split.c
83.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
/*
* split.c
*
* Created on: 19/02/2015
* Author: Pedro
*/
#include "split.h"
#include <limits.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <string.h>
#include <math.h>
#if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__)
#include "utils\pthread_win32\pthread.h"
#include "windows.h"
#else
#include <pthread.h>
#include <sys/time.h>
#endif
#include "bitmaps.h"
#include "config.h"
#include "config_device.h"
#include "constraints.h"
#include "domains.h"
#include "intervals.h"
#include "solve.h"
#include "utils/benchmark.h"
#include "utils/dev_errors.h"
#include "variables.h"
unsigned int devs_working; // number of devices still working
unsigned int devs_ranked; // number of devices already ranked
pthread_mutex_t opt_lock; // to synchronize threads for gathering optimization results
pthread_mutex_t stats_lock; // to synchronize threads for gathering statistics results
pthread_barrier_t devs_barrier; // to synchronize threads when initializing the devices
unsigned int ss_mult_max; // Max ss multiplier that can be applied
unsigned int best_sols_found_ctr; // counter for number of best solutions found
unsigned int vs_labeled_at_ss; // number of variables marked for labeling that were fully expanded when creating sub-search spaces
bool filtering = false; // If prefiltering
bool all_GPUs = true; // if all GPUs must be used
#if PRE_FILTER
bool filter = true;
#endif
/*
* Split the CSP between all the selected devices and work-items and solves it.
* If only one solution, or the best solution is wanted it return 1 if it is found, or 0 if none is found.
* If all solutions must be found it returns the number of solutions found.
* */
cl_ulong solve_CSP() {
if (C_ID_CNTR == 0) {
printf("\nThe CSP has no constraints.\n"
"Some constraints may have been removed due to them being already respected:\n");
print_CSP();
if (WORK == ONE || WORK == OPT) {
return 1;
} else {
cl_ulong result = 1;
unsigned int i;
for (i = 0; i < V_ID_CNTR; i++) {
result *= VS[0].n_vals;
}
return result;
}
} else {
unsigned int i, j;
if (N_VS_ORIGINAL == 0) {
N_VS_ORIGINAL = V_ID_CNTR;
}
if (N_CS_ORIGINAL == 0) {
N_CS_ORIGINAL = C_ID_CNTR;
}
if (PRINT_CSP) {
print_CSP();
}
if (N_DEVS > 1 && DOMAIN_TYPE == INTERVAL) {
printf("\nPHACT cannot use interval domains with more than one device at the same time.\n"
"Please remove \"-INTERVALS\" from the command arguments, or use a single device.\n\n");
#if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__)
printf("\nPress any key to exit\n");
int a = getchar();
#endif
exit(0);
}
if (CS_IGNORE && DOMAIN_TYPE == INTERVAL) {
CS_IGNORE = false;
}
#if PRE_FILTER
if (filter) {
// Prunes domain values that are already inconsistent at CSP definition
if (!filter_CSP()) {
return 0;
}
// If these results are a solution, returns 1
if (cs_check(false)) {
return 1;
}
// remove constraints fixed after filtering
if (CS_IGNORE) {
cs_remove_ignored();
}
// all the constraints were fixed at filtering, but some variables are not singleton
if (C_ID_CNTR == 0) {
j = 1;
for (i = 0; i < N_VS; i++) {
j *= VS[i].n_vals;
}
printf("\n");
return j;
}
}
#endif
devs_ranked = 0; // number of devices already ranked
ss_mult_max = 1; // Max ss multiplier that can be applied
best_sols_found_ctr = 1; // counter for number of best solutions found
vs_labeled_at_ss = 0; // number of variables marked for labeling that were fully expanded when creating sub-search spaces
unsigned int n_ss = 0; // Number of sub-search spaces created
unsigned int depth = 0; // Tree expansion depth needed to get n_ss disjoint search spaces
unsigned int gpu_cntr = 0; // Number of GPUs compatible with OpenCL present on the running machine
unsigned int cpu_cntr = 0; // Number of CPUs compatible with OpenCL present on the running machine
unsigned int acc_cntr = 0; // Number of ACCs compatible with OpenCL present on the running machine
cl_ulong result = 0; // Number of solutions found, or 0 or 1 if only one solution is wanted
unsigned int next_str = 0; // Index in stores where the next unexplored sub-search space is placed (atomic read and write)
unsigned char sol_found = 0; // To set to 1 when only one solution is wanted and is found (atomic read and write)
int thread_ret; // Value returned from each device thread
unsigned int n_vs_cs; // number of all variables in all constraints
unsigned int n_cs_vs; // number of all constraints in all variables
unsigned int n_const_cs; // number of all constant values in all constraints with more than one constant value
size_t l_mem_per_wi; // size in bytes of the local memory needed per work-item
char *host_name = NULL; // name of the OpenCL host
STATS.n_solutions = 0;
STATS.search_spaces = 0;
platf_args *platform_args; // each platform arguments for all devices of the same platform
cl_device_id gpu_dev[MAX_DEVS]; // to save all GPUs cl_device_id
cl_platform_id gpu_platf[MAX_DEVS]; // to save all GPUs cl_platform_id
cl_device_id cpu_dev[MAX_DEVS]; // to save all CPUs cl_device_id
cl_platform_id cpu_platf[MAX_DEVS]; // to save all CPUs cl_platform_id
cl_device_id acc_dev[MAX_DEVS]; // to save all ACCs cl_device_id
cl_platform_id acc_platf[MAX_DEVS]; // to save all ACCs cl_platform_id
cl_platform_id *platfs = NULL; // to save all devices cl_platform_id
cl_device_id *devs = NULL; // to save all devices cl_device_id
cl_uint platf_cnt = 0; // number of platforms (Intel, Nvidia...)
cl_uint dev_cnt = 0; // number of devices on each platform (CPU, MIC...)
cl_int ret; // output of clGetPlatformIDs and clGetDeviceIDs
size_t val_size; // size of values to get from OpenCL calls
// Use command line heuristics for labeling and assignment, if existent. If not use default
if (LABEL_MODE_COM != DEFAULT_L) {
LABEL_MODE = LABEL_MODE_COM;
} else if (LABEL_MODE == DEFAULT_L) {
LABEL_MODE = LABEL_MODE_D;
}
if (ASSIGN_MODE_COM != DEFAULT_A) {
ASSIGN_MODE = ASSIGN_MODE_COM;
} else if (ASSIGN_MODE == DEFAULT_A) {
ASSIGN_MODE = ASSIGN_MODE_D;
}
init_csp_and_d_bits();
// discover all platforms (Intel, Nvidia, AMD,...)
ret = clGetPlatformIDs(0, NULL, &platf_cnt);
cl_check_error(ret, "clGetPlatformIDs", "discovering devices");
platfs = (cl_platform_id*) malloc(platf_cnt * sizeof(cl_platform_id));
ret = clGetPlatformIDs(platf_cnt, platfs, NULL);
cl_check_error(ret, "clGetPlatformIDs", "discovering devices");
platform_args = (platf_args*) malloc(platf_cnt * sizeof(platf_args));
// when all devices should be used
if (ALL_DEVS) {
N_DEVS = 0;
// for each platform
for (i = 0; i < platf_cnt; i++) {
// discover all devices (GPUs, CPUs, MICs,...)
ret = clGetDeviceIDs(platfs[i], CL_DEVICE_TYPE_ALL, 0, NULL, &dev_cnt);
cl_check_error(ret, "clGetDeviceIDs", "discovering devices");
devs = (cl_device_id*) malloc(sizeof(cl_device_id) * dev_cnt);
ret = clGetDeviceIDs(platfs[i], CL_DEVICE_TYPE_ALL, dev_cnt, devs, NULL);
cl_check_error(ret, "clGetDeviceIDs", "discovering devices");
platform_args[i].platform_id = platfs[i];
platform_args[i].n_devs = dev_cnt;
// for each device
for (j = 0; j < dev_cnt; j++) {
// Identify the type of device (GPU, CPU, MIC,...)
cl_device_type cl_device_type;
ret = clGetDeviceInfo(devs[j], CL_DEVICE_TYPE, sizeof(cl_device_type), &cl_device_type, NULL);
cl_check_error(ret, "clGetDeviceInfo", "CL_DEVICE_TYPE");
// to identify the device that user wants to use
if (cl_device_type & CL_DEVICE_TYPE_GPU) {
DEVICES_INFO[N_DEVS].type = CL_DEVICE_TYPE_GPU;
DEVICES_INFO[N_DEVS].dev_type_n = (int) gpu_cntr + 1;
DEVICES_INFO[N_DEVS].n_wg = 0;
DEVICES_INFO[N_DEVS].n_wi_wg = 0;
gpu_platf[gpu_cntr] = platfs[i];
gpu_dev[gpu_cntr++] = devs[j];
} else if (cl_device_type & CL_DEVICE_TYPE_CPU) {
DEVICES_INFO[N_DEVS].type = CL_DEVICE_TYPE_CPU;
DEVICES_INFO[N_DEVS].dev_type_n = (int) cpu_cntr + 1;
DEVICES_INFO[N_DEVS].n_wg = 0;
DEVICES_INFO[N_DEVS].n_wi_wg = 0;
cpu_platf[cpu_cntr] = platfs[i];
cpu_dev[cpu_cntr++] = devs[j];
// get device name
ret = clGetDeviceInfo(devs[j], CL_DEVICE_NAME, 0, NULL, &val_size);
cl_check_error(ret, "clGetDeviceInfo", "CL_DEVICE_NAME");
char *aux_name = (char*) malloc(val_size);
ret = clGetDeviceInfo(devs[j], CL_DEVICE_NAME, val_size, aux_name, NULL);
cl_check_error(ret, "clGetDeviceInfo", "CL_DEVICE_NAME");
// trim leading spaces on device name
unsigned int del = 0;
while (isspace((unsigned char )(aux_name[del])))
del++;
host_name = (char*) malloc(val_size - del);
strcpy(host_name, &aux_name[del]);
free(aux_name);
} else if (cl_device_type & CL_DEVICE_TYPE_ACCELERATOR) {
DEVICES_INFO[N_DEVS].type = CL_DEVICE_TYPE_ACCELERATOR;
DEVICES_INFO[N_DEVS].dev_type_n = (int) acc_cntr + 1;
DEVICES_INFO[N_DEVS].n_wg = 0;
DEVICES_INFO[N_DEVS].n_wi_wg = 0;
acc_platf[acc_cntr] = platfs[i];
acc_dev[acc_cntr++] = devs[j];
} else {
fprintf(stderr, "\nError: clGetDeviceInfo returned a device type that is not supported by PHACT.\n");
#if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__)
printf("\nPress any key to exit\n");
int a = getchar();
#endif
exit(0);
}
N_DEVS++;
}
}
// when user selected the devices to use
} else {
// for each platform
for (i = 0; i < platf_cnt; i++) {
// discover all devices (GPUs, CPUs, MICs,...)
ret = clGetDeviceIDs(platfs[i], CL_DEVICE_TYPE_ALL, 0, NULL, &dev_cnt);
cl_check_error(ret, "clGetDeviceIDs", "discovering devices");
devs = (cl_device_id*) malloc(dev_cnt * sizeof(cl_device_id));
ret = clGetDeviceIDs(platfs[i], CL_DEVICE_TYPE_ALL, dev_cnt, devs, NULL);
cl_check_error(ret, "clGetDeviceIDs", "discovering devices");
platform_args[i].platform_id = platfs[i];
platform_args[i].n_devs = dev_cnt;
// for each device
for (j = 0; j < dev_cnt; j++) {
// Identify the type of device (GPU, CPU, MIC,...)
cl_device_type cl_device_type;
ret = clGetDeviceInfo(devs[j], CL_DEVICE_TYPE, sizeof(cl_device_type), &cl_device_type, NULL);
cl_check_error(ret, "clGetDeviceInfo", "CL_DEVICE_TYPE");
// to identify the device that user wants to use
if (cl_device_type & CL_DEVICE_TYPE_GPU) {
gpu_platf[gpu_cntr] = platfs[i];
gpu_dev[gpu_cntr++] = devs[j];
} else if (cl_device_type & CL_DEVICE_TYPE_CPU) {
cpu_platf[cpu_cntr] = platfs[i];
cpu_dev[cpu_cntr++] = devs[j];
// get device name
ret = clGetDeviceInfo(devs[j], CL_DEVICE_NAME, 0, NULL, &val_size);
cl_check_error(ret, "clGetDeviceInfo", "CL_DEVICE_NAME");
char *aux_name = (char*) malloc(val_size);
ret = clGetDeviceInfo(devs[j], CL_DEVICE_NAME, val_size, aux_name, NULL);
cl_check_error(ret, "clGetDeviceInfo", "CL_DEVICE_NAME");
// trim leading spaces on device name
unsigned int del = 0;
while (isspace((unsigned char )(aux_name[del])))
del++;
host_name = (char*) malloc(val_size - del);
strcpy(host_name, &aux_name[del]);
free(aux_name);
} else if (cl_device_type & CL_DEVICE_TYPE_ACCELERATOR) {
acc_platf[acc_cntr] = platfs[i];
acc_dev[acc_cntr++] = devs[j];
} else {
fprintf(stderr, "\nError: clGetDeviceInfo returned a device type that is not supported by PHACT.\n");
#if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__)
printf("\nPress any key to exit\n");
int a = getchar();
#endif
exit(0);
}
}
free(devs);
}
}
free(platfs);
if (N_GPUs > gpu_cntr || N_CPUs > cpu_cntr || N_ACCs > acc_cntr) {
printf("\nPHACT is trying to use a device that is not compatible with OpenCL, or that doesn't exist on this machine. "
"Please check the selected devices.\n");
#if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__)
printf("\nPress any key to exit\n");
int a = getchar();
#endif
exit(0);
}
for (i = 0; i < N_DEVS; i++) {
// if user wants to use all the devices of a type
if (DEVICES_INFO[i].dev_type_n == 0) {
DEVICES_INFO[i].dev_type_n = 1;
if (DEVICES_INFO[i].type == CL_DEVICE_TYPE_GPU) {
for (j = 1; j < gpu_cntr; j++) {
DEVICES_INFO[N_DEVS].dev_type_n = DEVICES_INFO[i].dev_type_n + (int) j;
DEVICES_INFO[N_DEVS].type = DEVICES_INFO[i].type;
DEVICES_INFO[N_DEVS].n_wg = DEVICES_INFO[i].n_wg;
DEVICES_INFO[N_DEVS].n_wi_wg = DEVICES_INFO[i].n_wi_wg;
N_DEVS++;
}
} else if (DEVICES_INFO[i].type == CL_DEVICE_TYPE_CPU) {
for (j = 1; j < cpu_cntr; j++) {
DEVICES_INFO[N_DEVS].dev_type_n = DEVICES_INFO[i].dev_type_n + (int) j;
DEVICES_INFO[N_DEVS].type = DEVICES_INFO[i].type;
DEVICES_INFO[N_DEVS].n_wg = DEVICES_INFO[i].n_wg;
DEVICES_INFO[N_DEVS].n_wi_wg = DEVICES_INFO[i].n_wi_wg;
N_DEVS++;
}
all_GPUs = false;
} else {
for (j = 1; j < acc_cntr; j++) {
DEVICES_INFO[N_DEVS].dev_type_n = DEVICES_INFO[i].dev_type_n + (int) j;
DEVICES_INFO[N_DEVS].type = DEVICES_INFO[i].type;
DEVICES_INFO[N_DEVS].n_wg = DEVICES_INFO[i].n_wg;
DEVICES_INFO[N_DEVS].n_wi_wg = DEVICES_INFO[i].n_wi_wg;
N_DEVS++;
}
all_GPUs = false;
}
}
// save the platform_id, device_id and the n_wi_wg (if default) for all the devices to use
if (DEVICES_INFO[i].type == CL_DEVICE_TYPE_GPU) {
DEVICES_INFO[i].platform_id = gpu_platf[DEVICES_INFO[i].dev_type_n - 1];
DEVICES_INFO[i].device_id = gpu_dev[DEVICES_INFO[i].dev_type_n - 1];
} else if (DEVICES_INFO[i].type == CL_DEVICE_TYPE_CPU) {
DEVICES_INFO[i].platform_id = cpu_platf[DEVICES_INFO[i].dev_type_n - 1];
DEVICES_INFO[i].device_id = cpu_dev[DEVICES_INFO[i].dev_type_n - 1];
} else {
DEVICES_INFO[i].platform_id = acc_platf[DEVICES_INFO[i].dev_type_n - 1];
DEVICES_INFO[i].device_id = acc_dev[DEVICES_INFO[i].dev_type_n - 1];
}
// get number of compute units on this device
ret = clGetDeviceInfo(DEVICES_INFO[i].device_id, CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(cl_uint), &DEVICES_INFO[i].compute_units, NULL);
cl_check_error(ret, "clGetDeviceInfo", "CL_DEVICE_MAX_COMPUTE_UNITS");
// get maximum cores frequency
ret = clGetDeviceInfo(DEVICES_INFO[i].device_id, CL_DEVICE_MAX_CLOCK_FREQUENCY, sizeof(cl_uint), &DEVICES_INFO[i].max_freq, NULL);
cl_check_error(ret, "clGetDeviceInfo", "CL_DEVICE_MAX_CLOCK_FREQUENCY");
// get the amount of local memory to check if it is enough
ret = clGetDeviceInfo(DEVICES_INFO[i].device_id, CL_DEVICE_LOCAL_MEM_SIZE, sizeof(DEVICES_INFO[i].local_mem_max_alloc),
&DEVICES_INFO[i].local_mem_max_alloc, NULL);
cl_check_error(ret, "clGetDeviceInfo", "CL_DEVICE_LOCAL_MEM_SIZE");
// set number of work-items and work-groups to use on each device
if (DEVICES_INFO[i].type == CL_DEVICE_TYPE_GPU) {
DEVICES_INFO[i].use_local_mem = false;
DEVICES_INFO[i].def_n_wi_wg = GPU_DEFAULT_N_WI;
DEVICES_INFO[i].def_n_wg = GPU_DEFAULT_N_WG;
} else if (DEVICES_INFO[i].type == CL_DEVICE_TYPE_CPU) {
DEVICES_INFO[i].use_local_mem = true;
DEVICES_INFO[i].def_n_wi_wg = 1; // default number of work-items per work-group to use
DEVICES_INFO[i].def_n_wg = DEVICES_INFO[i].compute_units; // default number of work-groups to use
} // MICs
else {
DEVICES_INFO[i].use_local_mem = true;
DEVICES_INFO[i].def_n_wi_wg = 1; // default number of work-items per work-group to use
DEVICES_INFO[i].def_n_wg = DEVICES_INFO[i].compute_units; // default number of work-groups to use
}
if (DEVICES_INFO[i].n_wg == 0) {
DEVICES_INFO[i].n_wg = DEVICES_INFO[i].def_n_wg;
}
if (DEVICES_INFO[i].n_wi_wg == 0) {
DEVICES_INFO[i].n_wi_wg = DEVICES_INFO[i].def_n_wi_wg;
}
DEVICES_INFO[i].stores_explored = 0;
DEVICES_INFO[i].last_1ss_solv_time = 0;
DEVICES_INFO[i].avg_1ss_solv_time = 0;
DEVICES_INFO[i].max_1ss_solv_time = 0;
DEVICES_INFO[i].n_ss_mult = 1;
DEVICES_INFO[i].rank = 0;
DEVICES_INFO[i].times_used = 0;
DEVICES_INFO[i].ms_solve_time = 0;
DEVICES_INFO[i].first_time_ranked = false;
DEVICES_INFO[i].props_total = 0;
DEVICES_INFO[i].last_props = 0;
DEVICES_INFO[i].avg_time_prop = 0;
DEVICES_INFO[i].last_time_prop = 0;
DEVICES_INFO[i].max_time_prop = 0;
DEVICES_INFO[i].ranked = false;
DEVICES_INFO[i].working = true;
DEVICES_INFO[i].last_explor_time = 0;
DEVICES_INFO[i].n_fast_blocks = 0;
DEVICES_INFO[i].sols_found = 0;
DEVICES_INFO[i].n_buffers = 1;
DEVICES_ARGS[i].split_values_ext = 1;
DEVICES_INFO[i].exp_values = calloc(N_VS, sizeof(unsigned int));
DEVICES_INFO[i].n_empty_blocks = 0;
}
if (DOMAIN_TYPE == INTERVAL && !CAN_USE_INTERVALS) {
printf("\nThe domains of the variables of the current CSP contain non-contiguous values,\n"
"which are not permitted when using interval domains in PHACT.\n"
"Please remove \"-INTERVALS\" from the command arguments.\n\n");
#if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__)
printf("\nPress any key to exit\n");
int a = getchar();
#endif
exit(0);
}
// if using intervals convert bitmaps to intervals
if (DOMAIN_TYPE == INTERVAL) {
set_interval_domains();
}
// Reset variables set for labeling, because some of them may be singleton already and count the number of variables that should be labeled
N_VS_TO_LABEL = vs_cnt_vs_to_label(VS, N_VS);
n_vs_cs = (unsigned int) cs_cnt_vs(CS, N_CS); // count the number of variables in all constraints
n_cs_vs = vs_cnt_cs(VS, N_VS); // count the number of constraints in all variables
n_const_cs = (unsigned int) cs_cnt_constants(CS, N_CS); // count the number of constants constrained by all the constraints (if more than one)
bool use_split_values = false;
#if FZN_SEQ
for (i = 0; i < (unsigned int) FZN_SEQ_N_LABELS; i++) {
if (FZN_SEQ_ASSIGNS[i] == INDOMAIN_SPLIT || FZN_SEQ_ASSIGNS[i] == INDOMAIN_REVERSE_SPLIT || FZN_SEQ_ASSIGNS[i] == INDOMAIN_INTERVAL
|| FZN_SEQ_ASSIGNS[i] == INDOMAIN_MEDIAN || FZN_SEQ_ASSIGNS[i] == INDOMAIN_MIDDLE) {
use_split_values = true;
break;
}
}
#endif
if (ASSIGN_MODE == INDOMAIN_SPLIT || ASSIGN_MODE == INDOMAIN_REVERSE_SPLIT || ASSIGN_MODE == INDOMAIN_INTERVAL || ASSIGN_MODE == INDOMAIN_MEDIAN
|| ASSIGN_MODE == INDOMAIN_MIDDLE || use_split_values) {
unsigned int split_values_ext = 1;
unsigned int n_vals_ctr = 0;
for (i = 0; i < N_VS; i++) {
#if FZN_SEQ
if (VS[i].to_label && VS[i].n_vals > 1
&& (VS[i].assign_h == INDOMAIN_SPLIT || VS[i].assign_h == INDOMAIN_REVERSE_SPLIT || VS[i].assign_h == INDOMAIN_INTERVAL
|| VS[i].assign_h == INDOMAIN_MEDIAN || VS[i].assign_h == INDOMAIN_MIDDLE))
#else
if (VS[i].to_label && VS[i].n_vals > 1)
#endif
{
n_vals_ctr += VS[i].n_vals;
}
}
while (((unsigned int) (n_vals_ctr / 2)) > 0) {
n_vals_ctr /= 2;
split_values_ext++;
}
for (i = 0; i < N_DEVS; i++) {
DEVICES_ARGS[i].split_values_ext = split_values_ext;
}
}
#if SORT_VS
if (SORT_MODE == BY_LABEL) {
// sort variables by the ones that may be labeled
vs_sort_label_first(VS, N_VS);
} else if (SORT_MODE == BY_MOST_USED_CONSTR) {
// sort constraints on each variable by the constraint that is more common on the CSP
vs_sort_constr(VS, N_VS);
} else if (SORT_MODE == BY_LABEL_MORE_VALS) {
// sort variables by the ones that may be labeled and that have more values on their domains
vs_sort_label_more_vals_first();
} else if (SORT_MODE == BY_LABEL_LESS_VALS) {
// sort variables by the ones that may be labeled and that have more values on their domains
vs_sort_label_less_vals_first();
} else {
fprintf(stderr, "\nError: Error: No heuristic for sorting variables was selected.\n\n");
#if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__)
printf("\nPress any key to exit\n");
int a = getchar();
#endif
exit(0);
}
#endif
// split the search space and fill the stores
split_ss(&depth, &n_ss, (unsigned int) N_VS_TO_LABEL);
if (N_VS_TO_LABEL == 0) {
fprintf(stderr, "\nNo CSP variable is marked for labeling.\n\n");
#if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__)
printf("\nPress any key to exit\n");
int a = getchar();
#endif
exit(0);
}
// variables that are fully expanded during sub-search spaces creation are already labeled
N_VS_TO_LABEL -= (int) vs_labeled_at_ss;
if (N_VS_TO_LABEL <= 0) {
N_VS_TO_LABEL = 1;
}
if (USE_TTL) {
printf("\nTTL is enabled inside the kernel.\n\n");
}
if (!QUIET) {
printf("\nSolving the CSP with:\n - Host: %s", host_name);
}
if (VERBOSE) {
if (DOMAIN_TYPE == BITMAP_) {
printf(" with %d-bits bitmap domains on %d-bits words\n", H_BITS, H_WORD);
} else if (DOMAIN_TYPE == INTERVAL) {
printf(" with interval domains\n");
}
} else if (!QUIET) {
printf("\n");
}
// set revision to on (REV=1) or off (REV=0) by default. If PRE_LABELING==2, it is set to 1 if any propagator is capable of propagating
// variables with more than one value in its domain
if (PRE_LABELING == 0) {
REV = 0;
} else if (PRE_LABELING == 1) {
REV = 1;
}
#if FZN_SEQ
if (!QUIET) {
printf(" - Device(s)");
}
if (REV == 1 && !QUIET) {
printf(" (with revision)");
}
#else
if (!QUIET) {
printf(" - Device(s) with %s and %s heuristics", get_label_heur(LABEL_MODE), get_assign_heur(ASSIGN_MODE));
}
if (REV == 1 && !QUIET) {
printf(" (and revision)");
}
#endif
if (!QUIET) {
printf(":\n");
}
if (host_name != NULL) {
free(host_name);
}
if (DOMAIN_TYPE == BITMAP_) {
l_mem_per_wi = (N_VS + 2) * sizeof(cl_ushort) + N_VS * (sizeof(cl_var_p_bitmap) - sizeof(cl_bitmap) + DOMAIN_SIZE);
} else {
l_mem_per_wi = (N_VS + 2) * sizeof(cl_ushort) + N_VS * sizeof(cl_var_p_interval);
}
// check if memory is enough. If not, reduce the number of wi, and wg if also needed.
for (i = 0; i < N_DEVS; i++) {
#if USE_LOCAL_MEM == 0
DEVICES_INFO[i].use_local_mem = false;
#elif USE_LOCAL_MEM == 1
DEVICES_INFO[i].use_local_mem = true;
#endif
// get device name
ret = clGetDeviceInfo(DEVICES_INFO[i].device_id, CL_DEVICE_NAME, 0, NULL, &val_size);
cl_check_error(ret, "clGetDeviceInfo", "CL_DEVICE_NAME");
char *aux_name = (char*) malloc(val_size);
ret = clGetDeviceInfo(DEVICES_INFO[i].device_id, CL_DEVICE_NAME, val_size, aux_name, NULL);
cl_check_error(ret, "clGetDeviceInfo", "CL_DEVICE_NAME");
// trim leading spaces on device name
unsigned int del = 0;
while (isspace((unsigned char )(aux_name[del])))
del++;
DEVICES_INFO[i].dev_name = (char*) malloc(val_size - del);
strcpy(DEVICES_INFO[i].dev_name, &aux_name[del]);
free(aux_name);
if (DEVICES_INFO[i].use_local_mem && DEVICES_INFO[i].local_mem_max_alloc < l_mem_per_wi * DEVICES_INFO[i].n_wi_wg) {
printf(" Due to the amount of memory required, local memory will not be used in %s.\n", DEVICES_INFO[i].dev_name);
DEVICES_INFO[i].use_local_mem = false;
}
DEVICES_ARGS[i].n_vs_to_label = (unsigned int) N_VS_TO_LABEL;
DEVICES_ARGS[i].n_vs_cs = n_vs_cs;
DEVICES_ARGS[i].n_cs_vs = n_cs_vs;
DEVICES_ARGS[i].n_const_cs = n_const_cs;
// get the amount of allowable global memory per buffer to check if it is enough (or if more than one buffer is required)
ret = clGetDeviceInfo(DEVICES_INFO[i].device_id, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(DEVICES_INFO[i].global_mem_max_alloc),
&DEVICES_INFO[i].global_mem_max_alloc,
NULL);
cl_check_error(ret, "clGetDeviceInfo", "CL_DEVICE_MAX_MEM_ALLOC_SIZE");
// get the size of the global memory
ret = clGetDeviceInfo(DEVICES_INFO[i].device_id, CL_DEVICE_GLOBAL_MEM_SIZE, sizeof(DEVICES_INFO[i].global_mem_size),
&DEVICES_INFO[i].global_mem_size, NULL);
cl_check_error(ret, "clGetDeviceInfo", "CL_DEVICE_GLOBAL_MEM_SIZE");
// get the maximum size of each constant memory buffer to check if it is enough
ret = clGetDeviceInfo(DEVICES_INFO[i].device_id, CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE, sizeof(DEVICES_INFO[i].constant_mem_max_alloc),
&DEVICES_INFO[i].constant_mem_max_alloc, NULL);
cl_check_error(ret, "clGetDeviceInfo", "CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE");
size_t n_wg_init = DEVICES_INFO[i].n_wg;
size_t n_wi_wg_init = DEVICES_INFO[i].n_wi_wg;
if (DEVICES_INFO[i].use_local_mem) {
// set buffers size and check if global memory is enough
DEVICES_INFO[i].n_wi_wg++;
do {
DEVICES_INFO[i].n_wi_wg--;
// number of work-items that will be created on this device
DEVICES_ARGS[i].wi_local = DEVICES_INFO[i].n_wi_wg;
DEVICES_ARGS[i].wi_total = DEVICES_INFO[i].n_wg * DEVICES_INFO[i].n_wi_wg;
set_buffs_size(&DEVICES_ARGS[i], &DEVICES_INFO[i], filtering);
#if USE_MORE_BUFFERS
} while (DEVICES_INFO[i].global_mem_used > (double) DEVICES_INFO[i].global_mem_size * USE_MORE_BUFFERS_P && DEVICES_INFO[i].n_wi_wg > 1);
#else
} while (DEVICES_INFO[i].global_mem_used > DEVICES_INFO[i].global_mem_max_alloc && DEVICES_INFO[i].n_wi_wg > 1);
#endif
#if USE_MORE_BUFFERS
// if global memory not enough for 1 wi_wg, exit
if (DEVICES_INFO[i].n_wi_wg == 1 && DEVICES_INFO[i].global_mem_used > (double) DEVICES_INFO[i].global_mem_size * USE_MORE_BUFFERS_P) {
#else
// if global memory not enough for 1 wi_wg, exit
if (DEVICES_INFO[i].n_wi_wg == 1 && DEVICES_INFO[i].global_mem_used > DEVICES_INFO[i].global_mem_max_alloc) {
#endif
DEVICES_INFO[i].n_wg++;
do {
DEVICES_INFO[i].n_wg--;
// number of work-items that will be created on this device
DEVICES_ARGS[i].wi_local = DEVICES_INFO[i].n_wi_wg;
DEVICES_ARGS[i].wi_total = DEVICES_INFO[i].n_wg * DEVICES_INFO[i].n_wi_wg;
set_buffs_size(&DEVICES_ARGS[i], &DEVICES_INFO[i], filtering);
#if USE_MORE_BUFFERS
} while (DEVICES_INFO[i].global_mem_used > (double) DEVICES_INFO[i].global_mem_size * USE_MORE_BUFFERS_P && DEVICES_INFO[i].n_wg > 1);
#else
} while (DEVICES_INFO[i].global_mem_used > DEVICES_INFO[i].global_mem_max_alloc && DEVICES_INFO[i].n_wg > 1);
#endif
}
} else {
DEVICES_INFO[i].n_wg++;
do {
DEVICES_INFO[i].n_wg--;
// number of work-items that will be created on this device
DEVICES_ARGS[i].wi_local = DEVICES_INFO[i].n_wi_wg;
DEVICES_ARGS[i].wi_total = DEVICES_INFO[i].n_wg * DEVICES_INFO[i].n_wi_wg;
set_buffs_size(&DEVICES_ARGS[i], &DEVICES_INFO[i], filtering);
}
#if USE_MORE_BUFFERS
while (DEVICES_INFO[i].global_mem_used > (double) DEVICES_INFO[i].global_mem_size * USE_MORE_BUFFERS_P && DEVICES_INFO[i].n_wg > 128);
#else
while (DEVICES_INFO[i].global_mem_used > DEVICES_INFO[i].global_mem_max_alloc && DEVICES_INFO[i].n_wg > 128);
#endif
if (DEVICES_INFO[i].n_wg <= 128 && DEVICES_INFO[i].global_mem_used > DEVICES_INFO[i].global_mem_max_alloc) {
DEVICES_INFO[i].n_wi_wg++;
do {
DEVICES_INFO[i].n_wi_wg--;
// number of work-items that will be created on this device
DEVICES_ARGS[i].wi_local = DEVICES_INFO[i].n_wi_wg;
DEVICES_ARGS[i].wi_total = DEVICES_INFO[i].n_wg * DEVICES_INFO[i].n_wi_wg;
set_buffs_size(&DEVICES_ARGS[i], &DEVICES_INFO[i], filtering);
}
#if USE_MORE_BUFFERS
while (DEVICES_INFO[i].global_mem_used > (double) DEVICES_INFO[i].global_mem_size * USE_MORE_BUFFERS_P && DEVICES_INFO[i].n_wi_wg > 1);
#else
while (DEVICES_INFO[i].global_mem_used > DEVICES_INFO[i].global_mem_max_alloc && DEVICES_INFO[i].n_wi_wg > 1);
#endif
}
#if USE_MORE_BUFFERS
if (DEVICES_INFO[i].n_wg <= 128 && DEVICES_INFO[i].global_mem_used > (double) DEVICES_INFO[i].global_mem_size * USE_MORE_BUFFERS_P
&& DEVICES_INFO[i].n_wi_wg == 1) {
#else
if (DEVICES_INFO[i].n_wg <= 128 && DEVICES_INFO[i].global_mem_used > DEVICES_INFO[i].global_mem_max_alloc && DEVICES_INFO[i].n_wi_wg == 1) {
#endif
DEVICES_INFO[i].n_wg++;
do {
DEVICES_INFO[i].n_wg--;
// number of work-items that will be created on this device
DEVICES_ARGS[i].wi_local = DEVICES_INFO[i].n_wi_wg;
DEVICES_ARGS[i].wi_total = DEVICES_INFO[i].n_wg * DEVICES_INFO[i].n_wi_wg;
set_buffs_size(&DEVICES_ARGS[i], &DEVICES_INFO[i], filtering);
}
#if USE_MORE_BUFFERS
while (DEVICES_INFO[i].global_mem_used > (double) DEVICES_INFO[i].global_mem_size * USE_MORE_BUFFERS_P && DEVICES_INFO[i].n_wg > 1);
#else
while (DEVICES_INFO[i].global_mem_used > DEVICES_INFO[i].global_mem_max_alloc && DEVICES_INFO[i].n_wg > 1);
#endif
}
}
if (n_wg_init != DEVICES_INFO[i].n_wg) {
printf(" Due to the amount of memory required, the number of work-groups was reduced in %s.\n", DEVICES_INFO[i].dev_name);
}
if (n_wi_wg_init != DEVICES_INFO[i].n_wi_wg) {
printf(" Due to the amount of memory required, the number of work-items per work-group was reduced in %s.\n", DEVICES_INFO[i].dev_name);
}
#if USE_MORE_BUFFERS
// if global memory not enough for 1 wi_wg and 1 wg, exit
if (DEVICES_INFO[i].global_mem_used > (double) DEVICES_INFO[i].global_mem_size * USE_MORE_BUFFERS_P) {
fprintf(stderr, "\nError: PHACT is trying to use more global memory (%lu Mb) than the amount available (%f Mb) on %s (%d) with %lu "
"work-item(s) and %lu work-group(s).\n If possible, please reduce the amount of work-items per work-group to use.",
DEVICES_INFO[i].global_mem_used / 1000000, (double) DEVICES_INFO[i].global_mem_size * USE_MORE_BUFFERS_P / 1000000,
DEVICES_INFO[i].dev_name, DEVICES_INFO[i].dev_type_n, DEVICES_INFO[i].n_wg, DEVICES_INFO[i].n_wi_wg);
#if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__)
printf("\nPress any key to exit\n");
int a = getchar();
#endif
exit(0);
}
#else
// if global memory not enough for 1 wi_wg and 1 wg, exit
if (DEVICES_INFO[i].global_mem_used > DEVICES_INFO[i].global_mem_max_alloc) {
fprintf(stderr, "\nError: PHACT is trying to use more global memory (%lu Mb) than the amount available (%lu Mb) on %s (%d) with %lu "
"work-item(s) and %lu work-group(s).\n If possible, please reduce the amount of work-items per work-group to use.",
DEVICES_INFO[i].global_mem_used / 1000000, DEVICES_INFO[i].global_mem_max_alloc / 1000000, DEVICES_INFO[i].dev_name,
DEVICES_INFO[i].dev_type_n, DEVICES_INFO[i].n_wg, DEVICES_INFO[i].n_wi_wg);
#if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__)
printf("\nPress any key to exit\n");
int a = getchar();
#endif
exit(0);
}
#endif
#if USE_MORE_BUFFERS
// calculate the number of buffers that are needed and divide the work-groups and work-items per them
if (DEVICES_INFO[i].global_mem_used > DEVICES_INFO[i].global_mem_max_alloc) {
DEVICES_INFO[i].n_buffers = (unsigned int) ceil(
((double) DEVICES_INFO[i].global_mem_used * 1.0) / (double) DEVICES_INFO[i].global_mem_max_alloc);
// ensures that the buffers are enough
if (DEVICES_INFO[i].n_buffers > DEVICES_INFO[i].global_mem_size / DEVICES_INFO[i].global_mem_max_alloc) {
DEVICES_INFO[i].n_wg--;
}
// for less calculations, all buffers must be assigned to the same number of work-groups
while (DEVICES_INFO[i].n_wg % DEVICES_INFO[i].n_buffers > 0) {
DEVICES_INFO[i].n_wg--;
}
DEVICES_ARGS[i].backtrack_size = (unsigned int) ceil(((double) DEVICES_ARGS[i].backtrack_size * 1.0) / (double) DEVICES_INFO[i].n_buffers);
}
#endif
if (!QUIET) {
printf(" - %s (%d) with %lu work-group(s) and %lu work-items(s) per work-group", DEVICES_INFO[i].dev_name, DEVICES_INFO[i].dev_type_n,
DEVICES_INFO[i].n_wg, DEVICES_INFO[i].n_wi_wg);
}
if (VERBOSE) {
if (DEVICES_INFO[i].use_local_mem) {
printf(", local memory");
}
#if USE_MORE_BUFFERS
if ((double) DEVICES_INFO[i].global_mem_used / 1000000.0 > 1.0) {
printf(", %.02f Mb (%u buffer(s)) of global memory (Max. %.02f Mb) and", (double) DEVICES_INFO[i].global_mem_used / 1000000.0,
DEVICES_INFO[i].n_buffers, (double) DEVICES_INFO[i].global_mem_size * USE_MORE_BUFFERS_P / 1000000.0);
} else {
printf(", %.02f Kb (%u buffer(s)) of global memory (Max. %.02f Mb) and", (double) DEVICES_INFO[i].global_mem_used / 1000.0,
DEVICES_INFO[i].n_buffers, (double) DEVICES_INFO[i].global_mem_size * USE_MORE_BUFFERS_P / 1000000.0);
}
#else
if ((double)DEVICES_INFO[i].global_mem_used / 1000000.0 > 1.0) {
printf(", %.02f Mb of global memory (Max. %.02f Mb) and", (double)DEVICES_INFO[i].global_mem_used / 1000000.0, (double)DEVICES_INFO[i].global_mem_max_alloc / 1000000.0);
} else {
printf(", %.02f Kb of global memory (Max. %.02f Mb) and", (double)DEVICES_INFO[i].global_mem_used / 1000.0, (double)DEVICES_INFO[i].global_mem_max_alloc / 1000000.0);
}
#endif
if (DOMAIN_TYPE == BITMAP_) {
printf(" %d-bits bitmap domains on %d-bits words", CL_BITS_, CL_WORD_);
} else if (DOMAIN_TYPE == INTERVAL) {
printf(" interval domains");
}
#if SHARED_SS > 0
printf(" and %d shared sub-search spaces", DEVICES_ARGS[i].n_shared_stores);
#endif
}
if (!QUIET) {
printf("\n");
}
}
// calculate the expected speed when comparing the hardware of all the used devices
calculate_rel_expect_speed(DEVICES_INFO);
// set amount of sub-search spaces to send to each device at the beginning
for (i = 0; i < N_DEVS; i++) {
DEVICES_INFO[i].n_ss_mult_max = ss_mult_max;
// set n_ss_mult_max to the device number of cores
if (ss_mult_max > DEVICES_INFO[i].n_wi_wg * DEVICES_INFO[i].n_wg) {
DEVICES_INFO[i].n_ss_mult_max = (unsigned int) (DEVICES_INFO[i].n_wi_wg * DEVICES_INFO[i].n_wg);
}
if (DEVICES_INFO[i].n_ss_mult_max > DEVICES_INFO[i].compute_units * 32) {
if (DEVICES_INFO[i].type == CL_DEVICE_TYPE_GPU) {
DEVICES_INFO[i].n_ss_mult_max = DEVICES_INFO[i].compute_units * 32;
} else {
DEVICES_INFO[i].n_ss_mult_max = DEVICES_INFO[i].compute_units;
}
}
if (N_DEVS == 1) {
DEVICES_INFO[i].block_size = n_ss;
} else if (WORK == CNT) {
DEVICES_INFO[i].block_size = (unsigned int) (n_ss * CNT_INIT_PERC * DEVICES_INFO[i].rel_speed_expect);
// WORK == ONE or OPT
} else {
DEVICES_INFO[i].block_size = (unsigned int) (n_ss * OPT_ONE_INIT_PERC * DEVICES_INFO[i].rel_speed_expect);
}
if (DEVICES_INFO[i].block_size == 0) {
DEVICES_INFO[i].block_size = 1;
}
// multiplier for first block of sub-search spaces
#if SS_MULTIPLIER
if (DEVICES_INFO[i].block_size > 0) {
//GPU
if (DEVICES_INFO[i].type == CL_DEVICE_TYPE_GPU
&& DEVICES_INFO[i].block_size
< SS_GPU / (double) (GPU_DEFAULT_N_WI / DEVICES_INFO[i].n_wi_wg) / (GPU_DEFAULT_N_WG / (double) DEVICES_INFO[i].n_wg * 1.0)) {
DEVICES_INFO[i].n_ss_mult = (unsigned int) (SS_GPU / (GPU_DEFAULT_N_WI / (double) DEVICES_INFO[i].n_wi_wg * 1.0)
/ (double) (GPU_DEFAULT_N_WG / (double) DEVICES_INFO[i].n_wg * 1.0)) / DEVICES_INFO[i].block_size;
// ACC
} else if (DEVICES_INFO[i].type == CL_DEVICE_TYPE_ACCELERATOR
&& DEVICES_INFO[i].block_size < SS_ACC / (DEVICES_INFO[i].compute_units / (double) DEVICES_INFO[i].n_wg * 1.0)) {
DEVICES_INFO[i].n_ss_mult = (unsigned int) (SS_ACC / (DEVICES_INFO[i].compute_units / (double) DEVICES_INFO[i].n_wg * 1.0)
/ DEVICES_INFO[i].block_size);
// CPU
} else if (DEVICES_INFO[i].type == CL_DEVICE_TYPE_CPU
&& DEVICES_INFO[i].block_size
< SS_CPU * DEVICES_INFO[i].compute_units / (DEVICES_INFO[i].compute_units / (double) DEVICES_INFO[i].n_wg * 1.0)) {
DEVICES_INFO[i].n_ss_mult = (unsigned int) ((SS_CPU * DEVICES_INFO[i].compute_units)
/ (double) (DEVICES_INFO[i].compute_units / (double) DEVICES_INFO[i].n_wg * 1.0) / DEVICES_INFO[i].block_size);
}
if (DEVICES_INFO[i].n_ss_mult > ss_mult_max) {
DEVICES_INFO[i].n_ss_mult = ss_mult_max;
} else if (DEVICES_INFO[i].n_ss_mult == 0) {
DEVICES_INFO[i].n_ss_mult = 1;
}
}
#endif
DEVICES_INFO[i].first_block_size = DEVICES_INFO[i].block_size;
if (PRINT_SOLUTIONS && DEVICES_INFO[i].n_wi_wg * DEVICES_INFO[i].n_wg > 1) {
printf("\nThe solutions will not be printed because one or more devices will be running more than one thread.\n\n");
PRINT_SOLUTIONS = false;
}
}
if (!QUIET) {
printf("\nTotal sub-search spaces: %u\n\n", n_ss);
}
// create one thread per device to solve different sub-search spaces in parallel
pthread_t *threads = malloc(N_DEVS * sizeof(pthread_t));
threads_data *thread_data = malloc(N_DEVS * sizeof(threads_data));
void *t_result;
cl_ulong *results = malloc(N_DEVS * sizeof(cl_ulong));
if (N_DEVS > 1) {
if (WORK == OPT && pthread_mutex_init(&opt_lock, NULL) != 0) {
fprintf(stderr, "\nError: threads opt_lock not created\n");
#if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__)
printf("\nPress any key to exit\n");
int a = getchar();
#endif
exit(0);
}
if (pthread_mutex_init(&stats_lock, NULL) != 0) {
fprintf(stderr, "\nError: threads stats_lock not created\n");
#if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__)
printf("\nPress any key to exit\n");
int a = getchar();
#endif
exit(0);
}
}
if (WORK == OPT) {
VS_LOCK[VAR_ID_TO_OPT].min = VS[VAR_ID_TO_OPT].min;
VS_LOCK[VAR_ID_TO_OPT].max = VS[VAR_ID_TO_OPT].max;
VS_LOCK_BEST[VAR_ID_TO_OPT].min = VS[VAR_ID_TO_OPT].min;
VS_LOCK_BEST[VAR_ID_TO_OPT].max = VS[VAR_ID_TO_OPT].max;
}
devs_working = N_DEVS;
if (N_DEVS > 1) {
pthread_barrier_init(&devs_barrier, NULL, N_DEVS);
}
for (i = 0; i < N_DEVS; i++) {
thread_data[i].depth = depth;
thread_data[i].dev_info = DEVICES_INFO;
thread_data[i].dev_args = DEVICES_ARGS;
thread_data[i].dev_number = i;
thread_data[i].next_str = &next_str;
thread_data[i].val_to_opt = &VAL_TO_OPT;
thread_data[i].sol_found = &sol_found;
thread_data[i].n_ss = n_ss;
thread_data[i].platform_args = platform_args;
if (N_DEVS > 1) {
thread_ret = pthread_create(&threads[i], NULL, solve_on_device, (void*) &thread_data[i]);
if (thread_ret) {
fprintf(stderr, "\nError: return code from pthread_create devices threads is %d\n", thread_ret);
#if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__)
printf("\nPress any key to exit\n");
int a = getchar();
#endif
exit(0);
}
} else {
result = (cl_ulong) solve_on_device(thread_data);
results[0] = result;
}
}
if (N_DEVS > 1) {
// sum the result from all devices
for (i = 0; i < N_DEVS; i++) {
pthread_join(threads[i], &t_result);
results[i] = (unsigned long) (intptr_t) t_result;
result += results[i];
}
}
if (N_DEVS > 1) {
if (WORK == OPT) {
pthread_mutex_destroy(&opt_lock);
}
pthread_mutex_destroy(&stats_lock);
}
if (!QUIET) {
printf("\n");
}
for (i = 0; i < N_DEVS; i++) {
STATS.solve_time += DEVICES_INFO[i].ms_solve_time;
STATS.n_solutions += results[i];
if (!QUIET) {
if (DEVICES_INFO[i].stores_explored != 0) {
printf("%s (%d) took %lu ms to found %lu solution(s) on %d store(s)", DEVICES_INFO[i].dev_name, DEVICES_INFO[i].dev_type_n,
DEVICES_INFO[i].ms_solve_time, results[i], DEVICES_INFO[i].stores_explored);
if (DEVICES_INFO[i].times_used > 1) {
printf(" split in %u blocks,", DEVICES_INFO[i].times_used);
}
printf(" with an average %.03f ms per sub-search space\n", DEVICES_INFO[i].avg_1ss_solv_time);
} else {
printf("The other devices solved the CSP before %s (%d) could began\n", DEVICES_INFO[i].dev_name, DEVICES_INFO[i].dev_type_n);
}
}
}
// Compare the finish time between the first and the last device
if (VERBOSE && N_DEVS > 1) {
cl_ulong ms_first = DEVICES_INFO[0].ms_finish_time;
cl_ulong ms_last = ms_first;
unsigned int first_dev = 0;
unsigned int last_dev = 0;
for (i = 1; i < N_DEVS; i++) {
if (DEVICES_INFO[i].ms_finish_time < ms_first) {
ms_first = DEVICES_INFO[i].ms_finish_time;
first_dev = i;
} else if (DEVICES_INFO[i].ms_finish_time > ms_last) {
ms_last = DEVICES_INFO[i].ms_finish_time;
last_dev = i;
}
}
printf("%s (%d) finished %lu ms before %s (%d)\n", DEVICES_INFO[first_dev].dev_name, DEVICES_INFO[first_dev].dev_type_n, ms_last - ms_first,
DEVICES_INFO[last_dev].dev_name, DEVICES_INFO[last_dev].dev_type_n);
}
for (i = 0; i < N_DEVS; i++) {
free(DEVICES_INFO[i].exp_values);
}
free(platform_args);
free(threads);
free(thread_data);
free(results);
if (WORK == OPT) {
if (DOMAIN_TYPE == BITMAP_) {
for (i = 0; i < N_VS; i++) {
b_copy(&VS[i].domain_b, &VS_LOCK_BEST[i].domain_b);
}
} else {
for (i = 0; i < N_VS; i++) {
VS[i].domain_i = VS_LOCK_BEST[i].domain_i;
}
}
for (i = 0; i < N_VS; i++) {
VS[i].max = VS_LOCK_BEST[i].max;
VS[i].min = VS_LOCK_BEST[i].min;
VS[i].n_vals = VS_LOCK_BEST[i].n_vals;
}
}
#if VERIFY_SOL
// If only one solution or best is to be found, but is incorrect
if ((WORK == ONE || WORK == OPT) && result > 0) {
result = 1;
#if CHECK_SOL_N_VALS
for (i = 0; i < N_VS; i++) {
if ((VS[i].max != VS[i].min || VS[i].n_vals != 1) && VS[i].n_cs > 0) {
result = 0;
#if EXTRA_LABEL
if (!QUIET) {
printf("\nFurther labeling and exploring the CSP to assign variables not previously marked for labeling.\n");
}
for (j = 0; j < N_VS; j++) {
if ((VS[j].max != VS[j].min || VS[j].n_vals != 1) && VS[j].n_cs > 0) {
VS[j].to_label = true;
}
}
#if PRE_FILTER
filter = false;
#endif
if (WORK == OPT) {
if (OPT_MODE == DECREASE) {
VAL_TO_OPT++;
} else {
VAL_TO_OPT--;
}
}
result = solve_CSP();
break;
#endif
}
}
#endif
result = cs_check(true);
}
#endif
if (!QUIET) {
printf("\n");
}
// when more than one device finds a solution and only one is wanted, set result to 1, as only one solution is saved
if (WORK != CNT && result > 1) {
result = 1;
}
// remove solutions from backtracking count
if (PRINT_STATS) {
if (STATS.backtracks > result - 1) {
STATS.backtracks -= result - 1;
}
}
return result;
}
}
/*
* Filter the CSP by pruning values from the variables, when possible, and without labeling
* Use 1 thread on the CPU
* Return true if CSP is consistent after filtering
* */
bool filter_CSP() {
best_sols_found_ctr = 1; // counter for number of best solutions found
cl_ulong result = 0; // Number of solutions found, or 0 or 1 if only one solution is wanted
unsigned char sol_found = 0; // To set to 1 when only one solution is wanted and is found (atomic read and write)
unsigned int n_vs_cs; // number of all variables in all constraints
unsigned int n_cs_vs; // number of all constraints in all variables
unsigned int n_const_cs; // number of all constant values in all constraints with more than one constant value
unsigned int next_str = 0; // Index in stores where the next unexplored sub-search space is placed (atomic read and write)
size_t l_mem_per_wi; // size in bytes of the local memory needed per work-item
char *host_name = NULL; // name of the OpenCL host
char *aux_name; // to get host name
unsigned int n_ss = 1; // Number of sub-search spaces created
unsigned int depth = 0; // Tree expansion depth needed to get n_ss disjoint search spaces
unsigned int i, j;
filtering = true;
STATS.n_solutions = 0;
device_info filt_dev_info; // information about OpenCL devices when filtering
device_args filt_dev_args; // Arguments of OpenCL devices when filtering
platf_args *platform_args; // each platform arguments for all devices of the same platform
cl_platform_id *platfs = NULL; // to save all devices cl_platform_id
cl_device_id *devs = NULL; // to save all devices cl_device_id
cl_uint platf_cnt = 0; // number of platforms (Intel, Nvidia...)
cl_uint dev_cnt = 0; // number of devices on each platform (CPU, MIC...)
cl_int ret; // output of clGetPlatformIDs and clGetDeviceIDs
size_t val_size; // size of values to get from OpenCL calls
// Use command line heuristics for labeling and assignment, if existent
// if not use default
if (LABEL_MODE_COM != DEFAULT_L) {
LABEL_MODE = LABEL_MODE_COM;
} else if (LABEL_MODE == DEFAULT_L) {
LABEL_MODE = LABEL_MODE_D;
}
if (ASSIGN_MODE_COM != DEFAULT_A) {
ASSIGN_MODE = ASSIGN_MODE_COM;
} else if (ASSIGN_MODE == DEFAULT_A) {
ASSIGN_MODE = ASSIGN_MODE_D;
}
init_csp_and_d_bits();
// discover all platforms (Intel, Nvidia, AMD,...)
ret = clGetPlatformIDs(0, NULL, &platf_cnt);
cl_check_error(ret, "clGetPlatformIDs", "discovering devices");
platfs = (cl_platform_id*) malloc(platf_cnt * sizeof(cl_platform_id));
ret = clGetPlatformIDs(platf_cnt, platfs, NULL);
cl_check_error(ret, "clGetPlatformIDs", "discovering devices");
platform_args = (platf_args*) malloc(platf_cnt * sizeof(platf_args));
// for each platform
for (i = 0; i < platf_cnt; i++) {
// discover the first CPU
ret = clGetDeviceIDs(platfs[i], CL_DEVICE_TYPE_CPU, 0, NULL, &dev_cnt);
devs = (cl_device_id*) malloc(sizeof(cl_device_id) * dev_cnt);
ret = clGetDeviceIDs(platfs[i], CL_DEVICE_TYPE_CPU, dev_cnt, devs, NULL);
platform_args[i].platform_id = platfs[i];
platform_args[i].n_devs = dev_cnt;
// for each device
for (j = 0; j < dev_cnt; j++) {
// Identify the type of device (GPU, CPU, MIC,...)
cl_device_type cl_device_type;
ret = clGetDeviceInfo(devs[j], CL_DEVICE_TYPE, sizeof(cl_device_type), &cl_device_type, NULL);
cl_check_error(ret, "clGetDeviceInfo", "CL_DEVICE_TYPE");
filt_dev_info.device_id = devs[j];
filt_dev_info.platform_id = platfs[i];
filt_dev_info.type = CL_DEVICE_TYPE_CPU;
filt_dev_info.dev_type_n = 1;
filt_dev_info.n_wg = 1;
filt_dev_info.n_wi_wg = 1;
filt_dev_info.use_local_mem = true;
filt_dev_info.def_n_wi_wg = 1;
filt_dev_info.def_n_wg = 1;
filt_dev_info.stores_explored = 0;
filt_dev_info.last_1ss_solv_time = 0;
filt_dev_info.avg_1ss_solv_time = 0;
filt_dev_info.max_1ss_solv_time = 0;
filt_dev_info.n_ss_mult = 1;
filt_dev_info.rank = 0;
filt_dev_info.times_used = 0;
filt_dev_info.ms_solve_time = 0;
filt_dev_info.first_time_ranked = false;
filt_dev_info.props_total = 0;
filt_dev_info.last_props = 0;
filt_dev_info.avg_time_prop = 0;
filt_dev_info.last_time_prop = 0;
filt_dev_info.max_time_prop = 0;
filt_dev_info.ranked = false;
filt_dev_info.working = true;
filt_dev_info.last_explor_time = 0;
filt_dev_info.n_fast_blocks = 0;
filt_dev_info.sols_found = 0;
filt_dev_info.n_buffers = 1;
filt_dev_info.exp_values = calloc(N_VS, sizeof(unsigned int));
filt_dev_info.n_empty_blocks = 0;
filt_dev_args.split_values_ext = 1;
// get device name
ret = clGetDeviceInfo(devs[j], CL_DEVICE_NAME, 0, NULL, &val_size);
cl_check_error(ret, "clGetDeviceInfo", "CL_DEVICE_NAME");
aux_name = (char*) malloc(val_size);
ret = clGetDeviceInfo(devs[j], CL_DEVICE_NAME, val_size, aux_name, NULL);
cl_check_error(ret, "clGetDeviceInfo", "CL_DEVICE_NAME");
// get the amount of local memory to check if it is enough
ret = clGetDeviceInfo(filt_dev_info.device_id, CL_DEVICE_LOCAL_MEM_SIZE, sizeof(filt_dev_info.local_mem_max_alloc),
&filt_dev_info.local_mem_max_alloc, NULL);
cl_check_error(ret, "clGetDeviceInfo", "CL_DEVICE_LOCAL_MEM_SIZE");
// trim leading spaces on device name
unsigned int del = 0;
while (isspace((unsigned char )(aux_name[del])))
del++;
host_name = (char*) malloc(val_size - del);
strcpy(host_name, &aux_name[del]);
filt_dev_info.dev_name = (char*) malloc(val_size - del);
strcpy(filt_dev_info.dev_name, &aux_name[del]);
free(aux_name);
j++;
break;
}
if (j > 0) {
break;
}
}
free(devs);
free(platfs);
if (j == 0) {
printf("\nThis machine does not have a CPU for filtering the CSP.\n");
return false;
}
// if using intervals convert bitmaps to intervals
if (DOMAIN_TYPE == INTERVAL) {
set_interval_domains();
}
// Reset variables set for labeling, because some of them may be singleton already and count the number of variables that should be labeled
N_VS_TO_LABEL = vs_cnt_vs_to_label(VS, N_VS);
n_vs_cs = (unsigned int) cs_cnt_vs(CS, N_CS); // count the number of variables in all constraints
n_cs_vs = vs_cnt_cs(VS, N_VS); // count the number of constraints in all variables
n_const_cs = (unsigned int) cs_cnt_constants(CS, N_CS); // count the number of constants constrained by all the constraints (if more than one)
if (ASSIGN_MODE == INDOMAIN_SPLIT || ASSIGN_MODE == INDOMAIN_REVERSE_SPLIT || ASSIGN_MODE == INDOMAIN_INTERVAL) {
unsigned int split_values_ext = 1;
unsigned int n_vals_ctr = 1;
for (i = 0; i < N_VS; i++) {
if (VS[i].to_label && VS[i].n_vals > n_vals_ctr) {
n_vals_ctr = VS[i].n_vals;
}
}
while (((unsigned int) (n_vals_ctr / 2)) > 0) {
n_vals_ctr /= 2;
split_values_ext++;
}
filt_dev_args.split_values_ext = split_values_ext;
}
if (N_VS_TO_LABEL == 0) {
fprintf(stderr, "\nError: No CSP variable is marked for labeling. Please mark at least one variable for labeling.\n\n");
#if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__)
printf("\nPress any key to exit\n");
int a = getchar();
#endif
exit(0);
}
// variables that are fully expanded during sub-search spaces creation are already labeled
if (N_VS_TO_LABEL <= 0) {
N_VS_TO_LABEL = 1;
}
if (USE_TTL) {
printf("\nTTL is enabled inside the kernel.\n\n");
}
if (!QUIET) {
printf("\nFiltering the CSP with 1 thread of %s", host_name);
}
// set revision to on (REV=1) or off (REV=0) by default. If PRE_LABELING==2, it is set to 1 if any propagator is capable of propagating
// variables with more than one value in its domain
if (PRE_LABELING == 0) {
REV = 0;
} else if (PRE_LABELING == 1) {
REV = 1;
}
#if FZN_SEQ
if (REV == 1 && !QUIET) {
printf(" (with revision)");
}
#else
if (!QUIET) {
printf(" with %s and %s heuristics", get_label_heur(LABEL_MODE), get_assign_heur(ASSIGN_MODE));
}
if (REV == 1 && !QUIET) {
printf(" (and revision)");
}
#endif
if (host_name != NULL) {
free(host_name);
}
if (DOMAIN_TYPE == BITMAP_) {
l_mem_per_wi = (N_VS + 3) * sizeof(cl_ushort) + N_VS * (sizeof(cl_var_p_bitmap) - sizeof(cl_bitmap) + DOMAIN_SIZE);
} else {
l_mem_per_wi = (N_VS + 3) * sizeof(cl_ushort) + N_VS * sizeof(cl_var_p_interval);
}
// check if memory is enough. If not, reduce the number of wi, and wg if also needed.
#if USE_LOCAL_MEM == 0
filt_dev_info.use_local_mem = false;
#elif USE_LOCAL_MEM == 1
filt_dev_info.use_local_mem = true;
#endif
if (filt_dev_info.use_local_mem && filt_dev_info.local_mem_max_alloc < l_mem_per_wi) {
printf("\nDue to the amount of memory required, local memory will not be used in %s.\n", filt_dev_info.dev_name);
filt_dev_info.use_local_mem = false;
}
filt_dev_args.n_vs_to_label = (unsigned int) N_VS_TO_LABEL;
filt_dev_args.n_vs_cs = n_vs_cs;
filt_dev_args.n_cs_vs = n_cs_vs;
filt_dev_args.n_const_cs = n_const_cs;
// get the amount of global memory to check if it is enough
ret = clGetDeviceInfo(filt_dev_info.device_id, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(filt_dev_info.global_mem_max_alloc),
&filt_dev_info.global_mem_max_alloc, NULL);
cl_check_error(ret, "clGetDeviceInfo", "CL_DEVICE_MAX_MEM_ALLOC_SIZE");
// get the maximum size of each constant memory buffer to check if it is enough
ret = clGetDeviceInfo(filt_dev_info.device_id, CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE, sizeof(filt_dev_info.constant_mem_max_alloc),
&filt_dev_info.constant_mem_max_alloc, NULL);
cl_check_error(ret, "clGetDeviceInfo", "CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE");
// number of work-items that will be created on this device
filt_dev_args.wi_local = filt_dev_info.n_wi_wg;
filt_dev_args.wi_total = filt_dev_info.n_wg * filt_dev_info.n_wi_wg;
set_buffs_size(&filt_dev_args, &filt_dev_info, filtering);
if (filt_dev_info.global_mem_used > filt_dev_info.global_mem_max_alloc) {
fprintf(stderr, "\nError: PHACT is trying to use more global memory (%lu Mb) than the amount available (%lu Mb) on %s (%d)\n",
filt_dev_info.global_mem_used / 1000000, filt_dev_info.global_mem_max_alloc / 1000000, filt_dev_info.dev_name, filt_dev_info.dev_type_n);
#if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__)
printf("\nPress any key to exit\n");
int a = getchar();
#endif
exit(0);
}
if (VERBOSE) {
if (filt_dev_info.use_local_mem) {
printf(", local memory\n");
}
if ((double) filt_dev_info.global_mem_used / 1000000.0 > 1.0) {
printf("Using %.02f Mb of global memory (Max. %.02f Mb) and", (double) filt_dev_info.global_mem_used / 1000000.0,
(double) filt_dev_info.global_mem_max_alloc / 1000000.0);
} else {
printf("Using %.02f Kb of global memory (Max. %.02f Mb) and", (double) filt_dev_info.global_mem_used / 1000.0,
(double) filt_dev_info.global_mem_max_alloc / 1000000.0);
}
if (DOMAIN_TYPE == BITMAP_) {
printf(" %d-bits bitmap domains on %d-bits words", CL_BITS_, CL_WORD_);
} else if (DOMAIN_TYPE == INTERVAL) {
printf(" interval domains");
}
#if SHARED_SS > 0
printf(" and %d shared sub-search spaces", DEVICES_ARGS[i].n_shared_stores);
#endif
}
if (!QUIET) {
printf("\n\n");
}
filt_dev_info.n_ss_mult_max = ss_mult_max;
filt_dev_info.block_size = n_ss;
filt_dev_info.n_ss_mult = 1;
filt_dev_info.n_ss_mult_max = 1;
filt_dev_info.first_block_size = 1;
filt_dev_info.block_size = 1;
// create one thread for the CPU
threads_data thread_data;
devs_working = 1;
thread_data.depth = depth;
thread_data.dev_info = &filt_dev_info;
thread_data.dev_args = &filt_dev_args;
thread_data.dev_number = 0;
thread_data.next_str = &next_str;
thread_data.val_to_opt = &VAL_TO_OPT;
thread_data.sol_found = &sol_found;
thread_data.n_ss = n_ss;
thread_data.platform_args = platform_args;
result = (cl_ulong) solve_on_device(&thread_data);
free(platform_args);
free(filt_dev_info.dev_name);
filtering = false;
STATS.solve_time = filt_dev_info.ms_solve_time;
free(filt_dev_info.exp_values);
return (bool) result;
}
/*
* Thread responsible for solving sub-search spaces on a device
* thread_arg - structure with all thread arguments
*/
void* solve_on_device(void *thread_arg) {
struct threads_data *thread_d;
thread_d = (struct threads_data*) thread_arg;
unsigned int depth = thread_d->depth; // Tree expansion depth needed to get n_ss disjoint search spaces
unsigned int n_ss = thread_d->n_ss; // Number of sub-search spaces created
unsigned int *next_str = thread_d->next_str; // Index in stores where the next unexplored sub-search space is placed (atomic read and write)
cl_uint *val_to_opt = thread_d->val_to_opt; // Max value on the domain of the variable to optimize (atomic read and write)
unsigned char *sol_found = thread_d->sol_found; // To set to 1 when only one solution is wanted and is found (atomic read and write)
device_info *this_dev_info = &thread_d->dev_info[thread_d->dev_number]; // Information about the device to use
device_info *all_dev_info = thread_d->dev_info; // Information about all the device to use
device_args *this_dev_args = &thread_d->dev_args[thread_d->dev_number]; // Device arguments (buffers, etc.)
cl_ulong result = 0; // 0, 1 or number of solutions found by this device
cl_ulong total_result = 0; // 0, 1 or number of solutions found by this device
unsigned int stores_idx; // index of the next unexplored store to pick
// To get and print elapsed times
char elapsed_time[40];
char start_time[40];
char end_time[40];
struct timeval start, end;
if (N_DEVS > 1 && !filtering) {
pthread_barrier_wait(&devs_barrier);
}
if (VERBOSE) {
gettimeofday(&start, NULL);
}
// Initialize OpenCL objects on this device
init_device(this_dev_info, this_dev_args, filtering);
#if RUN_IN_CUDA
if (N_DEVS > 1 && !filtering) {
pthread_barrier_wait(&devs_barrier);
}
#endif
// calculate time spent for initializing the devices
if (VERBOSE) {
gettimeofday(&end, NULL);
format_elapsed_time_s_ms(elapsed_time, start.tv_sec, start.tv_usec, end.tv_sec, end.tv_usec);
format_time_s_ms(start_time, start.tv_sec, start.tv_usec);
format_time_s_ms(end_time, end.tv_sec, end.tv_usec);
printf("%s...%s = %s (s.ms) -> %s (%d) was initialized\n", start_time, end_time, elapsed_time, this_dev_info->dev_name, this_dev_info->dev_type_n);
}
// Get the index of the unexplored sub-search space to explore next
#if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__)
stores_idx = InterlockedAdd(next_str, this_dev_info->block_size) - this_dev_info->block_size;
#else
stores_idx = __atomic_fetch_add(next_str, this_dev_info->block_size, __ATOMIC_SEQ_CST);
#endif
if (WORK == CNT) {
while (stores_idx < n_ss) {
this_dev_info->first_store = stores_idx;
if (stores_idx + this_dev_info->block_size >= n_ss) {
this_dev_info->block_size = n_ss - stores_idx;
}
this_dev_info->last_store = stores_idx + this_dev_info->block_size;
if (!VERBOSE && !QUIET) {
printf("%s (%d) will receive %d stores\n", this_dev_info->dev_name, this_dev_info->dev_type_n, this_dev_info->block_size);
}
gettimeofday(&start, NULL);
// solve the sub-search spaces on this device for finding all the solutions
result = count_sols(this_dev_args, this_dev_info, depth, n_ss, &stats_lock, filtering);
gettimeofday(&end, NULL);
total_result += result;
this_dev_info->sols_found += result;
this_dev_info->last_explor_time = (double) (end.tv_sec - start.tv_sec) * 1000.0;
this_dev_info->last_explor_time += (double) (end.tv_usec - start.tv_usec) / 1000.0;
// update the number of stores this device explored and the number of times it was used
this_dev_info->stores_explored += this_dev_info->block_size;
this_dev_info->times_used++;
// update the last elapsed time this device needs to solve on sub-search space and the cl_find_all_sol elapsed time
this_dev_info->last_1ss_solv_time = (float) get_elapsed_ms(start.tv_sec, start.tv_usec, end.tv_sec, end.tv_usec)
/ (float) this_dev_info->block_size;
this_dev_info->ms_solve_time += get_elapsed_ms(start.tv_sec, start.tv_usec, end.tv_sec, end.tv_usec);
this_dev_info->avg_1ss_solv_time = (float) this_dev_info->ms_solve_time / (float) this_dev_info->stores_explored;
this_dev_info->last_time_prop = (float) ((float) get_elapsed_ms(start.tv_sec, start.tv_usec, end.tv_sec, end.tv_usec)
/ ((double) this_dev_info->last_props * 1.0));
if (VERBOSE) {
format_elapsed_time_s_ms(elapsed_time, start.tv_sec, start.tv_usec, end.tv_sec, end.tv_usec);
format_time_s_ms(start_time, start.tv_sec, start.tv_usec);
format_time_s_ms(end_time, end.tv_sec, end.tv_usec);
if (!filtering) {
printf("%s...%s = %s (s.ms) -> %s (%d) found %lu solution(s) on %u store(s) (%u...%u)", start_time, end_time, elapsed_time,
this_dev_info->dev_name, this_dev_info->dev_type_n, result, this_dev_info->block_size, this_dev_info->first_store,
this_dev_info->last_store - 1);
if (this_dev_info->n_ss_mult > 1) {
printf(" expanded %u times (Max. %u times)", this_dev_info->n_ss_mult, this_dev_info->n_ss_mult_max);
}
printf(", taking %.03f ms per ss", this_dev_info->last_1ss_solv_time);
if (this_dev_info->rank > 0.000) {
printf(" with a rank of %.03f\n", this_dev_info->rank);
} else {
printf("\n");
}
} else {
printf("%s...%s = %s (s.ms) -> %s (%d) filtered the CSP\n", start_time, end_time, elapsed_time, this_dev_info->dev_name,
this_dev_info->dev_type_n);
}
}
if (*next_str < n_ss) {
// calculate next amount of stores to send to device
set_next_block_size(all_dev_info, thread_d->dev_number, n_ss, next_str);
if (this_dev_info->block_size == 0) {
break;
}
// Get the index of the unexplored sub-search space to explore next
#if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__)
stores_idx = InterlockedAdd(next_str, this_dev_info->block_size) - this_dev_info->block_size;
#else
stores_idx = __atomic_fetch_add(next_str, this_dev_info->block_size, __ATOMIC_SEQ_CST);
#endif
if (stores_idx < n_ss && stores_idx + this_dev_info->block_size > n_ss) {
this_dev_info->block_size = n_ss - stores_idx;
}
} else {
break;
}
}
} else if (WORK == ONE) {
while ((*sol_found) == 0 && (stores_idx < n_ss || (stores_idx == 1 && n_ss == 1))) {
this_dev_info->first_store = stores_idx;
if (stores_idx + this_dev_info->block_size >= n_ss) {
this_dev_info->block_size = n_ss - stores_idx;
}
this_dev_info->last_store = stores_idx + this_dev_info->block_size;
// for elapsed time calculation
if (!VERBOSE && !QUIET) {
printf("%s (%d) will receive %d stores\n", this_dev_info->dev_name, this_dev_info->dev_type_n, this_dev_info->block_size);
}
gettimeofday(&start, NULL);
// solve the sub-search spaces on this device for finding one solution
result = find_one_sol(this_dev_args, this_dev_info, sol_found, depth, n_ss, &stats_lock, filtering);
gettimeofday(&end, NULL);
total_result += result;
this_dev_info->sols_found += result;
this_dev_info->last_explor_time = (float) (end.tv_sec - start.tv_sec) * 1000.0;
this_dev_info->last_explor_time += (float) (end.tv_usec - start.tv_usec) / 1000.0;
// update the number of stores this device explored and the number of times it was used
this_dev_info->stores_explored += this_dev_info->block_size;
this_dev_info->times_used++;
// update the last elapsed time this device needs to solve on sub-search space and the cl_find_all_sol elapsed time
this_dev_info->last_1ss_solv_time = (float) get_elapsed_ms(start.tv_sec, start.tv_usec, end.tv_sec, end.tv_usec)
/ (float) this_dev_info->block_size;
this_dev_info->ms_solve_time += get_elapsed_ms(start.tv_sec, start.tv_usec, end.tv_sec, end.tv_usec);
this_dev_info->avg_1ss_solv_time = (float) this_dev_info->ms_solve_time / (float) this_dev_info->stores_explored;
this_dev_info->last_time_prop = (float) ((float) get_elapsed_ms(start.tv_sec, start.tv_usec, end.tv_sec, end.tv_usec)
/ ((float) this_dev_info->last_props * 1.0));
if (VERBOSE) {
format_elapsed_time_s_ms(elapsed_time, start.tv_sec, start.tv_usec, end.tv_sec, end.tv_usec);
format_time_s_ms(start_time, start.tv_sec, start.tv_usec);
format_time_s_ms(end_time, end.tv_sec, end.tv_usec);
if (!filtering) {
printf("%s...%s = %s (s.ms) -> %s (%d) found %lu solution(s) on %u store(s) (%u...%u)", start_time, end_time, elapsed_time,
this_dev_info->dev_name, this_dev_info->dev_type_n, result, this_dev_info->block_size, this_dev_info->first_store,
this_dev_info->last_store - 1);
if (this_dev_info->n_ss_mult > 1) {
printf(" expanded %u times (Max. %u times)", this_dev_info->n_ss_mult, this_dev_info->n_ss_mult_max);
}
printf(", taking %.03f ms per ss", this_dev_info->last_1ss_solv_time);
if (this_dev_info->rank > 0.000) {
printf(" with a previous rank of %.03f\n", this_dev_info->rank);
} else {
printf("\n");
}
} else {
printf("%s...%s = %s (s.ms) -> %s (%d) filtered the CSP\n", start_time, end_time, elapsed_time, this_dev_info->dev_name,
this_dev_info->dev_type_n);
}
}
// calculate next amount of stores to send to device
if (*next_str < n_ss) {
set_next_block_size(all_dev_info, thread_d->dev_number, n_ss, next_str);
if (this_dev_info->block_size == 0) {
break;
}
// Get the index of the unexplored sub-search space to explore next
#if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__)
stores_idx = InterlockedAdd(next_str, this_dev_info->block_size) - this_dev_info->block_size;
#else
stores_idx = __atomic_fetch_add(next_str, this_dev_info->block_size, __ATOMIC_SEQ_CST);
#endif
if (stores_idx < n_ss && stores_idx + this_dev_info->block_size > n_ss) {
this_dev_info->block_size = n_ss - stores_idx;
}
} else {
break;
}
}
// if WORK == OPT
} else {
while (stores_idx < n_ss) {
this_dev_info->first_store = stores_idx;
if (stores_idx + this_dev_info->block_size >= n_ss) {
this_dev_info->block_size = n_ss - stores_idx;
}
this_dev_info->last_store = stores_idx + this_dev_info->block_size;
if (!VERBOSE && !QUIET) {
printf("%s (%d) will receive %d stores\n", this_dev_info->dev_name, this_dev_info->dev_type_n, this_dev_info->block_size);
}
gettimeofday(&start, NULL);
// solve the sub-search spaces on this device for finding all the solutions
result = find_best_sol(this_dev_args, this_dev_info, val_to_opt, &opt_lock, depth, n_ss, &stats_lock, filtering);
gettimeofday(&end, NULL);
total_result += result;
best_sols_found_ctr += (unsigned int) result;
this_dev_info->sols_found += result;
this_dev_info->last_explor_time = (float) (end.tv_sec - start.tv_sec) * 1000.0;
this_dev_info->last_explor_time += (float) (end.tv_usec - start.tv_usec) / 1000.0;
// update the number of stores this device explored and the number of times it was used
this_dev_info->stores_explored += this_dev_info->block_size;
this_dev_info->times_used++;
// update the last elapsed time this device needs to solve on sub-search space and the cl_find_all_sol elapsed time
this_dev_info->last_1ss_solv_time = (float) get_elapsed_ms(start.tv_sec, start.tv_usec, end.tv_sec, end.tv_usec)
/ (float) this_dev_info->block_size;
this_dev_info->ms_solve_time += get_elapsed_ms(start.tv_sec, start.tv_usec, end.tv_sec, end.tv_usec);
this_dev_info->avg_1ss_solv_time = (float) this_dev_info->ms_solve_time / (float) this_dev_info->stores_explored;
this_dev_info->last_time_prop = (float) ((float) get_elapsed_ms(start.tv_sec, start.tv_usec, end.tv_sec, end.tv_usec)
/ ((float) this_dev_info->last_props * 1.0));
if (VERBOSE) {
format_elapsed_time_s_ms(elapsed_time, start.tv_sec, start.tv_usec, end.tv_sec, end.tv_usec);
format_time_s_ms(start_time, start.tv_sec, start.tv_usec);
format_time_s_ms(end_time, end.tv_sec, end.tv_usec);
if (!filtering) {
printf("%s...%s = %s (s.ms) -> %s (%d) found %lu best solution(s) on %u store(s) (%u...%u)", start_time, end_time, elapsed_time,
this_dev_info->dev_name, this_dev_info->dev_type_n, result, this_dev_info->block_size, this_dev_info->first_store,
this_dev_info->last_store - 1);
if (this_dev_info->n_ss_mult > 1) {
printf(" expanded %u times (Max. %u times)", this_dev_info->n_ss_mult, this_dev_info->n_ss_mult_max);
}
printf(", taking %.03f ms per ss", this_dev_info->last_1ss_solv_time);
if (this_dev_info->rank > 0.000) {
printf(" with a previous rank of %.03f\n", this_dev_info->rank);
} else {
printf("\n");
}
} else {
printf("%s...%s = %s (s.ms) -> %s (%d) filtered the CSP\n", start_time, end_time, elapsed_time, this_dev_info->dev_name,
this_dev_info->dev_type_n);
}
}
if (*next_str < n_ss) {
// calculate next amount of stores to send to device
set_next_block_size(all_dev_info, thread_d->dev_number, n_ss, next_str);
if (this_dev_info->block_size == 0) {
break;
}
// Get the index of the unexplored sub-search space to explore next
#if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__)
stores_idx = InterlockedAdd(next_str, this_dev_info->block_size) - this_dev_info->block_size;
#else
stores_idx = __atomic_fetch_add(next_str, this_dev_info->block_size, __ATOMIC_SEQ_CST);
#endif
if (stores_idx < n_ss && stores_idx + this_dev_info->block_size > n_ss) {
this_dev_info->block_size = n_ss - stores_idx;
}
} else {
break;
}
}
}
// for elapsed time calculation
if (VERBOSE) {
gettimeofday(&start, NULL);
}
// clear device objects
release_device(this_dev_args, this_dev_info, filtering);
if (VERBOSE) {
gettimeofday(&end, NULL);
this_dev_info->ms_finish_time = (unsigned long) end.tv_sec * 1000 + (unsigned long) end.tv_usec / 1000;
}
if (VERBOSE) {
gettimeofday(&end, NULL);
format_elapsed_time_s_ms(elapsed_time, start.tv_sec, start.tv_usec, end.tv_sec, end.tv_usec);
format_time_s_ms(start_time, start.tv_sec, start.tv_usec);
format_time_s_ms(end_time, end.tv_sec, end.tv_usec);
printf("%s...%s = %s (s.ms) -> %s (%d) was released\n", start_time, end_time, elapsed_time, this_dev_info->dev_name, this_dev_info->dev_type_n);
}
if (N_DEVS > 1 && !filtering) {
return (void*) (intptr_t) total_result;
} else {
return (void*) (cl_ulong) total_result;
}
}
/*
* Load balancing between all devices
* dev_info - all devices information
* dev_idx - index of dev_info of the device to calculate the next amount of stores to send to device
* n_ss - total number of sub-search spaces created
* last_str_explored - last store explored
*/
void set_next_block_size(device_info *dev_info, unsigned int dev_idx, unsigned int n_ss, unsigned int *last_str_explored) {
float avg_sum = 0;
float *avg_prop_solv_time = malloc(N_DEVS * sizeof(float));
bool all_devs_used;
unsigned int devs_ranked_;
unsigned int devs_working_;
unsigned int i;
unsigned int fastest_dev = 0;
unsigned int fastest_dev_prop_solv_time = UINT_MAX;
unsigned int last_str_explored_;
#if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__)
last_str_explored_ = InterlockedAdd(last_str_explored, 0);
#else
last_str_explored_ = __atomic_fetch_add(last_str_explored, 0, __ATOMIC_SEQ_CST);
#endif
for (i = 0; i < N_DEVS; i++) {
if (dev_info[i].working) {
if (avg_prop_solv_time[i] > 0 && avg_prop_solv_time[i] < fastest_dev_prop_solv_time) {
fastest_dev_prop_solv_time = (unsigned int) avg_prop_solv_time[i];
fastest_dev = i;
}
}
}
// More one device ranked
#if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__)
devs_ranked_ = InterlockedAdd(&devs_ranked, 0);
devs_working_ = InterlockedAdd(&devs_working_, 0);
#else
devs_ranked_ = __atomic_add_fetch(&devs_ranked, 0, __ATOMIC_SEQ_CST);
devs_working_ = __atomic_add_fetch(&devs_working, 0, __ATOMIC_SEQ_CST);
#endif
dev_info[dev_idx].n_ss_mult = 1;
// only one device so take the remaining ss
if (devs_working_ == 1) {
dev_info[dev_idx].block_size = n_ss - last_str_explored_;
} else {
// if counting all the solutions
if (WORK == CNT) {
if (dev_info[dev_idx].props_total == 0) {
dev_info[dev_idx].props_total = 1;
}
if (dev_info[dev_idx].last_1ss_solv_time > dev_info[dev_idx].max_1ss_solv_time) {
dev_info[dev_idx].max_1ss_solv_time = dev_info[dev_idx].last_1ss_solv_time;
}
if (dev_info[dev_idx].last_time_prop > dev_info[dev_idx].max_time_prop) {
dev_info[dev_idx].max_time_prop = dev_info[dev_idx].last_time_prop;
}
// update the average time needed to run one propagator
dev_info[dev_idx].avg_time_prop = (float) dev_info[dev_idx].ms_solve_time / (float) dev_info[dev_idx].props_total * 1000;
for (i = 0; i < N_DEVS; i++) {
avg_prop_solv_time[i] = dev_info[i].avg_time_prop;
}
// if this device wasn't ranked yet
if (!dev_info[dev_idx].ranked && dev_info[dev_idx].times_used == N_FIRST_BLOCKS) {
dev_info[dev_idx].ranked = true;
// More one device ranked
#if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__)
devs_ranked_ = InterlockedAdd(&devs_ranked, 1);
#else
devs_ranked_ = __atomic_add_fetch(&devs_ranked, 1, __ATOMIC_SEQ_CST);
#endif
}
// if the device took more than 1 s to explore the previous block, decrease the size of the next block to half. For the first 3 block only
if (dev_info[dev_idx].times_used < N_FIRST_BLOCKS && dev_info[dev_idx].last_explor_time > MS_HALF_FIRST_BLOCKS) {
dev_info[dev_idx].block_size /= 2;
}
// if only one device is already ranked, and this one already explored two blocks, doubles the size of the next block, if that is not be too big
if (devs_ranked_
== 1&& dev_info[dev_idx].times_used >= N_FIRST_BLOCKS && dev_info[dev_idx].block_size * 2 < (n_ss - last_str_explored_) * PERCENT_REM_SS_DOUBLE) {
dev_info[dev_idx].block_size *= 2;
// After this point more than one device are already ranked
} else if (devs_ranked_ == N_DEVS) {
// update current device rank
for (i = 0; i < N_DEVS; i++) {
if (dev_info[i].working) {
if (avg_prop_solv_time[i] > 0) {
avg_sum += 1 / avg_prop_solv_time[i];
}
}
}
if (avg_prop_solv_time[dev_idx] > 0 && avg_sum > 0) {
dev_info[dev_idx].rank = 1 / avg_prop_solv_time[dev_idx] / avg_sum;
// next block size
if (dev_info[dev_idx].type == CL_DEVICE_TYPE_CPU) {
dev_info[dev_idx].block_size = (unsigned int) (dev_info[dev_idx].rank * (float) (n_ss - last_str_explored_) * PERCENT_REM_SS_RANK_CPU);
} else if (dev_info[dev_idx].type == CL_DEVICE_TYPE_GPU) {
dev_info[dev_idx].block_size = (unsigned int) (dev_info[dev_idx].rank * (float) (n_ss - last_str_explored_) * PERCENT_REM_SS_RANK_GPU);
// ACC
} else {
dev_info[dev_idx].block_size = (unsigned int) (dev_info[dev_idx].rank * (float) (n_ss - last_str_explored_) * PERCENT_REM_SS_RANK_ACC);
}
}
// if this device is estimated to take less than 500 ms to solve the remaining ss, takes them all
if ((float) (n_ss - last_str_explored_) * dev_info[dev_idx].avg_1ss_solv_time < MS_TAKE_ALL) {
dev_info[dev_idx].block_size = n_ss - last_str_explored_;
}
}
// if optimizing try to deliver blocks that take 1s to explore
} else if (WORK == OPT) {
if (dev_info[dev_idx].last_explor_time < FAST_BLOCKS_MS_OPT) {
dev_info[dev_idx].n_fast_blocks++;
} else {
dev_info[dev_idx].n_fast_blocks = 0;
if (dev_info[dev_idx].last_explor_time > FAST_BLOCKS_MS_OPT) {
dev_info[dev_idx].block_size /= 2;
}
}
if (dev_info[dev_idx].n_fast_blocks == N_FAST_BLOCKS_OPT) {
dev_info[dev_idx].block_size += 1 + (unsigned int) (PERCENT_BLOCKS_ADD * (double) dev_info[dev_idx].block_size);
dev_info[dev_idx].n_fast_blocks = 0;
}
// if finding one solution and all devices have explored at least three blocks each, try to deliver blocks that take 2s to explore
} else {
all_devs_used = true;
for (i = 0; i < N_DEVS; i++) {
if (dev_info[i].times_used < N_FIRST_BLOCKS) {
all_devs_used = false;
break;
}
}
if (dev_info[dev_idx].avg_1ss_solv_time != 0 && all_devs_used == true) {
dev_info[dev_idx].block_size = (unsigned int) (FAST_BLOCKS_MS_ONE / dev_info[dev_idx].avg_1ss_solv_time);
}
if (dev_info[dev_idx].last_explor_time > FAST_BLOCKS_MS_ONE * 2) {
dev_info[dev_idx].block_size /= 2;
}
}
}
if (dev_info[dev_idx].times_used / TIMES_USED_TRESHOLD > 1.0 && (SS_REM_PERC_TRESHOLD * n_ss) < (n_ss - last_str_explored_)) {
dev_info[dev_idx].block_size *= (unsigned int) (dev_info[dev_idx].times_used / TIMES_USED_TRESHOLD);
}
// if the block size is close to 0, stop it
if (dev_info[dev_idx].block_size == 0) {
dev_info[dev_idx].n_empty_blocks++;
if (dev_info[dev_idx].n_empty_blocks >= N_EMPTY_BLOCKS && dev_idx != fastest_dev && dev_info[dev_idx].type == CL_DEVICE_TYPE_GPU && !all_GPUs) {
#if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__)
devs_working_ = InterlockedDecrement(&devs_working);
#else
devs_working_ = __atomic_sub_fetch(&devs_working, 1, __ATOMIC_SEQ_CST);
#endif
if (devs_working_ > 0) {
dev_info[dev_idx].block_size = 0;
dev_info[dev_idx].working = false;
} else {
dev_info[dev_idx].block_size = n_ss - last_str_explored_;
}
} else {
dev_info[dev_idx].block_size = 1;
}
} else {
dev_info[dev_idx].n_empty_blocks = 0;
}
#if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__)
devs_working_ = InterlockedAdd(&devs_working, 0);
#else
devs_working_ = __atomic_add_fetch(&devs_working, 0, __ATOMIC_SEQ_CST);
#endif
if (devs_working_ == 1 && dev_info[dev_idx].working) {
dev_info[dev_idx].block_size = n_ss - last_str_explored_;
}
#if SS_MULTIPLIER
if (dev_info[dev_idx].block_size > 0) {
//GPU
if (dev_info[dev_idx].type == CL_DEVICE_TYPE_GPU
&& dev_info[dev_idx].block_size
< SS_GPU / (GPU_DEFAULT_N_WI / (double) dev_info[dev_idx].n_wi_wg * 1.0) / (GPU_DEFAULT_N_WG / (double) dev_info[dev_idx].n_wg)) {
dev_info[dev_idx].n_ss_mult = (unsigned int) ((SS_GPU / (GPU_DEFAULT_N_WI / (double) dev_info[dev_idx].n_wi_wg)
/ (GPU_DEFAULT_N_WG / (double) dev_info[dev_idx].n_wg * 1.0)) / dev_info[dev_idx].block_size);
// ACC
} else if (dev_info[dev_idx].type == CL_DEVICE_TYPE_ACCELERATOR
&& dev_info[dev_idx].block_size < SS_ACC / (dev_info[dev_idx].compute_units / (double) dev_info[dev_idx].n_wg * 1.0)) {
dev_info[dev_idx].n_ss_mult = (unsigned int) (SS_ACC / (dev_info[dev_idx].compute_units / (double) dev_info[dev_idx].n_wg * 1.0)
/ dev_info[dev_idx].block_size);
// CPU
} else if (DEVICES_INFO[dev_idx].type == CL_DEVICE_TYPE_CPU
&& dev_info[dev_idx].block_size
< SS_CPU * dev_info[dev_idx].compute_units / (dev_info[dev_idx].compute_units / (double) dev_info[dev_idx].n_wg * 1.0)) {
dev_info[dev_idx].n_ss_mult = (unsigned int) ((SS_CPU * dev_info[dev_idx].compute_units)
/ (dev_info[dev_idx].compute_units / (double) dev_info[dev_idx].n_wg * 1.0) / dev_info[dev_idx].block_size);
}
if (dev_info[dev_idx].n_ss_mult > ss_mult_max) {
dev_info[dev_idx].n_ss_mult = ss_mult_max;
} else if (dev_info[dev_idx].n_ss_mult == 0) {
dev_info[dev_idx].n_ss_mult = 1;
}
}
#endif
free(avg_prop_solv_time);
}
/*
* Calculate number of stores to create and fill all stores with disjoint sub-trees
* Stores are only filled to depth, because all the remaining domains are equal in all stores
* depth - depth of tree needed to expand to fill stores
* n_ss - to save the number of stores to create
* n_vs_to_label - number of variables marked for labeling
*/
void split_ss(unsigned int *depth, unsigned int *n_ss, unsigned int n_vs_to_label) {
unsigned int n_strs; // maximum number of ss to create
unsigned int vs_to_label_cntr = 0;
unsigned int i, j;
EXP_VALUES = calloc(N_VS, sizeof(unsigned int));
// if just one search space is to be used
if ((N_DEVS == 1 && DEVICES_INFO[0].n_wg * DEVICES_INFO[0].n_wi_wg == 1 && N_SS == 0) || N_SS == 1) {
(*depth) = 0;
(*n_ss) = 1;
} else {
// if the user wants to use the default number of sub-search spaces
if (N_SS == 0) {
// if going to use more than one device
if (N_DEVS > 1) {
n_strs = 0;
// base on the CPU number of cores
for (i = 0; i < N_DEVS; i++) {
if (DEVICES_INFO[i].type == CL_DEVICE_TYPE_CPU) {
n_strs = SS_CPU * DEVICES_INFO[i].compute_units;
break;
}
}
// no CPU, get the device with less cores
if (n_strs == 0) {
for (i = 0; i < N_DEVS; i++) {
// GPU
if (DEVICES_INFO[0].type == CL_DEVICE_TYPE_GPU) {
if (SS_GPU > n_strs) {
n_strs = SS_GPU;
}
// MIC
} else if (DEVICES_INFO[0].type == CL_DEVICE_TYPE_ACCELERATOR) {
if (SS_ACC > n_strs) {
n_strs = SS_ACC;
}
// CPU
} else {
n_strs = SS_GPU;
}
}
}
// if only one device
} else if (DEVICES_INFO[0].type == CL_DEVICE_TYPE_GPU) {
if (DEVICES_INFO[0].n_wg == DEVICES_INFO[0].def_n_wg && DEVICES_INFO[0].n_wi_wg == DEVICES_INFO[0].def_n_wi_wg) {
n_strs = SS_GPU;
} else {
n_strs = (unsigned int) ((DEVICES_INFO[0].n_wg * DEVICES_INFO[0].n_wi_wg * SS_GPU)
/ (DEVICES_INFO[0].def_n_wg * DEVICES_INFO[0].def_n_wi_wg));
}
} else if (DEVICES_INFO[0].type == CL_DEVICE_TYPE_ACCELERATOR) {
if (DEVICES_INFO[0].n_wg == DEVICES_INFO[0].def_n_wg && DEVICES_INFO[0].n_wi_wg == DEVICES_INFO[0].def_n_wi_wg) {
n_strs = SS_ACC;
} else {
n_strs = (unsigned int) ((DEVICES_INFO[0].n_wg * DEVICES_INFO[0].n_wi_wg * SS_ACC)
/ (DEVICES_INFO[0].def_n_wg * DEVICES_INFO[0].def_n_wi_wg));
}
} else {
if (DEVICES_INFO[0].n_wg == DEVICES_INFO[0].def_n_wg && DEVICES_INFO[0].n_wi_wg == DEVICES_INFO[0].def_n_wi_wg) {
n_strs = SS_CPU * DEVICES_INFO[0].compute_units;
} else {
n_strs = (unsigned int) ((DEVICES_INFO[0].n_wg * DEVICES_INFO[0].n_wi_wg * SS_CPU * DEVICES_INFO[0].compute_units)
/ (DEVICES_INFO[0].def_n_wg * DEVICES_INFO[0].def_n_wi_wg));
}
}
// cap on 1.000.000 per device
if (n_strs > MAX_SS) {
n_strs = MAX_SS;
}
} else {
n_strs = N_SS;
}
// calculate the depth of the tree needed to expand
*n_ss = 1;
*depth = 0;
i = 0;
while ((*n_ss) < n_strs && vs_to_label_cntr < n_vs_to_label) {
if (VS[i].to_label) {
(*n_ss) *= VS[i].n_vals;
EXP_VALUES[i] = VS[i].n_vals;
// will be fully expanded during sub-search spaces creation, so its already labeled
VS[i].to_label = false;
VS[i].expanded = true;
vs_labeled_at_ss++;
vs_to_label_cntr++;
} else {
EXP_VALUES[i] = 1;
}
(*depth)++;
i++;
}
// if expanding all the tree nodes to depth generate more than the required number of sub-search spaces
if ((*n_ss) != n_strs) {
i--;
(*n_ss) /= VS[i].n_vals;
// reset, because it will not be fully expanded
VS[i].to_label = true;
VS[i].expanded = false;
vs_labeled_at_ss--;
vs_to_label_cntr--;
for (j = 2; j < VS[i].n_vals; j++) {
if ((*n_ss) * j >= n_strs) {
(*n_ss) *= j;
EXP_VALUES[i] = j;
break;
}
}
if (j == VS[i].n_vals) {
(*n_ss) *= VS[i].n_vals;
EXP_VALUES[i] = VS[i].n_vals;
VS[i].to_label = false;
VS[i].expanded = true;
vs_labeled_at_ss++;
vs_to_label_cntr++;
}
}
#if SS_MULTIPLIER
unsigned long long mult_max_aux = 1;
// get the max multiplier that can be applied to the number of ss inside each device
if (*depth != N_VS) {
for (i = (*depth); i < N_VS && vs_to_label_cntr < n_vs_to_label && mult_max_aux * (*n_ss) < UINT_MAX; i++) {
if (VS[i].n_vals > 1 && VS[i].to_label) {
vs_to_label_cntr++;
mult_max_aux *= VS[i].n_vals;
}
}
if (mult_max_aux * (*n_ss) > UINT_MAX) {
if (i == N_VS) {
i--;
}
mult_max_aux /= VS[i].n_vals;
for (j = 2; j < VS[i].n_vals; j++) {
if (mult_max_aux * (*n_ss) * j > UINT_MAX) {
j--;
mult_max_aux *= j;
break;
}
}
}
ss_mult_max = (unsigned int) mult_max_aux;
}
if (ss_mult_max == 0) {
ss_mult_max = 1;
}
#else
ss_mult_max = 1;
#endif
}
}