at_most_one.c
16 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
/*
* at_most_one.c
*
* Created on: 26/03/2017
* Author: pedro
*/
#ifndef __OPENCL_VERSION__
#include <stddef.h>
#include <stdio.h>
#include "at_most_one.h"
#include "../bitmaps.h"
#include "../config.h"
#include "../variables.h"
#endif
#include "../kernels/cl_aux_functions.h"
#if CL_D_TYPE == CL_BITMAP
#include "../kernels/cl_bitmaps.h"
#elif CL_D_TYPE == CL_INTERVAL
#include "../kernels/cl_intervals.h"
#endif
#include "../kernels/cl_constraints.h"
#include "../kernels/cl_variables.h"
#include "../kernels/cl_ttl.h"
#ifndef __OPENCL_VERSION__
/*
* Creates a new constraint of the at_most_one type and return the constraint ID
* ∀i∈[1,n]:|si|=ci ; ∀i,j∈[1,n](i<j):∣si⋂sj|≤1
* S_ids - vector with the ID of the variables of all the sets, ordered by set
* N_vs - number of variables on each set, per set order (c)
* n_sets - number of sets
*/
unsigned int c_at_most_one(unsigned int* S_ids, int* N_vs, unsigned int n_sets) {
unsigned int n_vs, i;
// set to include in kernel compilation
USE_CS[AT_MOST_ONE] = 1;
USE_NON_CS_REIFI[AT_MOST_ONE] = 1;
n_vs = 0;
for (i = 0; i < n_sets; i++) {
n_vs += (unsigned int)N_vs[i];
}
unsigned int* c_vs = malloc(n_vs * sizeof(unsigned int));
for (i = 0; i < n_vs; i++) {
c_vs[i] = S_ids[i];
}
// creates a new generic constraint
unsigned int c_id = c_new(c_vs, n_vs, N_vs, n_sets, -1);
// pointers to this type of constraint functions
CS[c_id].kind = AT_MOST_ONE;
CS[c_id].check_sol_f = &at_most_one_check;
CS[c_id].constant_val = (int)n_sets;
free(c_vs);
return c_id;
}
/*
* Creates a new reified constraint of the at_most_one type and return the constraint ID
* ∀i∈[1,n]:|si|=ci ; ∀i,j∈[1,n](i<j):∣si⋂sj|≤1
* S_ids - vector with the ID of the variables of all the sets, ordered by set
* N_vs - number of variables on each set, per set order (c)
* n_sets - number of sets
* reif_v_id - ID of the reification variable
*/
unsigned int c_at_most_one_reif(unsigned int* S_ids, int* N_vs, unsigned int n_sets, int reif_v_id) {
unsigned int n_vs, i;
if (VS[reif_v_id].max > 1) {
v_del_gt(&VS[reif_v_id], 1);
if (VS[reif_v_id].n_vals == 0) {
fprintf(stderr, "\nError: Constraint AT_MOST_ONE_REIF makes model inconsistent at creation:\n");
exit(-1);
}
}
// set to include in kernel compilation
USE_CS[AT_MOST_ONE] = 1;
USE_CS_REIFI[AT_MOST_ONE] = 1;
n_vs = 0;
for (i = 0; i < n_sets; i++) {
n_vs += (unsigned int)N_vs[i];
}
unsigned int* c_vs = malloc(n_vs * sizeof(unsigned int));
for (i = 0; i < n_vs; i++) {
c_vs[i] = S_ids[i];
}
// creates a new generic constraint
unsigned int c_id = c_new(c_vs, n_vs, N_vs, n_sets, reif_v_id);
// pointers to this type of constraint functions
CS[c_id].kind = AT_MOST_ONE;
CS[c_id].check_sol_f = &at_most_one_check;
CS[c_id].constant_val = (int)n_sets;
free(c_vs);
return c_id;
}
/*
* Return true if the at_most_one constraint is respected or false if not
* ∀i∈[1,n]:|si|=ci ; ∀i,j∈[1,n](i<j):∣si⋂sj|≤1
* c - constraint to check if is respected
* explored - if the CSP was already explored, which mean that all the variables must already be singletons
* */
bool at_most_one_check(constr* c, bool explored) {
int* cards = c->c_consts;
var** sets = c->c_vs;
int n_sets = c->constant_val;
unsigned int v_iter1;
unsigned int v_iter2;
unsigned int vals_eq;
int i, j, k, l;
// if any variable have more than one value
#if CHECK_SOL_N_VALS
for (i = 0; i < c->n_c_vs; i++) {
if (sets[i]->to_label && sets[i]->n_vals != 1) {
if (explored) {
fprintf(stderr, "\nError: Constraint LINEAR_VAR (%d) not respected:\n", c->c_id);
for (i = 0; i < c->n_c_vs; i++) {
fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[i]->v_id, b_get_min_val(&c->c_vs[i]->domain_b),
b_get_max_val(&c->c_vs[i]->domain_b),
b_cnt_vals(&c->c_vs[i]->domain_b));
}
}
return false;
}
}
#endif
// if any two sets share more than one value
v_iter1 = 0;
v_iter2 = (unsigned int)cards[0];
for (i = 0; i < n_sets; i++) {
for (j = 0; j < cards[i]; j++) {
for (k = i + 1; k < n_sets; k++) {
vals_eq = 0;
for (l = 0; l < cards[k]; l++) {
if (sets[v_iter1]->min == sets[v_iter2]->min) {
vals_eq++;
if (vals_eq > 1) {
if (explored) {
fprintf(stderr, "\nError: Constraint AT_MOST_ONE (%d) not respected:\n", c->c_id);
for (i = 0; i < c->n_c_vs; i++) {
fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[i]->v_id,
b_get_min_val(&c->c_vs[i]->domain_b), b_get_max_val(&c->c_vs[i]->domain_b), b_cnt_vals(&c->c_vs[i]->domain_b));
}
}
return false;
}
}
v_iter2++;
}
v_iter2 -= (unsigned int)cards[k];
}
v_iter2 += (unsigned int)cards[k];
v_iter1++;
}
}
return true;
}
#endif
#if CS_AT_MOST_ONE == 1
/*
* Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID at_most_one constraint
* ∀i∈[1,n]:|si|=ci ; ∀i,j∈[1,n](i<j):∣si⋂sj|≤1
* prop_ok will be set to 1 if success or to 0 if any domain became empty
* vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order
* c_consts - vector with all constrained constants per constraint, per constraint ID order
* vs_prop_ - all CSP variables with current step values
* prop_v_id - variable ID to propagate
* current_cs - constraint that should be propagated for the variable with prop_v_id ID
* vs_id_to_prop_ - circular vector with the ids of the variables to propagate
*/
CUDA_FUNC void at_most_one_prop(CL_INTS_MEM int* vs_per_c_idx, CL_INTS_MEM int* c_consts, CL_MEMORY VARS_PROP* vs_prop_, unsigned int prop_v_id, CL_CS_MEM cl_constr* current_cs,
CL_MEMORY unsigned short* vs_id_to_prop_, bool* prop_ok TTL_CTR) {
CL_INTS_MEM int* cards = c_consts;
int n_sets = current_cs->constant_val;
int set_to_prop_idx; // set with the variables to propagate
int set_to_prun_idx; // Iterator for the other sets to prune
int set_to_prop_n = -1;
int v_to_prop_id;
int v_to_prun_id;
int v_iter = 0;
int val;
int vals_repeat_ctr;
bool changed = 0;
int i, j, k;
// if the variable to propagate is singleton, propagate all the variables already singleton on that set to all the other sets
if (V_N_VALS(vs_prop_[prop_v_id]) == 1) {
// get the number of the set where the variable to propagate belong and initialize set_to_prop
v_iter = 0;
for (i = 0; i < n_sets; i++) {
CHECK_TTL(ttl_ctr, 43)
set_to_prop_idx = v_iter;
for (j = 0; j < cards[i]; j++) {
CHECK_TTL(ttl_ctr, 44)
if (prop_v_id == (unsigned int)vs_per_c_idx[v_iter]) {
set_to_prop_n = i;
break;
}
v_iter++;
}
if (set_to_prop_n != -1) {
break;
}
}
// iterate over all the sets
set_to_prun_idx = 0;
for (i = 0; i < n_sets; i++) {
CHECK_TTL(ttl_ctr, 45)
if (i > 0) {
set_to_prun_idx += cards[i - 1];
}
// if this set is not the one being propagated
if (i != set_to_prop_n) {
// iterate all the variables on the set to propagate and propagate all the singleton variables on that set
vals_repeat_ctr = 0;
for (j = 0; j < cards[set_to_prop_n]; j++) {
CHECK_TTL(ttl_ctr, 46)
v_to_prop_id = vs_per_c_idx[set_to_prop_idx + j];
if (V_N_VALS(vs_prop_[v_to_prop_id]) == 1) {
val = V_MIN(vs_prop_[v_to_prop_id]);
for (k = 0; k < cards[i]; k++) {
CHECK_TTL(ttl_ctr, 47)
v_to_prun_id = vs_per_c_idx[set_to_prun_idx + k];
// count number of singleton variable values repeated on both sets
if (V_N_VALS(vs_prop_[v_to_prun_id]) == 1 && V_MIN(vs_prop_[v_to_prun_id]) == val) {
vals_repeat_ctr++;
if (vals_repeat_ctr > 1) {
*prop_ok = 0;
return;
}
}
// if only one singleton variable value is repeated on both sets remove that value from the other variables
if (vals_repeat_ctr == 1 && V_N_VALS(vs_prop_[v_to_prun_id]) > 1) {
cl_v_del_val_m(&changed, &vs_prop_[v_to_prun_id], val TTL_CTR_V);
if (changed) {
if (V_N_VALS(vs_prop_[v_to_prun_id]) == 0) {
*prop_ok = 0;
return;
}
v_add_to_prop(vs_id_to_prop_, vs_prop_, v_to_prun_id);
}
}
}
}
}
}
}
}
}
#if CS_R_AT_MOST_ONE == 1
/*
* Validate at_most_one constraint to be normally propagated, when reified
* ∀i∈[1,n]:|si|=ci ; ∀i,j∈[1,n](i<j):∣si⋂sj|≤1
* vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order
* c_consts - vector with all constrained constants per constraint, per constraint ID order
* vs_prop_ - all CSP variables with current step values
* current_cs - constraint that should be propagated for the variable with prop_v_id ID
* vs_id_to_prop_ - circular vector with the ids of the variables to propagate
*/
CUDA_FUNC void at_most_one_reif( CL_INTS_MEM int* vs_per_c_idx, CL_INTS_MEM int* c_consts, CL_MEMORY VARS_PROP* vs_prop_, unsigned int prop_v_id, CL_CS_MEM cl_constr* current_cs,
CL_MEMORY unsigned short* vs_id_to_prop_ TTL_CTR) {
CL_INTS_MEM int* cards = c_consts;
int n_sets = current_cs->constant_val;
int set_to_prop_idx; // set with the variables to propagate
int set_to_prun_idx; // Iterator for the other sets to prune
int set_to_prop_n = -1;
int v_to_prop_id;
VARS_PROP v_to_prun;
int v_iter = 0;
int val;
int vals_repeat_ctr;
bool changed = 0;
int i, j, k;
// if the variable to propagate is singleton, propagate all the variables already singleton on that set to all the other sets
if (V_N_VALS(vs_prop_[prop_v_id]) == 1) {
// get the number of the set where the variable to propagate belong and initialize set_to_prop
v_iter = 0;
for (i = 0; i < n_sets; i++) {
CHECK_TTL(ttl_ctr, 48)
set_to_prop_idx = v_iter;
for (j = 0; j < cards[i]; j++) {
CHECK_TTL(ttl_ctr, 49)
if (prop_v_id == (unsigned int)vs_per_c_idx[v_iter]) {
set_to_prop_n = i;
break;
}
v_iter++;
}
if (set_to_prop_n != -1) {
break;
}
}
// iterate over all the sets
set_to_prun_idx = 0;
for (i = 0; i < n_sets; i++) {
CHECK_TTL(ttl_ctr, 50)
if (i > 0) {
set_to_prun_idx += cards[i - 1];
}
// if this set is not the one being propagated
if (i != set_to_prop_n) {
// iterate all the variables on the set to propagate and propagate all the singleton variables on that set
vals_repeat_ctr = 0;
for (j = 0; j < cards[set_to_prop_n]; j++) {
CHECK_TTL(ttl_ctr, 51)
v_to_prop_id = vs_per_c_idx[set_to_prop_idx + j];
if (V_N_VALS(vs_prop_[v_to_prop_id]) == 1) {
val = V_MIN(vs_prop_[v_to_prop_id]);
for (k = 0; k < cards[i]; k++) {
CHECK_TTL(ttl_ctr, 52)
cl_v_copy_pm(&v_to_prun, &vs_prop_[vs_per_c_idx[set_to_prun_idx + k]] TTL_CTR_V);
// count number of singleton variable values repeated on both sets
if (V_N_VALS(v_to_prun) == 1 && V_MIN(v_to_prun) == val) {
vals_repeat_ctr++;
if (vals_repeat_ctr > 1) {
cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V);
v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id));
return;
}
}
// if only one singleton variable value is repeated on both sets remove that value from the other variables
if (vals_repeat_ctr == 1 && V_N_VALS(v_to_prun) > 1) {
cl_v_del_val_n(&changed, &v_to_prun, val TTL_CTR_V);
if (V_N_VALS(v_to_prun) == 0) {
cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V);
v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id));
return;
}
}
}
}
}
}
}
// check if constraint is already fixed
v_iter = 0;
for (i = 0; i < current_cs->n_c_vs; i++) {
CHECK_TTL(ttl_ctr, 187)
if (V_N_VALS(vs_prop_[vs_per_c_idx[v_iter]]) != 1) {
return;
}
}
cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 0 TTL_CTR_V);
v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id));
}
}
/*
* Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID at_most_one opposite constraint
* ∀i∈[1,n]:|si|=ci ; ∀i,j∈[1,n](i<j):∣si⋂sj|>1
* vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order
* c_consts - vector with all constrained constants per constraint, per constraint ID order
* vs_prop_ - all CSP variables with current step values
* prop_v_id - variable ID to propagate
* current_cs - constraint that should be propagated for the variable with prop_v_id ID
* vs_id_to_prop_ - circular vector with the ids of the variables to propagate
*/
CUDA_FUNC void at_most_one_prop_opposite(CL_INTS_MEM int* vs_per_c_idx, CL_INTS_MEM int* c_consts, CL_MEMORY VARS_PROP* vs_prop_, unsigned int prop_v_id
, CL_CS_MEM cl_constr* current_cs TTL_CTR) {
CL_INTS_MEM int* cards = c_consts;
int n_sets = current_cs->constant_val;
int set_to_prop_idx; // set with the variables to propagate
int set_to_prun_idx; // Iterator for the other sets to prune
int set_to_prop_n = -1;
int v_to_prop_id;
int v_to_prun_id;
int v_iter = 0;
int val;
int vals_repeat_ctr;
bool contains;
int i, j, k;
// if the variable to propagate is singleton, propagate all the variables already singleton on that set to all the other sets
if (V_N_VALS(vs_prop_[prop_v_id]) == 1) {
// get the number of the set where the variable to propagate belong and initialize set_to_prop
v_iter = 0;
for (i = 0; i < n_sets; i++) {
CHECK_TTL(ttl_ctr, 200)
set_to_prop_idx = v_iter;
for (j = 0; j < cards[i]; j++) {
CHECK_TTL(ttl_ctr, 201)
if (prop_v_id == (unsigned int)vs_per_c_idx[v_iter]) {
set_to_prop_n = i;
break;
}
v_iter++;
}
if (set_to_prop_n != -1) {
break;
}
}
// iterate over all the sets
set_to_prun_idx = 0;
for (i = 0; i < n_sets; i++) {
CHECK_TTL(ttl_ctr, 202)
if (i > 0) {
set_to_prun_idx += cards[i - 1];
}
// if this set is not the one being propagated
if (i != set_to_prop_n) {
// iterate all the variables on the set to propagate and propagate all the singleton variables on that set
vals_repeat_ctr = 0;
for (j = 0; j < cards[set_to_prop_n]; j++) {
CHECK_TTL(ttl_ctr, 203)
v_to_prop_id = vs_per_c_idx[set_to_prop_idx + j];
if (V_N_VALS(vs_prop_[v_to_prop_id]) == 1) {
val = V_MIN(vs_prop_[v_to_prop_id]);
for (k = 0; k < cards[i]; k++) {
CHECK_TTL(ttl_ctr, 204)
v_to_prun_id = vs_per_c_idx[set_to_prun_idx + k];
// count number of variable values repeated on both sets
cl_v_contains_val_m(&contains, &vs_prop_[v_to_prun_id], val TTL_CTR_V);
if (contains) {
if (++vals_repeat_ctr > 1) {
return;
}
}
}
}
}
}
}
}
}
#endif
CUDA_FUNC void at_most_one_propagate(CL_INTS_MEM int* vs_per_c_idx, CL_INTS_MEM int* c_consts, CL_MEMORY VARS_PROP* vs_prop_, unsigned int prop_v_id, CL_CS_MEM cl_constr* current_cs,
CL_MEMORY unsigned short* vs_id_to_prop_, bool* prop_ok PROPAGATED_FUNC TTL_CTR) {
#if CS_R_AT_MOST_ONE == 0
at_most_one_prop(vs_per_c_idx, c_consts, vs_prop_, prop_v_id, current_cs, vs_id_to_prop_, prop_ok TTL_CTR_V);
#if CL_STATS == 1
*propagated = true;
#endif
#elif CS_R_AT_MOST_ONE == 1
if (current_cs->reified == 1) {
if (prop_v_id != current_cs->reif_var_id) {
if (V_N_VALS(vs_prop_[current_cs->reif_var_id]) > 1) {
at_most_one_reif(vs_per_c_idx, c_consts, vs_prop_, prop_v_id, current_cs, vs_id_to_prop_ TTL_CTR_V);
} else {
if (V_MIN(vs_prop_[current_cs->reif_var_id]) == 1) {
at_most_one_prop(vs_per_c_idx, c_consts, vs_prop_, prop_v_id, current_cs, vs_id_to_prop_, prop_ok TTL_CTR_V);
} else {
at_most_one_prop_opposite(vs_per_c_idx, c_consts, vs_prop_, prop_v_id, current_cs TTL_CTR_V);
}
#if CL_STATS == 1
*propagated = true;
#endif
}
}
} else {
at_most_one_prop(vs_per_c_idx, c_consts, vs_prop_, prop_v_id, current_cs, vs_id_to_prop_, prop_ok TTL_CTR_V);
#if CL_STATS == 1
*propagated = true;
#endif
}
#endif
}
#endif