2 = fd_poly_ne_propagate2;
#endif /* CONSTRAINT_CLASS */
for (i = 0; i < c->nvariables; ++i)
_fd_var_add_constraint(VAR(c, i), c);
_fd_add_constraint(c);
}
return c;
}