cl_aux_functions.c
33.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
/*
* cl_aux_functions.c
*
* Created on: 09/09/2019
* Author: pedro
*/
#ifndef __OPENCL_VERSION__
#include <stdbool.h>
#include <limits.h>
#include <sys/types.h>
#include "cl_aux_functions.h"
#include "../utils/cl_syntax.h"
#endif
#if CUDA_VERSION
#include "../utils/cu_syntax.h"
#endif
#include "../config.h"
#include "../domains.h"
#include "cl_constraints.h"
#include "cl_variables.h"
#include "cl_ttl.h"
#if CL_D_TYPE == CL_BITMAP
#include "cl_bitmaps.h"
#elif CL_D_TYPE == CL_INTERVAL
#include "cl_intervals.h"
#endif
/*
* Adds a variable to the vector of variables to propagate
* vs_id_to_prop_ - circular vector with the ids of the variables to propagate
* vs_prop_ - vector with all CSP variables
* v_id_to_prop - id of the variable to propagate
*/
CUDA_FUNC void v_add_to_prop(CL_MEMORY unsigned short* vs_id_to_prop_, CL_MEMORY VARS_PROP* vs_prop_, int v_id_to_prop) {
// if that variable is not already set for propagation
if (vs_prop_[v_id_to_prop].to_prop == 0) {
// add that variable id to the vector of variables to propagate
vs_id_to_prop_[vs_id_to_prop_[1]] = convert_ushort(v_id_to_prop);
if (vs_id_to_prop_[1] < CL_N_VS + 2) {
vs_id_to_prop_[1] = convert_ushort(vs_id_to_prop_[1] + 1);
} else {
vs_id_to_prop_[1] = 2;
}
// mark that variable as added to vs_id_to_prop_ vector
vs_prop_[v_id_to_prop].to_prop = 1;
}
#if CL_CHECK_ERRORS
int i;
if (vs_id_to_prop_[0] <= vs_id_to_prop_[1]) {
for (i = vs_id_to_prop_[0]; i < vs_id_to_prop_[1]; i++) {
if (vs_id_to_prop_[i] == v_id_to_prop) {
break;
}
}
if (vs_id_to_prop_[i] != v_id_to_prop) {
printf((__constant char *)"\n###error 31\n");
}
} else {
for (i = vs_id_to_prop_[0]; i < CL_N_VS + 2; i++) {
if (vs_id_to_prop_[i] == v_id_to_prop) {
break;
}
}
if (vs_id_to_prop_[i] != v_id_to_prop) {
for (i = 2; i < vs_id_to_prop_[1]; i++) {
if (vs_id_to_prop_[i] == v_id_to_prop) {
break;
}
}
}
if (vs_id_to_prop_[i] != v_id_to_prop) {
printf((__constant char *)"\n###error 32\n");
}
}
#endif
}
/*
* Return the next variable to propagate by selecting the first one on vs_id_to_prop_ vector, or CL_N_VS if none
* vs_id_to_prop_ - circular vector with the ids of the variables to propagate
* vs_prop_ - vector with all CSP variables
* vs - vector with all CSP variables common to all work-items (not used with this heuristic)
*/
CUDA_FUNC void v_get_id_to_prop(CL_MEMORY unsigned short* vs_id_to_prop_, CL_MEMORY VARS_PROP* vs_prop_, unsigned int* prop_v_id TTL_CTR) {
int v_idx;
// If variables to propagate vector is empty
if (vs_id_to_prop_[0] == vs_id_to_prop_[1]) {
// Restart the first and next index on variables to propagate vector
vs_id_to_prop_[0] = 2;
vs_id_to_prop_[1] = 2;
*prop_v_id = CL_N_VS;
#if CL_CHECK_ERRORS
int i;
for (i = 0; i < CL_N_VS; i++) {
CHECK_TTL(ttl_ctr, 153)
if (vs_prop_[i].to_prop == 1) {
printf((__constant char *)"\n###error 33\n");
}
}
#endif
} else {
v_idx = convert_int(vs_id_to_prop_[vs_id_to_prop_[0]]);
// mark that variable as not added to vs_id_to_prop_ vector
vs_prop_[vs_id_to_prop_[vs_id_to_prop_[0]]].to_prop = 0;
if (vs_id_to_prop_[0] < CL_N_VS + 2) {
vs_id_to_prop_[0] = convert_ushort(vs_id_to_prop_[0] + 1);
} else {
vs_id_to_prop_[0] = 2;
}
*prop_v_id = convert_ushort(v_idx);
}
CHECK_TTL(ttl_ctr, 232)
}
#if CL_LABEL_M == CL_FIRST_FAIL
/*
* Return the next variable to label by selecting the one not labeled yet and with less values on its domain, or CL_N_VS if none
* vs_prop_ - vector with all CSP variables
* vs - vector with all CSP variables common to all work-items
*/
CUDA_FUNC void v_get_id_to_label(CL_MEMORY VARS_PROP* vs_prop_, CL_VS_MEM VARS* vs, unsigned int* prop_v_id TTL_CTR) {
int vals_cnt = 0xFFFF;
int n_vals;
int v_idx = CL_N_VS;
int i;
for (i = 0; i < CL_N_VS; i++) {
CHECK_TTL(ttl_ctr, 3)
#if CL_CHECK_ERRORS
bool empty;
cl_d_is_empty_m(&empty, &vs_prop_->prop_d TTL_CTR_V);
if (empty || vs_prop_[i].n_vals == 0 || vs_prop_[i].n_vals > vs_prop_[i].max + 1 || vs_prop_[i].min > vs_prop_[i].max || vs_prop_[i].max > CL_D_MAX) {
printf((__constant char *)"\n###error 34\n");
}
#endif
n_vals = V_N_VALS(vs_prop_[i]);
if (vs[i].to_label && n_vals > 1 && n_vals < vals_cnt) {
vals_cnt = n_vals;
v_idx = i;
// The minimum values of a variable to label will be two, so stop searching
if (n_vals == 2) {
i = CL_N_VS;
}
}
}
#if CL_TO_LABEL_THRESHOLD > 0
if (v_idx == CL_N_VS) {
for (i = 0; i < CL_N_VS; i++) {
CHECK_TTL(ttl_ctr, 3)
#if CL_CHECK_ERRORS
bool empty;
cl_d_is_empty_m(&empty, &vs_prop_->prop_d TTL_CTR_V);
if (empty || vs_prop_[i].n_vals == 0 || vs_prop_[i].n_vals > vs_prop_[i].max + 1 || vs_prop_[i].min > vs_prop_[i].max || vs_prop_[i].max > CL_D_MAX) {
printf((__constant char *)"\n###error 35\n");
}
#endif
n_vals = V_N_VALS(vs_prop_[i]);
if (!vs[i].to_label && n_vals > 1 && n_vals < vals_cnt) {
vals_cnt = n_vals;
v_idx = i;
// The minimum values of a variable to label will be two, so stop searching
if (n_vals == 2) {
i = CL_N_VS;
}
}
}
}
#endif
*prop_v_id = convert_ushort(v_idx);
}
#elif CL_LABEL_M == CL_INPUT_ORDER
/*
* Return the next variable to label by selecting the first one not labeled yet, or CL_N_VS if none
* vs_prop_ - vector with all CSP variables
* vs - vector with all CSP variables common to all work-items
*/
CUDA_FUNC void v_get_id_to_label(CL_MEMORY VARS_PROP* vs_prop_, CL_VS_MEM VARS* vs, unsigned int* prop_v_id TTL_CTR) {
int v_idx = CL_N_VS;
int i;
for (i = 0; i < CL_N_VS; i++) {
CHECK_TTL(ttl_ctr, 29)
#if CL_CHECK_ERRORS
bool empty;
cl_d_is_empty_m(&empty, &vs_prop_->prop_d TTL_CTR_V);
if (empty || vs_prop_[i].n_vals == 0 || vs_prop_[i].n_vals > vs_prop_[i].max + 1 || vs_prop_[i].min > vs_prop_[i].max || vs_prop_[i].max > CL_D_MAX) {
printf((__constant char *)"\n###error 36\n");
}
#endif
if (vs[i].to_label && V_N_VALS(vs_prop_[i]) > 1) {
v_idx = i;
i = CL_N_VS;
}
}
#if CL_TO_LABEL_THRESHOLD > 0
if (v_idx == CL_N_VS) {
for (i = 0; i < CL_N_VS; i++) {
CHECK_TTL(ttl_ctr, 29)
#if CL_CHECK_ERRORS
bool empty;
cl_d_is_empty_m(&empty, &vs_prop_->prop_d TTL_CTR_V);
if (empty || vs_prop_[i].n_vals == 0 || vs_prop_[i].n_vals > vs_prop_[i].max + 1 || vs_prop_[i].min > vs_prop_[i].max || vs_prop_[i].max > CL_D_MAX) {
printf((__constant char *)"\n###error 37\n");
}
#endif
if (!vs[i].to_label && V_N_VALS(vs_prop_[i]) > 1) {
v_idx = i;
i = CL_N_VS;
}
}
}
#endif
*prop_v_id = convert_ushort(v_idx);
}
#elif CL_LABEL_M == CL_OCCURRENCE
/*
* Return the next variable to label by selecting the one not labeled yet that is more constrained, or CL_N_VS if none
* vs_prop_ - vector with all CSP variables local to this work-item
* vs - vector with all CSP variables common to all work-items
*/
CUDA_FUNC void v_get_id_to_label(CL_MEMORY VARS_PROP* vs_prop_, CL_VS_MEM VARS* vs, unsigned int* prop_v_id TTL_CTR) {
int max_cs_cnt = 0;
int v_idx = CL_N_VS;
int i;
for (i = 0; i < CL_N_VS; i++) {
CHECK_TTL(ttl_ctr, 30)
#if CL_CHECK_ERRORS
bool empty;
cl_d_is_empty_m(&empty, &vs_prop_->prop_d TTL_CTR_V);
if (empty || vs_prop_[i].n_vals == 0 || vs_prop_[i].n_vals > vs_prop_[i].max + 1 || vs_prop_[i].min > vs_prop_[i].max || vs_prop_[i].max > CL_D_MAX) {
printf((__constant char *)"\n###error 38\n");
}
#endif
if (vs[i].to_label && vs[i].n_cs > max_cs_cnt && V_N_VALS(vs_prop_[i]) > 1) {
max_cs_cnt = vs[i].n_cs;
v_idx = i;
}
}
#if CL_TO_LABEL_THRESHOLD > 0
if (v_idx == CL_N_VS) {
for (i = 0; i < CL_N_VS; i++) {
CHECK_TTL(ttl_ctr, 30)
#if CL_CHECK_ERRORS
bool empty;
cl_d_is_empty_m(&empty, &vs_prop_->prop_d TTL_CTR_V);
if (empty || vs_prop_[i].n_vals == 0 || vs_prop_[i].n_vals > vs_prop_[i].max + 1 || vs_prop_[i].min > vs_prop_[i].max || vs_prop_[i].max > CL_D_MAX) {
printf((__constant char *)"\n###error 39\n");
}
#endif
if (!vs[i].to_label && vs[i].n_cs > max_cs_cnt && V_N_VALS(vs_prop_[i]) > 1) {
max_cs_cnt = vs[i].n_cs;
v_idx = i;
}
}
}
#endif
*prop_v_id = convert_ushort(v_idx);
}
#elif CL_LABEL_M == CL_MAX_REGRET
/*
* Return the next variable to label by selecting the one on vs_id_to_prop_ vector that has the largest difference between the two smallest values, or CL_N_VS if none
* vs_prop_ - vector with all CSP variables
* vs - vector with all CSP variables common to all work-items
*/
CUDA_FUNC void v_get_id_to_label(CL_MEMORY VARS_PROP* vs_prop_, CL_VS_MEM VARS* vs, unsigned int* prop_v_id TTL_CTR) {
int diff_aux;
int diff = 0;
int v_idx = CL_N_VS;
int i;
for (i = 0; i < CL_N_VS; i++) {
CHECK_TTL(ttl_ctr, 31)
#if CL_CHECK_ERRORS
bool empty;
cl_d_is_empty_m(&empty, &vs_prop_->prop_d TTL_CTR_V);
if (empty || vs_prop_[i].n_vals == 0 || vs_prop_[i].n_vals > vs_prop_[i].max + 1 || vs_prop_[i].min > vs_prop_[i].max || vs_prop_[i].max > CL_D_MAX) {
printf((__constant char *)"\n###error 40\n");
}
#endif
if (vs[i].to_label && V_N_VALS(vs_prop_[i]) > 1) {
v_get_max_regret_diff_m(&diff_aux, &vs_prop_[i]);
if (diff_aux > diff) {
diff = diff_aux;
v_idx = i;
}
}
}
#if CL_TO_LABEL_THRESHOLD > 0
if (v_idx == CL_N_VS) {
for (i = 0; i < CL_N_VS; i++) {
CHECK_TTL(ttl_ctr, 31)
#if CL_CHECK_ERRORS
bool empty;
cl_d_is_empty_m(&empty, &vs_prop_->prop_d TTL_CTR_V);
if (empty || vs_prop_[i].n_vals == 0 || vs_prop_[i].n_vals > vs_prop_[i].max + 1 || vs_prop_[i].min > vs_prop_[i].max || vs_prop_[i].max > CL_D_MAX) {
printf((__constant char *)"\n###error 41\n");
}
#endif
if (!vs[i].to_label && V_N_VALS(vs_prop_[i]) > 1) {
v_get_max_regret_diff_m(&diff_aux, &vs_prop_[i]);
if (diff_aux > diff) {
diff = diff_aux;
v_idx = i;
}
}
}
}
#endif
*prop_v_id = v_idx;
}
#endif
#if CL_LABEL_M == CL_SMALLEST
/*
* Return the next variable to label by selecting the one not labeled yet and with the smallest value on its domain, or CL_N_VS if none
* vs_prop_ - vector with all CSP variables
* vs - vector with all CSP variables common to all work-items
*/
CUDA_FUNC void v_get_id_to_label(CL_MEMORY VARS_PROP* vs_prop_, CL_VS_MEM VARS* vs, unsigned int* prop_v_id TTL_CTR) {
int v_idx = CL_N_VS;
int min = CL_D_MAX;
int i;
for (i = 0; i < CL_N_VS; i++) {
CHECK_TTL(ttl_ctr, 3)
#if CL_CHECK_ERRORS
bool empty;
cl_d_is_empty_m(&empty, &vs_prop_->prop_d TTL_CTR_V);
if (empty || vs_prop_[i].n_vals == 0 || vs_prop_[i].n_vals > vs_prop_[i].max + 1 || vs_prop_[i].min > vs_prop_[i].max || vs_prop_[i].max > CL_D_MAX) {
printf((__constant char *)"\n###error 42\n");
}
#endif
if (vs[i].to_label && V_N_VALS(vs_prop_[i]) > 1 && V_MIN(vs_prop_[i]) < min) {
v_idx = i;
min = V_MIN(vs_prop_[i]);
// If the minimum value is CL_D_MIN, stop searching
if (min == CL_D_MIN) {
i = CL_N_VS;
}
}
}
#if CL_TO_LABEL_THRESHOLD > 0
if (v_idx == CL_N_VS) {
for (i = 0; i < CL_N_VS; i++) {
CHECK_TTL(ttl_ctr, 3)
#if CL_CHECK_ERRORS
bool empty;
cl_d_is_empty_m(&empty, &vs_prop_->prop_d TTL_CTR_V);
if (empty || vs_prop_[i].n_vals == 0 || vs_prop_[i].n_vals > vs_prop_[i].max + 1 || vs_prop_[i].min > vs_prop_[i].max || vs_prop_[i].max > CL_D_MAX) {
printf((__constant char *)"\n###error 43\n");
}
#endif
if (!vs[i].to_label && V_N_VALS(vs_prop_[i]) > 1 && V_MIN(vs_prop_[i]) < min) {
v_idx = i;
min = V_MIN(vs_prop_[i]);
// If the minimum value is 0, stop searching
if (min == 0) {
break;
}
}
}
}
#endif
*prop_v_id = v_idx;
}
#endif
#if CL_ASSIGN_M == CL_MIN_VAL
/*
* Assign the minimum value
* v - variable to be assigned
* hist - place on backtracking history where the remaining values of the variable should be stored
* hist_labeleds_n_vals - place where the number of values remaining on the assigned variable should be stored
*/
CUDA_FUNC void v_assign(CL_MEMORY VARS_PROP* v, __global DOMAIN_* hist, __global int* hist_labeleds_n_vals TTL_CTR) {
#if CL_CHECK_ERRORS
bool empty;
cl_d_is_empty_m(&empty, &v->prop_d TTL_CTR_V);
if (empty || v->n_vals == 0 || v->n_vals > v->max + 1 || v->min > v->max || v->max > CL_D_MAX) {
printf((__constant char *)"\n###error 44\n");
}
#endif
(*hist_labeleds_n_vals) = V_N_VALS(*v) - 1;
// If the labeled variable has more than one value on its domain remove the labeled value from its backtracking domain
if ((*hist_labeleds_n_vals) > 0) {
int min = V_MIN(*v);
bool changed;
cl_v_del_all_except_val_m(&changed, v, min TTL_CTR_V);
cl_d_del_val_no_tests_g(hist, min);
} else {
cl_d_clear_g(hist TTL_CTR_V);
}
}
#elif CL_ASSIGN_M == CL_MAX_VAL
/*
* Assign the maximum value
* v - variable to be assigned
* hist - place on backtracking history where the remaining values of the variable should be stored
* hist_labeleds_n_vals - place where tje number of values remaining on the assigned variable should be stored
*/
CUDA_FUNC void v_assign(CL_MEMORY VARS_PROP* v, __global DOMAIN_* hist, __global int* hist_labeleds_n_vals) {
#if CL_CHECK_ERRORS
bool empty;
cl_d_is_empty_m(&empty, &v->prop_d TTL_CTR_V);
if (empty || v->n_vals == 0 || v->n_vals > v->max + 1 || v->min > v->max || v->max > CL_D_MAX) {
printf((__constant char *)"\n###error 45\n");
}
#endif
(*hist_labeleds_n_vals) = V_N_VALS(*v) - 1;
// If the labeled variable had more than one value on its domain remove the labeled value from its backtracking domain
if ((*hist_labeleds_n_vals) > 0) {
int max = V_MAX(*v);
bool changed;
cl_v_del_all_except_val_m(&changed, v, max TTL_CTR_V);
cl_d_del_val_no_tests_g(hist, max);
} else {
cl_d_clear_g(hist);
}
}
#elif CL_ASSIGN_M == CL_SPLIT_VALS
/*
* Split the domain in half between the minimum and the maximum, and keeps the first half
* v - variable to be assigned
* hist - place on backtracking history where the remaining values of the variable should be stored
* hist_labeleds_n_vals - place where tje number of values remaining on the assigned variable should be stored
*/
CUDA_FUNC void v_assign(CL_MEMORY VARS_PROP* v, __global DOMAIN_* hist, __global int* hist_labeleds_n_vals) {
#if CL_CHECK_ERRORS
bool empty;
cl_d_is_empty_m(&empty, &v->prop_d TTL_CTR_V);
if (empty || v->n_vals == 0 || v->n_vals > v->max + 1 || v->min > v->max || v->max > CL_D_MAX) {
printf((__constant char *)"\n###error 46\n");
}
#endif
int n_vals = V_N_VALS(*v);
if (n_vals > 1) {
int min = V_MIN(*v);
int split_val = (V_MAX(*v) - min) / 2 + min;
cl_v_del_gt_no_tests_m(v, split_val);
cl_d_del_le_no_tests_g(hist, split_val);
*hist_labeleds_n_vals = n_vals - V_N_VALS(*v);
} else {
*hist_labeleds_n_vals = 0;
cl_d_clear_g(hist);
}
}
#endif
#if CL_WORK == CL_OPT
/*
* Update the domain of the variable to optimize according to the global value to optimize on the received backtracking store. Global memory
* Return 1 if domain changed and 0 if not
* hist - backtracking data
* val_to_opt - global value to optimize
*/
CUDA_FUNC void upd_opt_var_hist_g(__global DOMAIN_* hist, __global unsigned int* val_to_opt TTL_CTR) {
#if CL_CHECK_ERRORS
bool empty;
cl_d_is_empty_g(&empty, hist TTL_CTR_V);
if (empty || *val_to_opt > CL_D_MAX) {
printf((__constant char *)"\n###error 47\n");
}
#endif
bool changed;
int val_to_opt_aux = convert_int(*val_to_opt);
#if CL_OPT_M == CL_DECREASE
cl_d_del_gt_g(&changed, hist, val_to_opt_aux TTL_CTR_V);
#else
cl_d_del_lt_g(&changed, hist, val_to_opt_aux TTL_CTR_V);
#endif
}
#endif
#if CL_N_SHARED_SS > 0
/*
* Pick a new store from the shared stores and prepares all the structures to begin its exploration.
* prop_v_id will get CL_N_VS if no store is available.
* shared_ss - All the shared stores
* shared_ss_flags - flags for each shared store state
* vs - CSP variables
* vs_id_to_prop_ - List with the ID of the variables to propagate
* vs_prop_ - variables on the current state
* hist - backtracking history
* hist_tree_level - level of the backtracking
* hist_labeleds_id - list of the ID of the variables that were labeled for each backtracking history level
* hist_labeleds_n_vals - number of values that remain on the variables that were labeled for each backtracking history level
* prop_v_id - ID of the variable that must be propagated
*/
CUDA_FUNC void get_shared_store(
__global DOMAIN_* shared_ss, __global int* shared_ss_flags, CL_MEMORY unsigned short* vs_id_to_prop_,
CL_MEMORY VARS_PROP* vs_prop_, __global DOMAIN_* hist, int* hist_tree_level, __global int* hist_labeleds_id,
__global int* hist_labeleds_n_vals, unsigned int* prop_v_id TTL_CTR) {
int ss_to_get;
// flags for signaling the state of each work-sharing store
// 0 - next shared SS to be picked
// 1 - next shared SS to be filled
// 2...number of SS already filled
// 3..3+CL_N_SHARED_SS - V_ID that was labeled to generate this SS
if ((ss_to_get = atomic_inc(&shared_ss_flags[0])) < atomic_add(&shared_ss_flags[2], 0)) {
__global DOMAIN_* new_ss;
*prop_v_id = convert_uint(shared_ss_flags[3 + ss_to_get]);
int i;
// copy the new store
new_ss = &shared_ss[ss_to_get * CL_N_VS];
for (i = 0; i < CL_N_VS; i++) {
CHECK_TTL(ttl_ctr, 35)
cl_d_copy_mg(&vs_prop_[i].prop_d, &new_ss[i] TTL_CTR_V);
cl_d_copy_g(&hist[i], &new_ss[i] TTL_CTR_V);
vs_prop_[i].to_prop = 0;
cl_v_calc_min_val_m(&vs_prop_[i] TTL_CTR_V);
cl_v_calc_max_val_m(&vs_prop_[i] TTL_CTR_V);
cl_v_cnt_vals_m(&vs_prop_[i] TTL_CTR_V);
}
cl_d_clear_g(&hist[*prop_v_id] TTL_CTR_V);
// reset the indexes of the array that contains the IDs of the variables to propagate
vs_id_to_prop_[0] = 2;
vs_id_to_prop_[1] = 2;
(*hist_tree_level) = 1;
hist_labeleds_id[0] = convert_int(*prop_v_id);
(*hist_labeleds_n_vals) = 0;
}
}
/*
* Set a new store on the shared stores
* shared_ss - All the shared stores
* shared_ss_flags - flags for each shared store state
* vs_prop_ - variables on the current state
* v_id - ID of the variable whose domain is to be pruned to create a new shared store
* hist - backtracking history
* hist_labeleds_n_vals - number of values that remain on the variables that were labeled for each backtracking history level
*/
CUDA_FUNC void set_shared_store(
__global DOMAIN_* shared_ss, __global int* shared_ss_flags,
CL_MEMORY VARS_PROP* vs_prop_, int v_id,
__global DOMAIN_* hist, __global int* hist_labeleds_n_vals TTL_CTR) {
int ss_to_fill;
// flags for signaling the state of each work-sharing store
// 0 - next shared SS to be picked
// 1 - next shared SS to be filled
// 2...number of SS already filled
// 3..3+CL_N_SHARED_SS - V_ID that was labeled to generate this SS
if ((ss_to_fill = atomic_inc(&shared_ss_flags[1])) < CL_N_SHARED_SS) {
__global DOMAIN_* new_ss;
int min;
int i;
// copy the new store
new_ss = &shared_ss[ss_to_fill * CL_N_VS];
for (i = 0; i < CL_N_VS; i++) {
CHECK_TTL(ttl_ctr, 33)
cl_d_copy_gm(&new_ss[i], &vs_prop_[i].prop_d TTL_CTR_V);
}
cl_d_calc_min_val_g(&min, hist TTL_CTR_V);
// remove value from backtracking history
cl_d_del_val_no_tests_g(hist, min);
(*hist_labeleds_n_vals)--;
cl_d_new_vals_gp(&new_ss[v_id], &min, 1 TTL_CTR_V);
// save the ID of the variable that was labeled to generate the new SS
shared_ss_flags[3 + ss_to_fill] = v_id;
atomic_inc(&shared_ss_flags[2]);
}
}
#endif
#if CL_CS_IGNORE
CUDA_FUNC void clear_cs_ignore(__global char* cs_ignore) {
int i;
for (i = 0; i < CL_N_CS; i++) {
cs_ignore[i] = 0;
}
}
#endif
#if CL_PRINT_CSP
/*
* Print the name of the constraint
* cs -constraint to print the name
*/
CUDA_FUNC void cs_print_type_device(CL_CS_MEM cl_constr* cs) {
switch (cs->kind) {
case ALL_DIFFERENT:
printf((__constant char *)"ALL_DIFFERENT");
break;
case AT_LEAST:
printf((__constant char *)"AT_LEAST");
break;
case AT_MOST:
printf((__constant char *)"AT_MOST");
break;
case AT_MOST_ONE:
printf((__constant char *)"AT_MOST_ONE");
break;
case ELEMENT:
printf((__constant char *)"ELEMENT");
break;
case ELEMENT_INT_VAR:
printf((__constant char *)"ELEMENT_INT_VAR");
break;
case ELEMENT_VAR:
printf((__constant char *)"ELEMENT_VAR");
break;
case EQ:
printf((__constant char *)"EQ");
break;
case EQ_VAR:
printf((__constant char *)"EQ_VAR");
break;
case EXACTLY:
printf((__constant char *)"EXACTLY");
break;
case EXACTLY_VAR:
printf((__constant char *)"EXACTLY_VAR");
break;
case LE:
printf((__constant char *)"LE");
break;
case LINEAR:
printf((__constant char *)"LINEAR");
break;
case LINEAR_VAR:
printf((__constant char *)"LINEAR_VAR");
break;
case LT:
printf((__constant char *)"LT");
break;
case MAX:
printf((__constant char *)"MAX");
break;
case MAXIMIZE:
printf((__constant char *)"MAXIMIZE");
break;
case MIN:
printf((__constant char *)"MIN");
break;
case MINIMIZE:
printf((__constant char *)"MINIMIZE");
break;
case MINUS_EQ:
printf((__constant char *)"MINUS_EQ");
break;
case MINUS_NE:
printf((__constant char *)"MINUS_NE");
break;
case NE:
printf((__constant char *)"NE");
break;
case SUM:
printf((__constant char *)"SUM");
break;
case SUM_PROD:
printf((__constant char *)"SUM_PROD");
break;
case SUM_VAR:
printf((__constant char *)"SUM_VAR");
break;
case VAR_EQ_MINUS:
printf((__constant char *)"VAR_EQ_MINUS");
break;
case VAR_EQ_PLUS:
printf((__constant char *)"VAR_EQ_PLUS");
break;
case VAR_EQ_TIMES:
printf((__constant char *)"VAR_EQ_TIMES");
break;
case VAR_EQ_MINUS_ABS:
printf((__constant char *)"VAR_EQ_MINUS_ABS");
break;
case LINEAR_NE:
printf((__constant char *)"LINEAR_NE");
break;
case LINEAR_LT:
printf((__constant char *)"LINEAR_LT");
break;
case BOOL_OR:
printf((__constant char *)"BOOL_OR");
break;
case BOOL_AND:
printf((__constant char *)"BOOL_AND");
break;
case BOOL_CLAUSE:
printf((__constant char *)"BOOL_CLAUSE");
break;
case BOOL2INT:
printf((__constant char *)"BOOL2INT");
break;
default:
printf((__constant char *)"NOT_RECOGNIZED");
break;
}
if (cs->reified) {
printf((__constant char *)"_REIF");
}
}
/*
* Print all the CSP variables and constraints, including the variables values and ID and
* the constraints ID and the ID of the variables that they constrain
* vs - CSP variables
* cs - CSP constraints
* cs_per_v_idx - vector with all the constraints ID that constrain each variable, per variable ID order
* vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order
* c_consts - vector with all the constant values of a CSP
*/
CUDA_FUNC void print_CSP_device(CL_VS_MEM VARS* vs, CL_CS_MEM cl_constr* cs, CL_INTS_MEM int* cs_per_v_idx, CL_INTS_MEM int* vs_per_c_idx
#if CS_AT_LEAST == 1 || CS_AT_MOST == 1 || CS_AT_MOST_ONE == 1 || CS_EXACTLY == 1 || CS_LINEAR == 1 || CS_LINEAR_LT == 1 || CS_LINEAR_NE == 1 || CS_LINEAR_VAR == 1 || CS_ELEMENT_INT_VAR == 1
, CL_INTS_MEM int* c_consts
#endif
#if CL_D_TYPE == CL_BITMAP
, CL_B_DS_MEM cl_bitmap* b_ds
#endif
) {
unsigned int prev_val;
unsigned int new_val;
unsigned int cntr;
int d_vals[CL_D_MAX + 1];
int n_vals, max;
CL_INTS_MEM int* vs_per_c_idx_;
CL_INTS_MEM int* cs_per_v_idx_;
DOMAIN_ d;
unsigned int i;
int j;
#if CS_AT_LEAST == 1 || CS_AT_MOST == 1 || CS_AT_MOST_ONE == 1 || CS_EXACTLY == 1 || CS_LINEAR == 1 || CS_LINEAR_LT == 1 || CS_LINEAR_NE == 1 || CS_LINEAR_VAR == 1 || CS_ELEMENT_INT_VAR == 1
CL_INTS_MEM int* c_consts_;
#endif
printf((__constant char *)"\n\n--------------------------------\n");
printf((__constant char *)"CSP as received by the device:\n");
printf((__constant char *)"\nVariables:\n");
for (i = 0; i < CL_N_VS; i++) {
printf((__constant char *)" ID=%u: Values={", i);
#if CL_D_TYPE == CL_BITMAP
#if CL_N_WORDS == 1
d = b_ds[i];
#else
for (j = 0; j < CL_N_WORDS; j++) {
CHECK_TTL(ttl_ctr, 117)
d[j] = b_ds[i][j];
}
#endif
cl_d_cnt_vals_n(&d, &n_vals);
cl_d_calc_max_val_n(&max, &d);
cl_d_get_nth_vals_n(&d, 1, n_vals, d_vals TTL_CTR_V);
j = 0;
prev_val = convert_uint(d_vals[j++]);
new_val = prev_val;
printf((__constant char *)"%u", prev_val);
while (new_val < (uint)max) {
cntr = 0;
while ((new_val = convert_uint(d_vals[j++])) == prev_val + 1 && new_val < (uint)max) {
prev_val = new_val;
cntr++;
}
if (cntr == 0) {
printf((__constant char *)",%u", new_val);
} else {
if (new_val == (uint)max && new_val == prev_val + 1) {
printf((__constant char *)"-%u", new_val);
} else if (cntr == 1) {
printf((__constant char *)",%u,%u", prev_val, new_val);
} else {
printf((__constant char *)"-%u,%u", prev_val, new_val);
}
}
prev_val = new_val;
}
#else
printf((__constant char *)"%u,%u", vs[i].domain.s0, vs[i].domain.s1);
#endif
if (vs[i].to_label) {
printf((__constant char *)"} Label=true");
} else {
printf((__constant char *)"} Label=false");
}
if (vs[i].expanded) {
printf((__constant char *)" expanded");
}
if (vs[i].n_cs > 0) {
printf((__constant char *)" Constraints={");
cs_per_v_idx_ = &cs_per_v_idx[vs[i].c_idx];
for (j = 0; j < vs[i].n_cs - 1; j++) {
printf((__constant char *)"%u,", cs_per_v_idx_[j]);
}
if (vs[i].n_cs > 0) {
printf((__constant char *)"%u}\n", cs_per_v_idx_[j]);
} else {
printf((__constant char *)"\n");
}
} else {
printf((__constant char *)"\n");
}
}
printf((__constant char *)"Constraints:\n");
for (i = 0; i < CL_N_CS; i++) {
vs_per_c_idx_ = &vs_per_c_idx[cs[i].v_idx];
#if CS_AT_LEAST == 1 || CS_AT_MOST == 1 || CS_AT_MOST_ONE == 1 || CS_EXACTLY == 1 || CS_LINEAR == 1 || CS_LINEAR_LT == 1 || CS_LINEAR_NE == 1 || CS_LINEAR_VAR == 1 || CS_ELEMENT_INT_VAR == 1
c_consts_ = &c_consts[cs[i].const_idx];
#endif
printf((__constant char *)" ID=%u: Type=", i);
cs_print_type_device(&cs[i]);
printf((__constant char *)" Variables={");
for (j = 0; j < cs[i].n_c_vs - 1; j++) {
printf((__constant char *)"%u,", vs_per_c_idx_[j]);
}
printf((__constant char *)"%u}", vs_per_c_idx_[j]);
if (cs[i].n_c_consts > 0) {
#if CS_AT_LEAST == 1 || CS_AT_MOST == 1 || CS_AT_MOST_ONE == 1 || CS_EXACTLY == 1 || CS_LINEAR == 1 || CS_LINEAR_LT == 1 || CS_LINEAR_NE == 1 || CS_LINEAR_VAR == 1 || CS_ELEMENT_INT_VAR == 1
printf((__constant char *)" Constants={");
for (j = 0; j < cs[i].n_c_consts - 1; j++) {
printf((__constant char *)"%d,", c_consts_[j]);
}
if (cs[i].kind == LINEAR || cs[i].kind == LINEAR_NE || cs[i].kind == LINEAR_LT) {
printf((__constant char *)"%d, %d}", c_consts_[j], cs[i].constant_val);
} else {
printf((__constant char *)"%d}", c_consts_[j]);
}
#endif
} else if (cs[i].kind == ELEMENT || cs[i].kind == EXACTLY_VAR || cs[i].kind == LINEAR || cs[i].kind == LINEAR_NE || cs[i].kind == MINUS_EQ
|| cs[i].kind == MINUS_NE || cs[i].kind == SUM_PROD || cs[i].kind == SUM || cs[i].kind == LINEAR_LT || cs[i].kind == ELEMENT_INT_VAR
|| cs[i].kind == EQ) {
printf((__constant char *)" Constants={%d}", cs[i].constant_val);
}
if (cs[i].boolean) {
printf(" boolean");
}
if (cs[i].reified) {
printf((__constant char *)" reif_var_ID=%u\n", cs[i].reif_var_id);
} else {
printf((__constant char *)"\n");
}
}
printf((__constant char *)"\n");
printf((__constant char *)"--------------------------------\n\n");
}
#endif
// strs:
// 0...CL_N_VS - strs
// repeat n_strs times
//
// hists:
// 0 - labeled variable for the next level
// 1 - remaining number of values on the labeled variable
// 2...CL_N_VS - level domains
// 2+CL_N_VS - labeled variable for the next level
// 3+CL_N_VS...3+CL_N_VS+CL_N_VS - level domains
// ...
/*
* place the next unexplored sub-search space available on hist and return 1 if succeeded or 0 if not
* strs - vector with all stores
* str_first - index of the next store to pick
* vs - all CSP variables with the original domains
* hist - current work-item history vector
* n_ss - number of sub-search spaces (stores) in strs
* depth - main search space exploration depth needed to fill all stores
*/
CUDA_FUNC void get_new_str( __global unsigned int* atoms,
CL_VS_MEM VARS* vs,
__global DOMAIN_* hist,
CL_MEMORY VARS_PROP* vs_prop_, CL_MEMORY unsigned short* vs_id_to_prop_, int* hist_tree_level, __global int* hist_labeleds_id, __global int* hist_labeleds_n_vals,
unsigned int* prop_v_id
#if CL_D_TYPE == CL_BITMAP
, CL_B_DS_MEM cl_bitmap* b_ds
#endif
#if (CS_MAXIMIZE == 1 || CS_MINIMIZE == 1) && CL_WORK == CL_OPT
, __global unsigned int* val_to_opt_g
#endif
,__global int* ss_aux_mem TTL_CTR) {
// atoms
__global unsigned int* str_to_expl = atoms; // first available store index
unsigned int str_last = atoms[1]; // last available store index
unsigned int n_ss = atoms[2]; // total number of generated sub-search spaces (n_ss)
unsigned int depth = atoms[3]; // level of tree expansion needed to create the required number of sub-search spaces
__global unsigned int* exp_values = atoms + 5; // each variable number of values expanded
unsigned int prev_repeat = 0;
unsigned int curr_repeat = 0;
unsigned int rel_store_to_synt;
unsigned int store_to_synt = atomic_inc(str_to_expl); // increase the next store to pick index
unsigned int join_n_vals;
unsigned int join_more_times;
int first_nth;
int last_nth;
bool first_expand = true;
unsigned int i;
*prop_v_id = CL_N_VS;
if (store_to_synt < str_last) {
for (i = 0; i < depth; i++) {
CHECK_TTL(ttl_ctr, 4)
if (exp_values[i] == 0) {
#if CL_D_TYPE == CL_BITMAP
cl_d_copy_mbd(&vs_prop_[i].prop_d, &b_ds[i] TTL_CTR_V);
#else
cl_d_copy_mvs(&vs_prop_[i].prop_d, &vs[i].domain TTL_CTR_V);
#endif
} else {
if (first_expand) {
prev_repeat = n_ss;
rel_store_to_synt = store_to_synt;
first_expand = false;
} else {
rel_store_to_synt = store_to_synt % prev_repeat;
}
curr_repeat = prev_repeat / exp_values[i];
join_n_vals = vs[i].n_vals / exp_values[i];
if (join_n_vals == 0) {
join_n_vals = 1;
}
join_more_times = (vs[i].n_vals % exp_values[i]) * curr_repeat;
first_nth = convert_int(1 + (rel_store_to_synt / curr_repeat) * join_n_vals);
if (join_more_times > 0) {
if (rel_store_to_synt > join_more_times) {
first_nth += convert_int(join_more_times / curr_repeat);
} else {
first_nth += convert_int(rel_store_to_synt / curr_repeat);
}
}
last_nth = first_nth + convert_int(join_n_vals);
if (rel_store_to_synt < join_more_times) {
last_nth++;
}
prev_repeat = curr_repeat;
#if CL_D_TYPE == CL_BITMAP
cl_d_get_nth_vals_bd(&b_ds[i], first_nth, last_nth - 1, ss_aux_mem TTL_CTR_V);
#else
cl_d_get_nth_vals_vsg(&vs[i].domain, first_nth, last_nth - 1, ss_aux_mem TTL_CTR_V);
#endif
cl_d_new_vals_mg(&vs_prop_[i].prop_d, ss_aux_mem, last_nth - first_nth TTL_CTR_V);
}
}
for (i = depth; i < CL_N_VS; i++) {
CHECK_TTL(ttl_ctr, 6)
#if CL_D_TYPE == CL_BITMAP
cl_d_copy_mbd(&vs_prop_[i].prop_d, &b_ds[i] TTL_CTR_V);
#else
cl_d_copy_mvs(&vs_prop_[i].prop_d, &vs[i].domain TTL_CTR_V);
#endif
}
#if CL_WORK == CL_OPT
unsigned int val_to_opt_aux = atomic_add(val_to_opt_g, 0);
bool changed = 0;
vs_prop_[CL_VAR_ID_TO_OPT].to_prop = 0;
#if CL_BOOLEAN_VS
vs_prop_[CL_VAR_ID_TO_OPT].boolean = vs[CL_VAR_ID_TO_OPT].boolean;
#endif
cl_v_calc_min_val_m(&vs_prop_[CL_VAR_ID_TO_OPT] TTL_CTR_V);
cl_v_calc_max_val_m(&vs_prop_[CL_VAR_ID_TO_OPT] TTL_CTR_V);
cl_v_cnt_vals_m(&vs_prop_[CL_VAR_ID_TO_OPT] TTL_CTR_V);
#if CS_MINIMIZE == 1
cl_v_del_gt_m(&changed, &vs_prop_[CL_VAR_ID_TO_OPT], convert_int(val_to_opt_aux) TTL_CTR_V);
#else
cl_v_del_lt_m(&changed, &vs_prop_[CL_VAR_ID_TO_OPT], convert_int(val_to_opt_aux) TTL_CTR_V);
#endif
#endif
for (i = 0; i < CL_N_VS; i++) {
CHECK_TTL(ttl_ctr, 7)
cl_d_copy_gm(&hist[i], &vs_prop_[i].prop_d TTL_CTR_V);
vs_prop_[i].to_prop = 0;
#if CL_BOOLEAN_VS
vs_prop_[i].boolean = vs[i].boolean;
#endif
cl_v_calc_min_val_m(&vs_prop_[i] TTL_CTR_V);
cl_v_calc_max_val_m(&vs_prop_[i] TTL_CTR_V);
cl_v_cnt_vals_m(&vs_prop_[i] TTL_CTR_V);
}
*prop_v_id = 0;
for (i = 0; i < depth; i++) {
CHECK_TTL(ttl_ctr, 8)
if (vs[i].to_label || vs[i].expanded) {
*prop_v_id = i;
i = depth;
}
}
hist_labeleds_id[0] = convert_int(*prop_v_id);
hist_labeleds_n_vals[0] = 0;
(*hist_tree_level) = 1; // reset hist current level
// reset the indexes of the array that contains the IDs of the variables to propagate
vs_id_to_prop_[0] = 2;
vs_id_to_prop_[1] = 2;
// if optimizing set variable to optimize for being propagated to update its domain
#if CL_WORK == CL_OPT
v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(*prop_v_id));
*prop_v_id = CL_VAR_ID_TO_OPT;
#endif
// Mark variables already expanded to be propagated to check if this sub-search space is already inconsistent
for (i = 0; i < CL_N_VS; i++) {
CHECK_TTL(ttl_ctr, 9)
#if CL_FILTERING == 0
if (i != *prop_v_id && (vs[i].expanded || (i < depth && exp_values[i] > 0))) {
#endif
v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(i));
#if CL_FILTERING == 0
}
#endif
}
#if CL_CHECK_ERRORS
int l;
for (l = 0; l < CL_N_VS; l++) {
bool empty;
#if CL_N_WORDS == 1
empty = (vs_prop_[l].prop_d == 0);
#else
int m;
empty = 1;
for (m = 0; m < CL_N_WORDS; m++) {
CHECK_TTL(ttl_ctr, 115)
if (vs_prop_[l].prop_d[m] != 0) {
empty = 0;
m = CL_N_WORDS;
}
}
#endif
if (empty || vs_prop_[l].n_vals > vs_prop_[l].max + 1 || vs_prop_[l].min > vs_prop_[l].max || vs_prop_[l].max > CL_D_MAX) {
printf((__constant char *)"\n###error 74\n");
printf((__constant char *)"v_id=%d, empty=%d, vs_prop_[l].n_vals=%u, vs_prop_[l].min=%u, vs_prop_[l].max=%u\n",
l, empty, vs_prop_[l].n_vals, vs_prop_[l].min, vs_prop_[l].max);
}
}
#endif
}
}