solve.c 27.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
/*
 * solve.c
 *
 *  Created on: 28/01/2015
 *      Author: Pedro
 */

#include "solve.h"

#include <stdbool.h>
#include <string.h>
#include <stdio.h>

#include "bitmaps.h"
#include "devices.h"
#include "domains.h"
#include "intervals.h"
#include "utils/dev_errors.h"
#include "variables.h"

/*
 * Return the number of solutions found or 0 if no solution is found
 * dev_args - device_args structure about this device
 * dev_info - device_info structure about this device
 * depth - Tree expansion depth needed to get n_ss disjoint search spaces
 * n_ss - total number of sub-search spaces
 * stats_lock - mutex to control accesses to statistics structure
 * filtering - if it is being executed in the prefiltering phase
 * */
cl_ulong count_sols(device_args *dev_args, device_info *dev_info, unsigned int depth, unsigned int n_ss, pthread_mutex_t *stats_lock, bool filtering) {

	cl_ulong n_solutions = 0;	// number of solutions found on this kernels execution
	unsigned int i;

	// buffer for atomics data (Most devices only have atomics for 32 bits variables)
	// 0 - first sub-search to explore
	// 1 - last sub-search to explore
	// 2 - n_ss
	// 3 - depth
	// 4 - WIs still working for work-sharing
	// 5 - 5+N_VS - n_repeat per variable
	// 5+N_VS...5+N_VS+N_WG*N_WI_WG - number of solutions found per work-item
	set_strs_generat_data(dev_args, dev_info, depth, n_ss, filtering);

	dev_args->atoms[4] = (unsigned int) dev_args->wi_total;

	for (i = 5 + N_VS; i < 5 + N_VS + dev_args->wi_total; i++) {
		dev_args->atoms[i] = 0;
	}

#if RUN_IN_CUDA
	CUresult err = cuInit(0);

	if (dev_info->type == CL_DEVICE_TYPE_GPU) {

		err = cuMemcpyHtoD(dev_args->atoms_mem_cu, dev_args->atoms, dev_args->atoms_size);
		cuda_check_error(err, "cuMemcpyHtoD atoms_mem_cu", dev_info->dev_name);

	} else {
#endif

	// Update atoms buffer data on device
	cl_check_error(clEnqueueWriteBuffer(dev_args->cq, dev_args->atoms_mem, CL_TRUE, 0, dev_args->atoms_size, dev_args->atoms, 0, NULL, NULL),
			"clEnqueueWriteBuffer atoms_p_mem", dev_info->dev_name);

#if RUN_IN_CUDA
	}
#endif

#if SHARED_SS > 0
#if RUN_IN_CUDA

	if (dev_info->type == CL_DEVICE_TYPE_GPU) {

		err = cuMemcpyHtoD(dev_args->shared_stores_flag_mem_cu, dev_args->shared_stores_flag, dev_args->shared_stores_flag_size);
		cuda_check_error(err, "cuMemcpyHtoD shared_stores_flag_mem_cu", dev_info->dev_name);
	} else {
#endif
		// Update shared stored flags buffer data on device
		cl_check_error(clEnqueueWriteBuffer(dev_args->cq, dev_args->shared_stores_flag_mem, CL_TRUE, 0,  dev_args->shared_stores_flag_size,
				dev_args->shared_stores_flag, 0, NULL, NULL), "clEnqueueWriteBuffer shared_stores_flag_mem", dev_info->dev_name);

#if RUN_IN_CUDA
	}
#endif
#endif

#if RUN_IN_CUDA

	if (dev_info->type == CL_DEVICE_TYPE_GPU) {

		err = cuLaunchKernel(dev_args->function_cu, (unsigned int)dev_args->wi_total / (unsigned int)dev_args->wi_local, 1, 1, (unsigned int)dev_args->wi_local, 1, 1,
				(unsigned int)dev_args->shared_memory_size_cu, 0, dev_args->kernel_args_cu, 0);
		cuda_check_error(err, "cuLaunchKernel", dev_info->dev_name);
	} else {
#endif
	cl_check_error(clEnqueueNDRangeKernel(dev_args->cq, dev_args->kernel, 1, NULL, &dev_args->wi_total, &dev_args->wi_local, 0, NULL, NULL),
			"clEnqueueNDRangeKernel", dev_info->dev_name);
#if RUN_IN_CUDA
	}
#endif

	if (filtering) {
		return get_filtering_results(dev_args, dev_info);
	}

#if RUN_IN_CUDA

	if (dev_info->type == CL_DEVICE_TYPE_GPU) {

		err = cuMemcpyDtoH(dev_args->atoms, dev_args->atoms_mem_cu, dev_args->atoms_size);
		cuda_check_error(err, "cuMemcpyDtoH atoms", dev_info->dev_name);
	} else {
#endif
	// Transfer number of solutions found
	cl_check_error(clEnqueueReadBuffer(dev_args->cq, dev_args->atoms_mem, CL_TRUE, 0, dev_args->atoms_size, dev_args->atoms, 0, NULL, NULL),
			"clEnqueueReadBuffer atoms_p_mem", dev_info->dev_name);
#if RUN_IN_CUDA
	}
#endif

	for (i = 5 + N_VS; i < 5 + N_VS + dev_args->wi_total; i++) {
		n_solutions += dev_args->atoms[i];
	}

	if (N_DEVS > 1) {
#if RUN_IN_CUDA

		if (dev_info->type == CL_DEVICE_TYPE_GPU) {

			err = cuMemcpyDtoH(dev_args->props, dev_args->props_mem_cu, dev_args->props_size);
			cuda_check_error(err, "cuMemcpyDtoH props", dev_info->dev_name);

		} else {
#endif
		cl_check_error(clEnqueueReadBuffer(dev_args->cq, dev_args->props_mem, CL_TRUE, 0, dev_args->props_size, dev_args->props, 0,
		NULL, NULL), "clEnqueueReadBuffer props_mem", dev_info->dev_name);
#if RUN_IN_CUDA
		}
#endif

		dev_info->last_props = 0;
		for (i = 0; i < dev_args->wi_total; i++) {
			dev_info->props_total += dev_args->props[i];
			dev_info->last_props += dev_args->props[i];
		}
	}

	// copy statistics from device to host
	if (PRINT_STATS) {
		get_stats(dev_args, dev_info, stats_lock);
	}

	// return number of solutions found
	return n_solutions;
}

/*
 * Return 1 if a solution is found, or 0 if no solution is found.
 * dev_args - device_args structure about this device
 * dev_info - device_info structure about this device
 * sol_found - atomic flag for solution found
 * depth - Tree expansion depth needed to get n_ss disjoint search spaces
 * n_ss - total number of sub-search spaces
 * stats_lock - mutex to control accesses to statistics structure
 * filtering - if it is being executed in the prefiltering phase
 * */
cl_ulong find_one_sol(device_args *dev_args, device_info *dev_info, unsigned char *sol_found, unsigned int depth, unsigned int n_ss,
		pthread_mutex_t *stats_lock, bool filtering) {

	int sol_found_atom = 0; // Previous value of sol_found
	unsigned int i;

	// buffer for atomics data (Most devices only have atomics for 32 bits variables)
	// 0 - first sub-search to explore
	// 1 - last sub-search to explore
	// 2 - n_ss
	// 3 - depth
	// 4 - WIs still working for work-sharing
	// 5 - 5+N_VS - n_repeat per variable
	// 5+N_VS - solution found flag
	set_strs_generat_data(dev_args, dev_info, depth, n_ss, filtering);

	dev_args->atoms[4] = (unsigned int) dev_args->wi_total;

#if RUN_IN_CUDA

	CUresult err = cuInit(0);

	if (dev_info->type == CL_DEVICE_TYPE_GPU) {

		err = cuMemcpyHtoD(dev_args->atoms_mem_cu, dev_args->atoms, dev_args->atoms_size);
		cuda_check_error(err, "cuMemcpyHtoD atoms_mem_cu", dev_info->dev_name);
	} else {
#endif
	// Update atoms buffer data on device
	cl_check_error(clEnqueueWriteBuffer(dev_args->cq, dev_args->atoms_mem, CL_TRUE, 0, dev_args->atoms_size, dev_args->atoms, 0, NULL, NULL),
			"clEnqueueWriteBuffer atoms_p_mem", dev_info->dev_name);
#if RUN_IN_CUDA
	}
#endif

#if SHARED_SS > 0
#if RUN_IN_CUDA

	if (dev_info->type == CL_DEVICE_TYPE_GPU) {

		err = cuMemcpyHtoD(dev_args->shared_stores_flag_mem_cu, dev_args->shared_stores_flag, dev_args->shared_stores_flag_size);
		cuda_check_error(err, "cuMemcpyHtoD shared_stores_flag_mem_cu", dev_info->dev_name);
	} else {
#endif
		// Update shared stored flags buffer data on device
		cl_check_error(clEnqueueWriteBuffer(dev_args->cq, dev_args->shared_stores_flag_mem, CL_TRUE, 0,  dev_args->shared_stores_flag_size,
				dev_args->shared_stores_flag, 0, NULL, NULL), "clEnqueueWriteBuffer shared_stores_flag_mem", dev_info->dev_name);
#if RUN_IN_CUDA
	}
#endif
#endif

#if RUN_IN_CUDA

	if (dev_info->type == CL_DEVICE_TYPE_GPU) {

		err = cuLaunchKernel(dev_args->function_cu, (unsigned int)dev_args->wi_total / (unsigned int)dev_args->wi_local, 1, 1, (unsigned int)dev_args->wi_local, 1, 1,
				(unsigned int)dev_args->shared_memory_size_cu, 0, dev_args->kernel_args_cu, 0);
		cuda_check_error(err, "cuLaunchKernel function_cu", dev_info->dev_name);
	} else {
#endif
	cl_check_error(clEnqueueNDRangeKernel(dev_args->cq, dev_args->kernel, 1, NULL, &dev_args->wi_total, &dev_args->wi_local, 0, NULL, NULL),
			"clEnqueueNDRangeKernel", dev_info->dev_name);
#if RUN_IN_CUDA
	}
#endif

	if (filtering) {
		return get_filtering_results(dev_args, dev_info);
	}

	if (DOMAIN_TYPE == BITMAP_) {
#if RUN_IN_CUDA

		if (dev_info->type == CL_DEVICE_TYPE_GPU) {

			err = cuMemcpyDtoH(dev_args->bitmaps, dev_args->domains_mem_cu, dev_args->domains_size);
			cuda_check_error(err, "cuMemcpyDtoH bitmaps", dev_info->dev_name);
		} else {
#endif
		// Transfer possible solution
		cl_check_error(clEnqueueReadBuffer(dev_args->cq, dev_args->domains_mem, CL_TRUE, 0, dev_args->domains_size, dev_args->bitmaps, 0, NULL, NULL),
				"clEnqueueReadBuffer domains_mem", dev_info->dev_name);
#if RUN_IN_CUDA
		}
#endif
	} else if (DOMAIN_TYPE == INTERVAL) {
#if RUN_IN_CUDA

		if (dev_info->type == CL_DEVICE_TYPE_GPU) {

			err = cuMemcpyDtoH(dev_args->intervals, dev_args->domains_mem_cu, dev_args->domains_size);
			cuda_check_error(err, "cuMemcpyDtoH intervals", dev_info->dev_name);

		} else {
#endif
		// Transfer possible solution
		cl_check_error(clEnqueueReadBuffer(dev_args->cq, dev_args->domains_mem, CL_TRUE, 0, dev_args->domains_size, dev_args->intervals, 0, NULL, NULL),
				"clEnqueueReadBuffer domains_mem", dev_info->dev_name);
#if RUN_IN_CUDA
		}
#endif
	}

	if (N_DEVS > 1) {
#if RUN_IN_CUDA

		if (dev_info->type == CL_DEVICE_TYPE_GPU) {

			err = cuMemcpyDtoH(dev_args->props, dev_args->props_mem_cu, dev_args->props_size);
			cuda_check_error(err, "cuMemcpyDtoH props", dev_info->dev_name);

		} else {
#endif
		cl_check_error(clEnqueueReadBuffer(dev_args->cq, dev_args->props_mem, CL_TRUE, 0, dev_args->props_size, dev_args->props, 0,
		NULL, NULL), "clEnqueueReadBuffer props_mem", dev_info->dev_name);
#if RUN_IN_CUDA
		}
#endif

		dev_info->last_props = 0;
		for (i = 0; i < dev_args->wi_total; i++) {
			dev_info->props_total += dev_args->props[i];
			dev_info->last_props += dev_args->props[i];
		}
	}

	// copy statistics from device to host
	if (PRINT_STATS) {
		get_stats(dev_args, dev_info, stats_lock);
	}

	// if solution found signalizes it for the other devices and saves it
	// if using bitmap domains
	if (DOMAIN_TYPE == BITMAP_) {
		bitmap b_result;
		b_clear(&b_result);
		b_copy_dev_to_host(&b_result, dev_args->bitmaps, 0);

		if (!b_is_empty(&b_result)) {

#if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__)
			sol_found_atom = InterlockedCompareExchange(sol_found, 1, 0);
#else
			sol_found_atom = __atomic_fetch_add(sol_found, 1, __ATOMIC_SEQ_CST);
#endif

			if (sol_found_atom < 1) {
				vs_copy_dev_to_host(VS, dev_args->bitmaps, N_VS);
			}
			return 1;
		}
		// if using interval domains
	} else if (DOMAIN_TYPE == INTERVAL) {

#if RUN_IN_CUDA

		if (dev_info->type == CL_DEVICE_TYPE_GPU) {

			err = cuMemcpyDtoH(dev_args->atoms, dev_args->atoms_mem_cu, dev_args->atoms_size);
			cuda_check_error(err, "cuMemcpyDtoH atoms", dev_info->dev_name);

		} else {
#endif
		// Transfer possible solution
		cl_check_error(clEnqueueReadBuffer(dev_args->cq, dev_args->atoms_mem, CL_TRUE, 0, dev_args->atoms_size, dev_args->atoms, 0, NULL, NULL),
				"clEnqueueReadBuffer atoms_mem", dev_info->dev_name);
#if RUN_IN_CUDA
		}
#endif

		if (dev_args->atoms[5 + N_VS] != 0) {

#if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__)
			sol_found_atom = InterlockedCompareExchange(sol_found, 1, 0);
#else
			sol_found_atom = __atomic_fetch_add(sol_found, 1, __ATOMIC_SEQ_CST);
#endif
			if (sol_found_atom < 1) {
				convert_intervals_to_vars(VS, dev_args->intervals, N_VS);
			}
			return 1;
		}
	}

	return 0;
}

/*
 * Return 1 if an optimal solution was found, or 0 if no optimal solution was found.
 * dev_args - device_args structure about this device
 * dev_info - device_info structure about this device
 * val_to_opt - Value to optimize
 * opt_lock - mutex to control accesses to value to optimize and best solution found
 * depth - Tree expansion depth needed to get n_ss disjoint search spaces
 * n_ss - total number of sub-search spaces
 * stats_lock - mutex to control accesses to statistics structure
 * filtering - if it is being executed in the prefiltering phase
 * */
cl_ulong find_best_sol(device_args *dev_args, device_info *dev_info, cl_uint *val_to_opt, pthread_mutex_t *opt_lock, unsigned int depth, unsigned int n_ss,
		pthread_mutex_t *stats_lock,
		bool filtering) {

	bool opt_sol_found = false;
	unsigned int i;

	// buffer for atomics data (Most devices only have atomics for 32 bits variables)
	// 0 - first sub-search to explore
	// 1 - last sub-search to explore
	// 2 - n_ss
	// 3 - depth
	// 4 - WIs still working for work-sharing
	// 5 - 5+N_VS - n_repeat per variable
	// 5+N_VS - solution found flag
	// 6+N_VS - Value to optimize
	// 7+N_VS - WIs still working for saving the best solution
	set_strs_generat_data(dev_args, dev_info, depth, n_ss, filtering);

	dev_args->atoms[4] = (unsigned int) dev_args->wi_total;
	dev_args->atoms[5 + N_VS] = 0;
	dev_args->atoms[6 + N_VS] = *val_to_opt;
	dev_args->atoms[7 + N_VS] = (unsigned int) dev_args->wi_total;

#if RUN_IN_CUDA

	CUresult err = cuInit(0);

	if (dev_info->type == CL_DEVICE_TYPE_GPU) {

		err = cuMemcpyHtoD(dev_args->atoms_mem_cu, dev_args->atoms, dev_args->atoms_size);
		cuda_check_error(err, "cuMemcpyHtoD atoms_mem_cu", dev_info->dev_name);

	} else {
#endif
	// Update atoms buffer data on device
	cl_check_error(clEnqueueWriteBuffer(dev_args->cq, dev_args->atoms_mem, CL_TRUE, 0, dev_args->atoms_size, dev_args->atoms, 0, NULL, NULL),
			"clEnqueueWriteBuffer atoms_p_mem", dev_info->dev_name);
#if RUN_IN_CUDA
	}
#endif

#if SHARED_SS > 0

#if RUN_IN_CUDA

	if (dev_info->type == CL_DEVICE_TYPE_GPU) {

		err = cuMemcpyHtoD(dev_args->shared_stores_flag_mem_cu, dev_args->shared_stores_flag, dev_args->shared_stores_flag_size);
		cuda_check_error(err, "cuMemcpyHtoD shared_stores_flag_mem_cu", dev_info->dev_name);

	} else {
#endif
		// Update shared stored flags buffer data on device
		cl_check_error(clEnqueueWriteBuffer(dev_args->cq, dev_args->shared_stores_flag_mem, CL_TRUE, 0, dev_args->shared_stores_flag_size, dev_args->shared_stores_flag,
				0, NULL, NULL), "clEnqueueWriteBuffer shared_stores_flag_mem", dev_info->dev_name);
#if RUN_IN_CUDA
	}
#endif
#endif

#if RUN_IN_CUDA

	if (dev_info->type == CL_DEVICE_TYPE_GPU) {

		err = cuLaunchKernel(dev_args->function_cu, (unsigned int)dev_args->wi_total / (unsigned int)dev_args->wi_local, 1, 1, (unsigned int)dev_args->wi_local, 1, 1,
				(unsigned int)dev_args->shared_memory_size_cu, 0, dev_args->kernel_args_cu, 0);
		cuda_check_error(err, "cuLaunchKernel function_cu", dev_info->dev_name);

	} else {
#endif
	cl_check_error(clEnqueueNDRangeKernel(dev_args->cq, dev_args->kernel, 1, NULL, &dev_args->wi_total, &dev_args->wi_local, 0, NULL, NULL),
			"clEnqueueNDRangeKernel", dev_info->dev_name);
#if RUN_IN_CUDA
	}
#endif

	if (filtering) {
		return get_filtering_results(dev_args, dev_info);
	}

	// Transfer best value found flag
#if RUN_IN_CUDA

	if (dev_info->type == CL_DEVICE_TYPE_GPU) {

		err = cuMemcpyDtoH(dev_args->atoms, dev_args->atoms_mem_cu, dev_args->atoms_size);
		cuda_check_error(err, "cuMemcpyDtoH atoms", dev_info->dev_name);

	} else {
#endif
	cl_check_error(clEnqueueReadBuffer(dev_args->cq, dev_args->atoms_mem, CL_TRUE, 0, dev_args->atoms_size, dev_args->atoms, 0, NULL, NULL),
			"clEnqueueReadBuffer atoms_mem", dev_info->dev_name);
#if RUN_IN_CUDA
	}
#endif

	opt_sol_found = dev_args->atoms[5 + N_VS];

	if (opt_sol_found) {

		if (DOMAIN_TYPE == BITMAP_) {
			// Transfer possible solution
#if RUN_IN_CUDA

			if (dev_info->type == CL_DEVICE_TYPE_GPU) {

				err = cuMemcpyDtoH(dev_args->bitmaps, dev_args->domains_mem_cu, dev_args->domains_size);
				cuda_check_error(err, "cuMemcpyDtoH bitmaps", dev_info->dev_name);

			} else {
#endif
			cl_check_error(clEnqueueReadBuffer(dev_args->cq, dev_args->domains_mem, CL_TRUE, 0, dev_args->domains_size, dev_args->bitmaps, 0, NULL, NULL),
					"clEnqueueReadBuffer domains_mem", dev_info->dev_name);
#if RUN_IN_CUDA
			}
#endif

		} else if (DOMAIN_TYPE == INTERVAL) {
			// Transfer possible solution
#if RUN_IN_CUDA

			if (dev_info->type == CL_DEVICE_TYPE_GPU) {

				err = cuMemcpyDtoH(dev_args->intervals, dev_args->domains_mem_cu, dev_args->domains_size);
				cuda_check_error(err, "cuMemcpyDtoH intervals", dev_info->dev_name);

			} else {
#endif
			cl_check_error(clEnqueueReadBuffer(dev_args->cq, dev_args->domains_mem, CL_TRUE, 0, dev_args->domains_size, dev_args->intervals, 0, NULL, NULL),
					"clEnqueueReadBuffer domains_mem", dev_info->dev_name);
#if RUN_IN_CUDA
			}
#endif
		}
	}

	if (N_DEVS > 1) {
#if RUN_IN_CUDA

		if (dev_info->type == CL_DEVICE_TYPE_GPU) {

			err = cuMemcpyDtoH(dev_args->props, dev_args->props_mem_cu, dev_args->props_size);
			cuda_check_error(err, "cuMemcpyDtoH props", dev_info->dev_name);

		} else {
#endif
		cl_check_error(clEnqueueReadBuffer(dev_args->cq, dev_args->props_mem, CL_TRUE, 0, dev_args->props_size, dev_args->props, 0,
		NULL, NULL), "clEnqueueReadBuffer props_mem", dev_info->dev_name);
#if RUN_IN_CUDA
		}
#endif

		dev_info->last_props = 0;
		for (i = 0; i < dev_args->wi_total; i++) {
			dev_info->props_total += dev_args->props[i];
			dev_info->last_props += dev_args->props[i];
		}
	}

	// copy statistics from device to host
	if (PRINT_STATS) {
		get_stats(dev_args, dev_info, stats_lock);
	}

	// if optimal solution found
	if (opt_sol_found) {

		if (N_DEVS > 1) {
			// lock access to the place to write the optimal solution and writes it
			pthread_mutex_lock(opt_lock);

			// if using bitmap domains
			if (DOMAIN_TYPE == BITMAP_) {

				vs_copy_dev_to_host(VS_LOCK, dev_args->bitmaps, N_VS);

			} else if (DOMAIN_TYPE == INTERVAL) {

				convert_intervals_to_vars(VS_LOCK, dev_args->intervals, N_VS);
			}

			if (OPT_MODE == DECREASE) {

				if (VS_LOCK[VAR_ID_TO_OPT].max < VS_LOCK_BEST[VAR_ID_TO_OPT].max) {
					opt_sol_found = true;
				} else {
					opt_sol_found = false;
				}

			} else {

				if (VS_LOCK[VAR_ID_TO_OPT].min > VS_LOCK_BEST[VAR_ID_TO_OPT].min) {
					opt_sol_found = true;
				} else {
					opt_sol_found = false;
				}
			}

			if (opt_sol_found) {
				*val_to_opt = dev_args->atoms[6 + N_VS];

				vs_copy(VS_LOCK_BEST, VS_LOCK, N_VS);
			}

			pthread_mutex_unlock(opt_lock);

		} else {
			*val_to_opt = dev_args->atoms[6 + N_VS];

			if (*val_to_opt > D_MAX) {
				*val_to_opt = 0;
			}

			// if using bitmap domains
			if (DOMAIN_TYPE == BITMAP_) {
				vs_copy_dev_to_host(VS_LOCK_BEST, dev_args->bitmaps, N_VS);

			} else if (DOMAIN_TYPE == INTERVAL) {

				convert_intervals_to_vars(VS_LOCK_BEST, dev_args->intervals, N_VS);
			}
		}
	}

	if (opt_sol_found) {
		return 1;

	} else {
		return 0;
	}
}

/*
 * Generates the data needed to each work-item for generating the sub-search spaces
 * dev_args - device_args structure about this device
 * dev_info - device_info structure about this device
 * depth - Tree expansion depth needed to get n_ss disjoint search spaces
 * n_ss - total number of sub-search spaces
 * filtering - if it is being executed in the prefiltering phase
 */
void set_strs_generat_data(device_args *dev_args, device_info *dev_info, unsigned int depth, unsigned int n_ss, bool filtering) {
	unsigned int n_ss_new;
	unsigned int depth_prev = depth;
	unsigned int depth_new = depth;
	unsigned int new_multiplier = 1;
	unsigned int i, j;

	// buffer for atomics data (Most devices only have atomics for 32 bits variables)
	// 0 - first sub-search to explore
	// 1 - last sub-search to explore
	// 2 - n_ss
	// 3 - depth
	// 4 - WIs still working for work-sharing
	// 5 - 5+N_VS - n_repeat per variable
	// ...

	if (filtering) {

		for (i = 0; i < N_VS; i++) {
			dev_info->exp_values[i] = 0;
			dev_args->atoms[5 + i] = 0;
		}

		dev_info->n_ss_mult = 1;
		dev_info->n_ss_mult_max = 1;
		dev_info->first_store = 0;
		dev_info->last_store = 1;
		dev_args->atoms[0] = 0;
		dev_args->atoms[1] = 1;
		dev_args->atoms[2] = 1;
		dev_args->atoms[3] = 0;

		return;
	}

	for (i = 0; i < N_VS; i++) {
		dev_info->exp_values[i] = EXP_VALUES[i];
		dev_args->atoms[5 + i] = EXP_VALUES[i];
	}

	// calculate a valid n_ss multiplier bigger than the one provided
	// get the max multiplier that can be applied to the number of ss inside each device
	if (dev_info->n_ss_mult > dev_info->n_ss_mult_max) {
		dev_info->n_ss_mult = dev_info->n_ss_mult_max;
	}
	for (i = depth_prev; new_multiplier < dev_info->n_ss_mult && new_multiplier < dev_info->n_ss_mult_max; i++) {
		if (VS[i].n_vals > 1 && VS[i].to_label) {
			new_multiplier *= VS[i].n_vals;
			dev_info->exp_values[i] = VS[i].n_vals;
		} else {
			dev_info->exp_values[i] = 1;
		}
	}
	i--;

	// if expanding all the previous tree nodes to new depth generate more than the required multiplier
	if (new_multiplier > dev_info->n_ss_mult) {
		new_multiplier /= VS[i].n_vals;

		if (new_multiplier * 2 > dev_info->n_ss_mult_max) {
			dev_info->exp_values[i] = 0;
			i--;
		} else {
			for (j = 2; j < VS[i].n_vals; j++) {
				if (new_multiplier * j >= dev_info->n_ss_mult || new_multiplier * (j + 1) >= dev_info->n_ss_mult_max) {
					new_multiplier *= j;
					dev_info->exp_values[i] = j;
					break;
				}
			}
			if (j == VS[i].n_vals) {
				new_multiplier *= VS[i].n_vals;
				dev_info->exp_values[i] = VS[i].n_vals;
			}
		}
	}
	depth_new = i + 1;
	dev_info->n_ss_mult = new_multiplier;
	n_ss_new = n_ss * dev_info->n_ss_mult;

	// non labeling variables will not be expanded
	for (i = 0; i < depth_new; i++) {
		dev_args->atoms[5 + i] = dev_info->exp_values[i];
	}
	for (; i < N_VS; i++) {
		dev_args->atoms[5 + i] = 0;
	}

	// 0 - first sub-search to explore
	// 1 - last sub-search to explore
	// 2 - n_ss
	dev_args->atoms[0] = dev_info->first_store * dev_info->n_ss_mult;
	dev_args->atoms[1] = dev_info->last_store * dev_info->n_ss_mult;
	dev_args->atoms[2] = n_ss_new;
	dev_args->atoms[3] = depth_new;
}

/*
 * Load statistics from the device
 * dev_args - device_args structure about this device
 * dev_info - device_info structure about this device
 * stats_lock - mutex to control accesses to statistics structure
 */
void get_stats(device_args *dev_args, device_info *dev_info, pthread_mutex_t *stats_lock) {
	unsigned int i;

	// 0 - nodes_fail
	// 1 - nodes_expl
	// 2 - backtracks
	// 3 - labels
	// 4 - props_not_ok
	// 5 - props_ok
	// ... repeat per work-item
#if RUN_IN_CUDA

	CUresult err = cuInit(0);

	if (dev_info->type == CL_DEVICE_TYPE_GPU) {

		err = cuMemcpyDtoH(dev_args->stats, dev_args->stats_mem_cu, dev_args->stats_size);
		cuda_check_error(err, "cuMemcpyDtoH stats", dev_info->dev_name);

	} else {
#endif
	cl_check_error(clEnqueueReadBuffer(dev_args->cq, dev_args->stats_mem, CL_TRUE, 0, dev_args->stats_size, dev_args->stats, 0, NULL, NULL),
			"clEnqueueReadBuffer stats_mem", dev_info->dev_name);
#if RUN_IN_CUDA
	}
#endif

	if (N_DEVS > 1) {
		// lock access to the place to write the optimal solution and writes it
		pthread_mutex_lock(stats_lock);
	}

	// copy statistics to host global counter
	for (i = 0; i < dev_args->wi_total; i++) {
		STATS.nodes_fail += dev_args->stats[i * 7];
		STATS.nodes_expl += dev_args->stats[i * 7 + 1];
		STATS.backtracks += dev_args->stats[i * 7 + 2];
		STATS.labels += dev_args->stats[i * 7 + 3];
		STATS.pruning += dev_args->stats[i * 7 + 4];
		STATS.props_ok += dev_args->stats[i * 7 + 5];

		if (dev_args->stats[i * 7 + 6] > STATS.max_depth) {
			STATS.max_depth = dev_args->stats[i * 7 + 6];
		}
	}
	STATS.search_spaces += dev_info->block_size * dev_info->n_ss_mult;

	// clear counters on device buffer for next run
	memset(dev_args->stats, 0, dev_args->stats_size);

#if RUN_IN_CUDA

	if (dev_info->type == CL_DEVICE_TYPE_GPU) {

		err = cuMemcpyHtoD(dev_args->stats_mem_cu, dev_args->stats, dev_args->stats_size);
		cuda_check_error(err, "cuMemcpyHtoD stats_mem_cu", dev_info->dev_name);

	} else {
#endif
	cl_check_error(clEnqueueWriteBuffer(dev_args->cq, dev_args->stats_mem, CL_TRUE, 0, dev_args->stats_size, dev_args->stats, 0, NULL, NULL),
			"clEnqueueWriteBuffer stats_mem", dev_info->dev_name);
#if RUN_IN_CUDA
	}
#endif

	if (N_DEVS > 1) {
		pthread_mutex_unlock(stats_lock);
	}
}

bool get_filtering_results(device_args *dev_args, device_info *dev_info) {

	if (DOMAIN_TYPE == BITMAP_) {

#if RUN_IN_CUDA

		CUresult err = cuInit(0);

		if (dev_info->type == CL_DEVICE_TYPE_GPU) {

			err = cuMemcpyDtoH(dev_args->filt_bitmaps, dev_args->filt_domains_mem_cu, dev_args->filt_domains_size);
			cuda_check_error(err, "cuMemcpyDtoH filt_bitmaps", dev_info->dev_name);

		} else {
#endif
		// Transfer filtered CSP
		cl_check_error(
				clEnqueueReadBuffer(dev_args->cq, dev_args->filt_domains_mem, CL_TRUE, 0, dev_args->filt_domains_size, dev_args->filt_bitmaps, 0, NULL, NULL),
				"clEnqueueReadBuffer filt_domains_mem", dev_info->dev_name);
#if RUN_IN_CUDA
		}
#endif

		bitmap b_result;
		b_clear(&b_result);
		b_copy_dev_to_host(&b_result, dev_args->filt_bitmaps, 0);

		// consistent CSP after filtering
		if (!b_is_empty(&b_result)) {

			if (CS_IGNORE) {
				unsigned int i;

#if RUN_IN_CUDA

				if (dev_info->type == CL_DEVICE_TYPE_GPU) {

					err = cuMemcpyDtoH(dev_args->filt_cs, dev_args->filt_cs_mem_cu, dev_args->filt_cs_size);
					cuda_check_error(err, "cuMemcpyDtoH filt_cs", dev_info->dev_name);

				} else {
#endif
				// Transfer cs_ignore results
				cl_check_error(clEnqueueReadBuffer(dev_args->cq, dev_args->filt_cs_mem, CL_TRUE, 0, dev_args->filt_cs_size, dev_args->filt_cs, 0, NULL, NULL),
						"clEnqueueReadBuffer filt_cs_mem", dev_info->dev_name);
#if RUN_IN_CUDA
				}
#endif

				for (i = 0; i < N_CS; i++) {
					if (dev_args->filt_cs[i] == 1) {
						CS[i].ignore = true;

					} else {
						CS[i].ignore = false;
					}
				}
			}

			vs_copy_dev_to_host(VS, dev_args->filt_bitmaps, N_VS);

			return 1;
		}

	} else {

#if RUN_IN_CUDA

		CUresult err = cuInit(0);

		if (dev_info->type == CL_DEVICE_TYPE_GPU) {

			err = cuMemcpyDtoH(dev_args->filt_intervals, dev_args->filt_domains_mem_cu, dev_args->filt_domains_size);
			cuda_check_error(err, "cuMemcpyDtoH filt_intervals", dev_info->dev_name);

		} else {
#endif
		// Transfer filtered CSP
		cl_check_error(
				clEnqueueReadBuffer(dev_args->cq, dev_args->filt_domains_mem, CL_TRUE, 0, dev_args->filt_domains_size, dev_args->filt_intervals, 0, NULL, NULL),
				"clEnqueueReadBuffer filt_domains_mem", dev_info->dev_name);
#if RUN_IN_CUDA
		}
#endif

		// consistent CSP after filtering
		if (dev_args->filt_intervals[0].s0 <= dev_args->filt_intervals[0].s1) {

			if (CS_IGNORE) {
				unsigned int i;

#if RUN_IN_CUDA

				if (dev_info->type == CL_DEVICE_TYPE_GPU) {

					err = cuMemcpyDtoH(dev_args->filt_cs, dev_args->filt_cs_mem_cu, dev_args->filt_cs_size);
					cuda_check_error(err, "cuMemcpyDtoH filt_cs", dev_info->dev_name);

				} else {
#endif
				// Transfer cs_ignore results
				cl_check_error(clEnqueueReadBuffer(dev_args->cq, dev_args->filt_cs_mem, CL_TRUE, 0, dev_args->filt_cs_size, dev_args->filt_cs, 0, NULL, NULL),
						"clEnqueueReadBuffer filt_cs_mem", dev_info->dev_name);
#if RUN_IN_CUDA
				}
#endif

				for (i = 0; i < N_CS; i++) {
					if (dev_args->filt_cs[i] == 1) {
						CS[i].ignore = true;

					} else {
						CS[i].ignore = false;
					}
				}
			}

			convert_intervals_to_vars(VS, dev_args->filt_intervals, N_VS);

			return 1;
		}
	}
	return 0;
}