bool_clause.c 13.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
/*
 * bool_clause.c
 *
 *  Created on: 19/10/2018
 *      Author: Pedro
 */

#ifndef __OPENCL_VERSION__

#include <stddef.h>
#include <stdio.h>

#include "bool_clause.h"

#include "../bitmaps.h"
#include "../config.h"
#include "../variables.h"

#endif

#include "../kernels/cl_aux_functions.h"
#if CL_D_TYPE == CL_BITMAP
#include "../kernels/cl_bitmaps.h"
#elif CL_D_TYPE == CL_INTERVAL
#include  "../kernels/cl_intervals.h"
#endif
#include "../kernels/cl_constraints.h"
#include "../kernels/cl_variables.h"
#include "../kernels/cl_ttl.h"

#ifndef __OPENCL_VERSION__

/*
 * Creates a new constraint of the type bool_clause and return the constraint ID
 * (∃ i ∈ 1..nx : X[i]) ∨ (∃ i ∈ 1..ny : ¬Y[i])
 * X_ids - IDs of variables x
 * n_x - number of variables in X_ids
 * Y_ids - IDs of variable y
 * n_y - number of variables in Y_ids
 */
unsigned int c_bool_clause(unsigned int *X_ids, unsigned int n_x, unsigned int *Y_ids, unsigned int n_y) {
	unsigned int i, j;

	for (i = 0; i < n_x; i++) {
		if (VS[X_ids[i]].max > 1) {
			v_del_gt(&VS[X_ids[i]], 1);

			if (VS[X_ids[i]].n_vals == 0) {
				printf("\nConstraint BOOL_CLAUSE makes model inconsistent at creation. No solution found.\n");

#if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__)
				printf("\nPress any key to exit\n");
				int a = getchar();
#endif

				exit(0);
			}
		}
	}
	for (i = 0; i < n_y; i++) {
		if (VS[Y_ids[i]].max > 1) {
			v_del_gt(&VS[Y_ids[i]], 1);

			if (VS[Y_ids[i]].n_vals == 0) {
				printf("\nConstraint BOOL_CLAUSE makes model inconsistent at creation. No solution found.\n");

#if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__)
				printf("\nPress any key to exit\n");
				int a = getchar();
#endif

				exit(0);
			}
		}
	}

	// set to include in kernel compilation
	USE_CS[BOOL_CLAUSE] = 1;
	USE_NON_CS_REIFI[BOOL_CLAUSE] = 1;
	REV = 1;

	unsigned int *c_vs = malloc((n_x + n_y) * sizeof(unsigned int));

	for (i = 0; i < n_x; i++) {
		c_vs[i] = X_ids[i];
	}
	for (j = 0; j < n_y; j++) {
		c_vs[i++] = Y_ids[j];
	}

	// creates a new generic constraint
	unsigned int c_id = c_new(c_vs, n_x + n_y, NULL, 0, -1);

	// pointers to this type of constraint functions
	CS[c_id].kind = BOOL_CLAUSE;
	CS[c_id].check_sol_f = &bool_clause_check;
	CS[c_id].constant_val = (int) n_x;	// begin of second array

	free(c_vs);

	return c_id;
}

/*
 * Creates a new constraint of the type bool_clause and return the constraint ID
 * (∃ i ∈ 1..nx : X[i]) ∨ (∃ i ∈ 1..ny : ¬Y[i])
 * X_ids - IDs of variables x
 * n_x - number of variables in X_ids
 * Y_ids - IDs of variable y
 * n_y - number of variables in Y_ids
 * reif_v_id - ID of the reification variable
 */
unsigned int c_bool_clause_reif(unsigned int *X_ids, unsigned int n_x, unsigned int *Y_ids, unsigned int n_y, int reif_v_id) {
	unsigned int i, j;

	if (VS[reif_v_id].max > 1) {
		v_del_gt(&VS[reif_v_id], 1);

		if (VS[reif_v_id].n_vals == 0) {
			printf("\nConstraint BOOL_CLAUSE_REIF makes model inconsistent at creation. No solution found.\n");

#if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__)
			printf("\nPress any key to exit\n");
			int a = getchar();
#endif

			exit(0);
		}
	}

	for (i = 0; i < n_x; i++) {
		if (VS[X_ids[i]].max > 1) {
			v_del_gt(&VS[X_ids[i]], 1);

			if (VS[X_ids[i]].n_vals == 0) {
				printf("\nConstraint BOOL_CLAUSE_REIF makes model inconsistent at creation. No solution found.\n");

#if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__)
				printf("\nPress any key to exit\n");
				int a = getchar();
#endif

				exit(0);
			}
		}
	}
	for (i = 0; i < n_y; i++) {
		if (VS[Y_ids[i]].max > 1) {
			v_del_gt(&VS[Y_ids[i]], 1);

			if (VS[Y_ids[i]].n_vals == 0) {
				printf("\nConstraint BOOL_CLAUSE_REIF makes model inconsistent at creation. No solution found.\n");

#if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__)
				printf("\nPress any key to exit\n");
				int a = getchar();
#endif

				exit(0);
			}
		}
	}

	// set to include in kernel compilation
	USE_CS[BOOL_CLAUSE] = 1;
	USE_CS_REIFI[BOOL_CLAUSE] = 1;
	REV = 1;

	unsigned int *c_vs = malloc((n_x + n_y) * sizeof(unsigned int));

	for (i = 0; i < n_x; i++) {
		c_vs[i] = X_ids[i];
	}
	for (j = 0; j < n_y; j++) {
		c_vs[i++] = Y_ids[j];
	}

	// creates a new generic constraint
	unsigned int c_id = c_new(c_vs, n_x + n_y, NULL, 0, reif_v_id);

	// pointers to this type of constraint functions
	CS[c_id].kind = BOOL_CLAUSE;
	CS[c_id].check_sol_f = &bool_clause_check;
	CS[c_id].constant_val = (int) n_x;	// begin of second array

	free(c_vs);

	return c_id;
}

/*
 * Return true if the bool_clause constraint is respected or false if not
 * (∃ i ∈ 1..nx : X[i]) ∨ (∃ i ∈ 1..ny : ¬Y[i])
 * c - constraint to check if is respected
 * explored - if the CSP was already explored, which mean that all the variables must already be singletons
 * */
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
bool bool_clause_check(constr *c, bool explored) {

	int y_begin = c->constant_val;
	int n = c->n_c_vs;
	int i;

	if (!explored) {
		for (i = 0; i < c->n_c_vs; i++) {
			if (c->c_vs[i]->n_vals > 1) {
				return false;
			}
		}
	}

	if (c->reified && VS[c->reif_v_id].n_vals > 1) {
		if (explored) {
			fprintf(stderr, "\nError: Reification variable of constraint BOOL_CLAUSE_REIF (%d) has 2 values.\n", c->c_id);
			return false;
		}
	}

	if (((!c->reified || (c->reified && VS[c->reif_v_id].min == 1)) && c->reified && VS[c->reif_v_id].n_vals > 1)
			|| (c->reified && VS[c->reif_v_id].min == 0 && c->reified && VS[c->reif_v_id].n_vals <= 1)) {

		if (explored) {

			if (c->reified) {
				fprintf(stderr, "\nError: Constraint BOOL_CLAUSE_REIF (%d) not respected:\n", c->c_id);
				fprintf(stderr, "Reif ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->reif_v_id, b_get_min_val(&VS[c->reif_v_id].domain_b),
						b_get_max_val(&VS[c->reif_v_id].domain_b), b_cnt_vals(&VS[c->reif_v_id].domain_b));

			} else {
				fprintf(stderr, "\nError: Constraint BOOL_CLAUSE (%d) not respected:\n", c->c_id);
			}
			return false;
		}
	}

	for (i = 0; i < y_begin; i++) {
		if (c->c_vs[i]->min == 1) {
			return true;
		}
	}
	for (i = 0; i < n; i++) {
		if (c->c_vs[i]->min == 0) {
			return true;
		}
	}
	return false;
}
#pragma GCC diagnostic pop

#endif

#if CS_BOOL_CLAUSE == 1
/*
 * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID bool_clause constraint
 * (∃ i ∈ 1..nx : X[i]) ∨ (∃ i ∈ 1..ny : ¬Y[i])
 * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order
 * vs_prop_ - all CSP variables with current step values
 * current_cs - constraint that should be propagated for the variable with prop_v_id ID
 * vs_id_to_prop_ - circular vector with the ids of the variables to propagate
 * prop_ok - will be set to 1 or 0 if the constraint is respected or not
 */
CUDA_FUNC void bool_clause_prop(CL_INTS_MEM int *vs_per_c_idx, CL_MEMORY VARS_PROP *vs_prop_, CL_CS_MEM cl_constr *current_cs,
		CL_MEMORY unsigned short *vs_id_to_prop_, bool *prop_ok CS_IGNORE_FUNC TTL_CTR) {

	int y_begin_id = current_cs->constant_val;
	int n_vs = current_cs->n_c_vs;
	int x_not_singl_ctr = 0;
	int x_not_singl_id = -1;
	int y_not_singl_ctr = 0;
	int y_not_singl_id = -1;
	int x_id, y_id;
	int i;

	for (i = 0; i < y_begin_id; i++) {
		x_id = vs_per_c_idx[i];

		if (V_N_VALS(vs_prop_[x_id]) == 1) {

			if (V_MIN(vs_prop_[x_id]) == 1) {
#if CL_CS_IGNORE
				cs_ignore[current_cs->c_id] = 1;
#endif
				return;
			}

		} else {
			x_not_singl_ctr++;
			x_not_singl_id = x_id;
		}
	}

	for (i = 0; i < n_vs - y_begin_id; i++) {
		y_id = vs_per_c_idx[y_begin_id + i];

		if (V_N_VALS(vs_prop_[y_id]) == 1) {

			if (V_MIN(vs_prop_[y_id]) == 0) {
#if CL_CS_IGNORE
				cs_ignore[current_cs->c_id] = 1;
#endif
				return;
			}

		} else {
			y_not_singl_ctr++;
			y_not_singl_id = y_id;
		}
	}

	if (x_not_singl_ctr == 0 && y_not_singl_ctr == 0) {
		*prop_ok = 0;
		return;
	}

	if (x_not_singl_ctr == 1 && y_not_singl_ctr == 0) {
		cl_v_bool_del_val_m(&vs_prop_[x_not_singl_id], 0 TTL_CTR_V);
		v_add_to_prop(vs_id_to_prop_, vs_prop_, x_not_singl_id);

#if CL_CS_IGNORE
		cs_ignore[current_cs->c_id] = 1;
#endif

	} else if (x_not_singl_ctr == 0 && y_not_singl_ctr == 1) {
		cl_v_bool_del_val_m(&vs_prop_[y_not_singl_id], 1 TTL_CTR_V);
		v_add_to_prop(vs_id_to_prop_, vs_prop_, y_not_singl_id);

#if CL_CS_IGNORE
		cs_ignore[current_cs->c_id] = 1;
#endif
	}
}

#if CS_R_BOOL_CLAUSE == 1
/*
 * Validate bool_clause constraint to be normally propagated, when reified
 * (∃ i ∈ 1..nx : X[i]) ∨ (∃ i ∈ 1..ny : ¬Y[i])
 * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order
 * vs_prop_ - all CSP variables with current step values
 * current_cs - constraint that should be propagated for the variable with prop_v_id ID
 * vs_id_to_prop_ - circular vector with the ids of the variables to propagate
 */
CUDA_FUNC void bool_clause_reif( CL_INTS_MEM int *vs_per_c_idx, CL_MEMORY VARS_PROP *vs_prop_, CL_CS_MEM cl_constr *current_cs,
		CL_MEMORY unsigned short *vs_id_to_prop_ CS_IGNORE_FUNC TTL_CTR) {

	int y_begin_id = current_cs->constant_val;
	int n_vs = current_cs->n_c_vs;
	int x_not_singl_ctr = 0;
	int y_not_singl_ctr = 0;
	int x_id, y_id;
	int i;

	for (i = 0; i < y_begin_id; i++) {
		x_id = vs_per_c_idx[i];

		if (V_N_VALS(vs_prop_[x_id]) == 1) {
			if (V_MIN(vs_prop_[x_id]) == 1 || x_not_singl_ctr > 1) {

				cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 0 TTL_CTR_V);
				v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int (current_cs->reif_var_id));

#if CL_CS_IGNORE
				cs_ignore[current_cs->c_id] = 1;
#endif
				return;
			}

			x_not_singl_ctr++;
		}
	}

	for (i = 0; i < n_vs - y_begin_id; i++) {
		y_id = vs_per_c_idx[i + y_begin_id];

		if (V_N_VALS(vs_prop_[y_id]) == 1) {
			if (V_MIN(vs_prop_[y_id]) == 0 || y_not_singl_ctr > 1) {

				cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 0 TTL_CTR_V);
				v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int (current_cs->reif_var_id));

#if CL_CS_IGNORE
				cs_ignore[current_cs->c_id] = 1;
#endif
				return;
			}
		} else {
			y_not_singl_ctr++;
		}
	}

	if (x_not_singl_ctr == 0 && y_not_singl_ctr == 0) {
		cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V);
		v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int (current_cs->reif_var_id));

#if CL_CS_IGNORE
		cs_ignore[current_cs->c_id] = 1;
#endif
	}
}

/*
 * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID bool_clause opposite constraint
 * !((∃ i ∈ 1..nx : X[i]) ∨ (∃ i ∈ 1..ny : ¬Y[i]))
 * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order
 * vs_prop_ - all CSP variables with current step values
 * current_cs - constraint that should be propagated for the variable with prop_v_id ID
 * vs_id_to_prop_ - circular vector with the ids of the variables to propagate
 * prop_ok - will be set to 1 or 0 if the constraint is respected or not
 */
CUDA_FUNC void bool_clause_prop_opposite( CL_INTS_MEM int *vs_per_c_idx, CL_MEMORY VARS_PROP *vs_prop_, CL_CS_MEM cl_constr *current_cs,
		CL_MEMORY unsigned short *vs_id_to_prop_, bool *prop_ok CS_IGNORE_FUNC TTL_CTR) {

	int y_begin_id = current_cs->constant_val;
	int n_vs = current_cs->n_c_vs;
	int x_id, y_id;
	int i;

	for (i = 0; i < y_begin_id; i++) {
		x_id = vs_per_c_idx[i];

		if (V_N_VALS(vs_prop_[x_id]) > 1) {
			cl_v_bool_del_val_m(&vs_prop_[x_id], 1 TTL_CTR_V);
			v_add_to_prop(vs_id_to_prop_, vs_prop_, x_id);

		} else if (V_MIN(vs_prop_[x_id]) == 1) {
			*prop_ok = 0;
			return;
		}
	}

	for (; i < n_vs - y_begin_id; i++) {
		y_id = vs_per_c_idx[i + y_begin_id];

		if (V_N_VALS(vs_prop_[y_id]) > 1) {
			cl_v_bool_del_val_m(&vs_prop_[y_id], 0 TTL_CTR_V);
			v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id);

		} else if (V_MIN(vs_prop_[y_id]) == 0) {
			*prop_ok = 0;
			return;
		}
	}

#if CL_CS_IGNORE
	cs_ignore[current_cs->c_id] = 1;
#endif
}

#endif

/*
 * Decides the propagator to call for this constraint
 * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order
 * vs_prop_ - all CSP variables with current step values
 * current_cs - constraint that should be propagated for the variable with prop_v_id ID
 * vs_id_to_prop_ - circular vector with the ids of the variables to propagate
 * prop_ok - will be set to 1 or 0 if the constraint is respected or not
 */
CUDA_FUNC void bool_clause_propagate(CL_INTS_MEM int *vs_per_c_idx, CL_MEMORY VARS_PROP *vs_prop_, CL_CS_MEM cl_constr *current_cs,
		CL_MEMORY unsigned short *vs_id_to_prop_, bool *prop_ok PROPAGATED_FUNC CS_IGNORE_FUNC TTL_CTR) {

#if CS_R_BOOL_CLAUSE == 0
	bool_clause_prop(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V);
#if CL_STATS == 1
	*propagated = true;
#endif

#elif CS_R_BOOL_CLAUSE == 1
	if (current_cs->reified == 1) {
		if (V_N_VALS(vs_prop_[current_cs->reif_var_id]) > 1) {
			bool_clause_reif(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_ CS_IGNORE_CALL TTL_CTR_V);

		} else {
			if (V_MIN(vs_prop_[current_cs->reif_var_id]) == 1) {
				bool_clause_prop(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V);
			} else {
				bool_clause_prop_opposite(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V);
			}
#if CL_STATS == 1
			*propagated = true;
#endif
		}
	} else {
		bool_clause_prop(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V);
#if CL_STATS == 1
		*propagated = true;
#endif
	}
#endif
}

#endif