cl_aux_functions.c 33.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
/*
 * cl_aux_functions.c
 *
 *  Created on: 09/09/2019
 *      Author: pedro
 */

#ifndef __OPENCL_VERSION__
#include <stdbool.h>
#include <limits.h>
#include <sys/types.h>
#include "cl_aux_functions.h"
#include "../utils/cl_syntax.h"
#endif

#if CUDA_VERSION
#include "../utils/cu_syntax.h"
#endif

#include "../config.h"
#include "../domains.h"
#include "cl_constraints.h"
#include "cl_variables.h"
#include "cl_ttl.h"

#if CL_D_TYPE == CL_BITMAP
#include "cl_bitmaps.h"
#elif CL_D_TYPE == CL_INTERVAL
#include  "cl_intervals.h"
#endif

/*
 * Adds a variable to the vector of variables to propagate
 * vs_id_to_prop_ - circular vector with the ids of the variables to propagate
 * vs_prop_ - vector with all CSP variables
 * v_id_to_prop - id of the variable to propagate
 */
CUDA_FUNC void v_add_to_prop(CL_MEMORY unsigned short* vs_id_to_prop_, CL_MEMORY VARS_PROP* vs_prop_, int v_id_to_prop) {

	// if that variable is not already set for propagation
	if (vs_prop_[v_id_to_prop].to_prop == 0) {

		// add that variable id to the vector of variables to propagate
		vs_id_to_prop_[vs_id_to_prop_[1]] = convert_ushort(v_id_to_prop);

		if (vs_id_to_prop_[1] < CL_N_VS + 2) {
			vs_id_to_prop_[1] = convert_ushort(vs_id_to_prop_[1] + 1);
		} else {
			vs_id_to_prop_[1] = 2;
		}

		// mark that variable as added to vs_id_to_prop_ vector
		vs_prop_[v_id_to_prop].to_prop = 1;
	}

#if CL_CHECK_ERRORS
	int i;
	if (vs_id_to_prop_[0] <= vs_id_to_prop_[1]) {
		for (i = vs_id_to_prop_[0]; i < vs_id_to_prop_[1]; i++) {
			if (vs_id_to_prop_[i] == v_id_to_prop) {
				break;
			}
		}
		if (vs_id_to_prop_[i] != v_id_to_prop) {
			printf((__constant char *)"\n###error 31\n");
		}

	} else {
		for (i = vs_id_to_prop_[0]; i < CL_N_VS + 2; i++) {
			if (vs_id_to_prop_[i] == v_id_to_prop) {
				break;
			}
		}
		if (vs_id_to_prop_[i] != v_id_to_prop) {
			for (i = 2; i < vs_id_to_prop_[1]; i++) {
				if (vs_id_to_prop_[i] == v_id_to_prop) {
					break;
				}
			}
		}
		if (vs_id_to_prop_[i] != v_id_to_prop) {
			printf((__constant char *)"\n###error 32\n");
		}
	}
#endif

}

/*
 * Return the next variable to propagate by selecting the first one on vs_id_to_prop_ vector, or CL_N_VS if none
 * vs_id_to_prop_ - circular vector with the ids of the variables to propagate
 * vs_prop_ - vector with all CSP variables
 * vs - vector with all CSP variables common to all work-items (not used with this heuristic)
 */
CUDA_FUNC void v_get_id_to_prop(CL_MEMORY unsigned short* vs_id_to_prop_, CL_MEMORY VARS_PROP* vs_prop_, unsigned int* prop_v_id TTL_CTR) {
	int v_idx;

	// If variables to propagate vector is empty
	if (vs_id_to_prop_[0] == vs_id_to_prop_[1]) {
		// Restart the first and next index on variables to propagate vector
		vs_id_to_prop_[0] = 2;
		vs_id_to_prop_[1] = 2;

		*prop_v_id = CL_N_VS;

#if CL_CHECK_ERRORS
		int i;
		for (i = 0; i < CL_N_VS; i++) {
			CHECK_TTL(ttl_ctr, 153)

			if (vs_prop_[i].to_prop == 1) {
				printf((__constant char *)"\n###error 33\n");
			}
		}
#endif

	} else {
		v_idx = convert_int(vs_id_to_prop_[vs_id_to_prop_[0]]);

		// mark that variable as not added to vs_id_to_prop_ vector
		vs_prop_[vs_id_to_prop_[vs_id_to_prop_[0]]].to_prop = 0;

		if (vs_id_to_prop_[0] < CL_N_VS + 2) {
			vs_id_to_prop_[0] = convert_ushort(vs_id_to_prop_[0] + 1);
		} else {
			vs_id_to_prop_[0] = 2;
		}

		*prop_v_id = convert_ushort(v_idx);
	}
	CHECK_TTL(ttl_ctr, 232)
}

#if CL_LABEL_M == CL_FIRST_FAIL
/*
 * Return the next variable to label by selecting the one not labeled yet and with less values on its domain, or CL_N_VS if none
 * vs_prop_ - vector with all CSP variables
 * vs - vector with all CSP variables common to all work-items
 */
CUDA_FUNC void v_get_id_to_label(CL_MEMORY VARS_PROP* vs_prop_, CL_VS_MEM VARS* vs, unsigned int* prop_v_id TTL_CTR) {
	int vals_cnt = 0xFFFF;
	int n_vals;
	int v_idx = CL_N_VS;
	int i;

	for (i = 0; i < CL_N_VS; i++) {
		CHECK_TTL(ttl_ctr, 3)

#if CL_CHECK_ERRORS
		bool empty;
		cl_d_is_empty_m(&empty, &vs_prop_->prop_d TTL_CTR_V);
		if (empty || vs_prop_[i].n_vals == 0 || vs_prop_[i].n_vals > vs_prop_[i].max + 1 || vs_prop_[i].min > vs_prop_[i].max || vs_prop_[i].max > CL_D_MAX) {
			printf((__constant char *)"\n###error 34\n");
		}
#endif

		n_vals = V_N_VALS(vs_prop_[i]);
		if (vs[i].to_label && n_vals > 1 && n_vals < vals_cnt) {
			vals_cnt = n_vals;

			v_idx = i;

			// The minimum values of a variable to label will be two, so stop searching
			if (n_vals == 2) {
				i = CL_N_VS;
			}
		}
	}

#if CL_TO_LABEL_THRESHOLD > 0
	if (v_idx == CL_N_VS) {
		for (i = 0; i < CL_N_VS; i++) {
			CHECK_TTL(ttl_ctr, 3)

#if CL_CHECK_ERRORS
			bool empty;
			cl_d_is_empty_m(&empty, &vs_prop_->prop_d TTL_CTR_V);
			if (empty || vs_prop_[i].n_vals == 0 || vs_prop_[i].n_vals > vs_prop_[i].max + 1 || vs_prop_[i].min > vs_prop_[i].max || vs_prop_[i].max > CL_D_MAX) {
				printf((__constant char *)"\n###error 35\n");
			}
#endif

			n_vals = V_N_VALS(vs_prop_[i]);
			if (!vs[i].to_label && n_vals > 1 && n_vals < vals_cnt) {
				vals_cnt = n_vals;

				v_idx = i;

				// The minimum values of a variable to label will be two, so stop searching
				if (n_vals == 2) {
					i = CL_N_VS;
				}
			}
		}
	}
#endif

	*prop_v_id = convert_ushort(v_idx);
}

#elif CL_LABEL_M == CL_INPUT_ORDER
/*
 * Return the next variable to label by selecting the first one not labeled yet, or CL_N_VS if none
 * vs_prop_ - vector with all CSP variables
 * vs - vector with all CSP variables common to all work-items
 */
CUDA_FUNC void v_get_id_to_label(CL_MEMORY VARS_PROP* vs_prop_, CL_VS_MEM VARS* vs, unsigned int* prop_v_id TTL_CTR) {
	int v_idx = CL_N_VS;
	int i;

	for (i = 0; i < CL_N_VS; i++) {
		CHECK_TTL(ttl_ctr, 29)

#if CL_CHECK_ERRORS
		bool empty;
		cl_d_is_empty_m(&empty, &vs_prop_->prop_d TTL_CTR_V);
		if (empty || vs_prop_[i].n_vals == 0 || vs_prop_[i].n_vals > vs_prop_[i].max + 1 || vs_prop_[i].min > vs_prop_[i].max || vs_prop_[i].max > CL_D_MAX) {
			printf((__constant char *)"\n###error 36\n");
		}
#endif

		if (vs[i].to_label && V_N_VALS(vs_prop_[i]) > 1) {
			v_idx = i;
			i = CL_N_VS;
		}
	}

#if CL_TO_LABEL_THRESHOLD > 0
	if (v_idx == CL_N_VS) {
		for (i = 0; i < CL_N_VS; i++) {
			CHECK_TTL(ttl_ctr, 29)

#if CL_CHECK_ERRORS
		bool empty;
		cl_d_is_empty_m(&empty, &vs_prop_->prop_d TTL_CTR_V);
		if (empty || vs_prop_[i].n_vals == 0 || vs_prop_[i].n_vals > vs_prop_[i].max + 1 || vs_prop_[i].min > vs_prop_[i].max || vs_prop_[i].max > CL_D_MAX) {
			printf((__constant char *)"\n###error 37\n");
		}
#endif

			if (!vs[i].to_label && V_N_VALS(vs_prop_[i]) > 1) {
				v_idx = i;
				i = CL_N_VS;
			}
		}
	}
#endif

	*prop_v_id = convert_ushort(v_idx);
}

#elif CL_LABEL_M == CL_OCCURRENCE
/*
 * Return the next variable to label by selecting the one not labeled yet that is more constrained, or CL_N_VS if none
 * vs_prop_ - vector with all CSP variables local to this work-item
 * vs - vector with all CSP variables common to all work-items
 */
CUDA_FUNC void v_get_id_to_label(CL_MEMORY VARS_PROP* vs_prop_, CL_VS_MEM VARS* vs, unsigned int* prop_v_id TTL_CTR) {
	int max_cs_cnt = 0;
	int v_idx = CL_N_VS;
	int i;

	for (i = 0; i < CL_N_VS; i++) {
		CHECK_TTL(ttl_ctr, 30)

#if CL_CHECK_ERRORS
		bool empty;
		cl_d_is_empty_m(&empty, &vs_prop_->prop_d TTL_CTR_V);
		if (empty || vs_prop_[i].n_vals == 0 || vs_prop_[i].n_vals > vs_prop_[i].max + 1 || vs_prop_[i].min > vs_prop_[i].max || vs_prop_[i].max > CL_D_MAX) {
			printf((__constant char *)"\n###error 38\n");
		}
#endif

		if (vs[i].to_label && vs[i].n_cs > max_cs_cnt && V_N_VALS(vs_prop_[i]) > 1) {
			max_cs_cnt = vs[i].n_cs;

			v_idx = i;
		}
	}

#if CL_TO_LABEL_THRESHOLD > 0
	if (v_idx == CL_N_VS) {
		for (i = 0; i < CL_N_VS; i++) {
			CHECK_TTL(ttl_ctr, 30)

#if CL_CHECK_ERRORS
			bool empty;
			cl_d_is_empty_m(&empty, &vs_prop_->prop_d TTL_CTR_V);
			if (empty || vs_prop_[i].n_vals == 0 || vs_prop_[i].n_vals > vs_prop_[i].max + 1 || vs_prop_[i].min > vs_prop_[i].max || vs_prop_[i].max > CL_D_MAX) {
				printf((__constant char *)"\n###error 39\n");
			}
#endif

			if (!vs[i].to_label && vs[i].n_cs > max_cs_cnt && V_N_VALS(vs_prop_[i]) > 1) {
				max_cs_cnt = vs[i].n_cs;

				v_idx = i;
			}
		}
	}
#endif

	*prop_v_id = convert_ushort(v_idx);
}

#elif CL_LABEL_M == CL_MAX_REGRET
/*
 * Return the next variable to label by selecting the one on vs_id_to_prop_ vector that has the largest difference between the two smallest values, or CL_N_VS if none
 * vs_prop_ - vector with all CSP variables
 * vs - vector with all CSP variables common to all work-items
 */
CUDA_FUNC void v_get_id_to_label(CL_MEMORY VARS_PROP* vs_prop_, CL_VS_MEM VARS* vs, unsigned int* prop_v_id TTL_CTR) {
	int diff_aux;
	int diff = 0;
	int v_idx = CL_N_VS;
	int i;

	for (i = 0; i < CL_N_VS; i++) {
		CHECK_TTL(ttl_ctr, 31)

#if CL_CHECK_ERRORS
		bool empty;
		cl_d_is_empty_m(&empty, &vs_prop_->prop_d TTL_CTR_V);
		if (empty || vs_prop_[i].n_vals == 0 || vs_prop_[i].n_vals > vs_prop_[i].max + 1 || vs_prop_[i].min > vs_prop_[i].max || vs_prop_[i].max > CL_D_MAX) {
			printf((__constant char *)"\n###error 40\n");
		}
#endif

		if (vs[i].to_label && V_N_VALS(vs_prop_[i]) > 1) {

			v_get_max_regret_diff_m(&diff_aux, &vs_prop_[i]);

			if (diff_aux > diff) {

				diff = diff_aux;
				v_idx = i;
			}
		}
	}

#if CL_TO_LABEL_THRESHOLD > 0
	if (v_idx == CL_N_VS) {
		for (i = 0; i < CL_N_VS; i++) {
			CHECK_TTL(ttl_ctr, 31)

#if CL_CHECK_ERRORS
			bool empty;
			cl_d_is_empty_m(&empty, &vs_prop_->prop_d TTL_CTR_V);
			if (empty || vs_prop_[i].n_vals == 0 || vs_prop_[i].n_vals > vs_prop_[i].max + 1 || vs_prop_[i].min > vs_prop_[i].max || vs_prop_[i].max > CL_D_MAX) {
				printf((__constant char *)"\n###error 41\n");
			}
#endif

			if (!vs[i].to_label && V_N_VALS(vs_prop_[i]) > 1) {

				v_get_max_regret_diff_m(&diff_aux, &vs_prop_[i]);

				if (diff_aux > diff) {

					diff = diff_aux;
					v_idx = i;
				}
			}
		}
	}
#endif

	*prop_v_id = v_idx;
}
#endif

#if CL_LABEL_M == CL_SMALLEST
/*
 * Return the next variable to label by selecting the one not labeled yet and with the smallest value on its domain, or CL_N_VS if none
 * vs_prop_ - vector with all CSP variables
 * vs - vector with all CSP variables common to all work-items
 */
CUDA_FUNC void v_get_id_to_label(CL_MEMORY VARS_PROP* vs_prop_, CL_VS_MEM VARS* vs, unsigned int* prop_v_id TTL_CTR) {
	int v_idx = CL_N_VS;
	int min = CL_D_MAX;
	int i;

	for (i = 0; i < CL_N_VS; i++) {
		CHECK_TTL(ttl_ctr, 3)

#if CL_CHECK_ERRORS
		bool empty;
		cl_d_is_empty_m(&empty, &vs_prop_->prop_d TTL_CTR_V);
		if (empty || vs_prop_[i].n_vals == 0 || vs_prop_[i].n_vals > vs_prop_[i].max + 1 || vs_prop_[i].min > vs_prop_[i].max || vs_prop_[i].max > CL_D_MAX) {
			printf((__constant char *)"\n###error 42\n");
		}
#endif

		if (vs[i].to_label && V_N_VALS(vs_prop_[i]) > 1 && V_MIN(vs_prop_[i]) < min) {

			v_idx = i;
			min = V_MIN(vs_prop_[i]);

			// If the minimum value is CL_D_MIN, stop searching
			if (min == CL_D_MIN) {
				i = CL_N_VS;
			}
		}
	}

#if CL_TO_LABEL_THRESHOLD > 0
	if (v_idx == CL_N_VS) {
		for (i = 0; i < CL_N_VS; i++) {
			CHECK_TTL(ttl_ctr, 3)

#if CL_CHECK_ERRORS
			bool empty;
			cl_d_is_empty_m(&empty, &vs_prop_->prop_d TTL_CTR_V);
			if (empty || vs_prop_[i].n_vals == 0 || vs_prop_[i].n_vals > vs_prop_[i].max + 1 || vs_prop_[i].min > vs_prop_[i].max || vs_prop_[i].max > CL_D_MAX) {
				printf((__constant char *)"\n###error 43\n");
			}
#endif

			if (!vs[i].to_label && V_N_VALS(vs_prop_[i]) > 1 && V_MIN(vs_prop_[i]) < min) {

				v_idx = i;
				min = V_MIN(vs_prop_[i]);

				// If the minimum value is 0, stop searching
				if (min == 0) {
					break;
				}
			}
		}
	}
#endif

	*prop_v_id = v_idx;
}
#endif

#if CL_ASSIGN_M == CL_MIN_VAL
/*
 * Assign the minimum value
 * v - variable to be assigned
 * hist - place on backtracking history where the remaining values of the variable should be stored
 * hist_labeleds_n_vals - place where the number of values remaining on the assigned variable should be stored
 */
CUDA_FUNC void v_assign(CL_MEMORY VARS_PROP* v, __global DOMAIN_* hist, __global int* hist_labeleds_n_vals TTL_CTR) {

#if CL_CHECK_ERRORS
		bool empty;
		cl_d_is_empty_m(&empty, &v->prop_d TTL_CTR_V);
		if (empty || v->n_vals == 0 || v->n_vals > v->max + 1 || v->min > v->max || v->max > CL_D_MAX) {
			printf((__constant char *)"\n###error 44\n");
		}
#endif

	(*hist_labeleds_n_vals) = V_N_VALS(*v) - 1;

	// If the labeled variable has more than one value on its domain remove the labeled value from its backtracking domain
	if ((*hist_labeleds_n_vals) > 0) {

		int min = V_MIN(*v);
		bool changed;
		cl_v_del_all_except_val_m(&changed, v, min TTL_CTR_V);
		cl_d_del_val_no_tests_g(hist, min);

	} else {
		cl_d_clear_g(hist TTL_CTR_V);
	}
}

#elif CL_ASSIGN_M == CL_MAX_VAL
/*
 * Assign the maximum value
 * v - variable to be assigned
 * hist - place on backtracking history where the remaining values of the variable should be stored
 * hist_labeleds_n_vals - place where tje number of values remaining on the assigned variable should be stored
 */
CUDA_FUNC void v_assign(CL_MEMORY VARS_PROP* v, __global DOMAIN_* hist, __global int* hist_labeleds_n_vals) {

#if CL_CHECK_ERRORS
		bool empty;
		cl_d_is_empty_m(&empty, &v->prop_d TTL_CTR_V);
		if (empty || v->n_vals == 0 || v->n_vals > v->max + 1 || v->min > v->max || v->max > CL_D_MAX) {
			printf((__constant char *)"\n###error 45\n");
		}
#endif

	(*hist_labeleds_n_vals) = V_N_VALS(*v) - 1;

	// If the labeled variable had more than one value on its domain remove the labeled value from its backtracking domain
	if ((*hist_labeleds_n_vals) > 0) {
		int max = V_MAX(*v);
		bool changed;
		cl_v_del_all_except_val_m(&changed, v, max TTL_CTR_V);
		cl_d_del_val_no_tests_g(hist, max);

	} else {
		cl_d_clear_g(hist);
	}
}

#elif CL_ASSIGN_M == CL_SPLIT_VALS
/*
 * Split the domain in half between the minimum and the maximum, and keeps the first half
 * v - variable to be assigned
 * hist - place on backtracking history where the remaining values of the variable should be stored
 * hist_labeleds_n_vals - place where tje number of values remaining on the assigned variable should be stored
 */
CUDA_FUNC void v_assign(CL_MEMORY VARS_PROP* v, __global DOMAIN_* hist, __global int* hist_labeleds_n_vals) {

#if CL_CHECK_ERRORS
		bool empty;
		cl_d_is_empty_m(&empty, &v->prop_d TTL_CTR_V);
		if (empty || v->n_vals == 0 || v->n_vals > v->max + 1 || v->min > v->max || v->max > CL_D_MAX) {
			printf((__constant char *)"\n###error 46\n");
		}
#endif

	int n_vals = V_N_VALS(*v);

	if (n_vals > 1) {
		int min = V_MIN(*v);

		int split_val = (V_MAX(*v) - min) / 2 + min;
		cl_v_del_gt_no_tests_m(v, split_val);
		cl_d_del_le_no_tests_g(hist, split_val);

		*hist_labeleds_n_vals = n_vals - V_N_VALS(*v);
	} else {
		*hist_labeleds_n_vals = 0;
		cl_d_clear_g(hist);
	}
}
#endif

#if CL_WORK == CL_OPT

/*
 * Update the domain of the variable to optimize according to the global value to optimize on the received backtracking store. Global memory
 * Return 1 if domain changed and 0 if not
 * hist - backtracking data
 * val_to_opt - global value to optimize
 */
CUDA_FUNC void upd_opt_var_hist_g(__global DOMAIN_* hist, __global unsigned int* val_to_opt TTL_CTR) {

#if CL_CHECK_ERRORS
		bool empty;
		cl_d_is_empty_g(&empty, hist TTL_CTR_V);
		if (empty || *val_to_opt > CL_D_MAX) {
			printf((__constant char *)"\n###error 47\n");
		}
#endif

	bool changed;
	int val_to_opt_aux = convert_int(*val_to_opt);

#if CL_OPT_M == CL_DECREASE
	cl_d_del_gt_g(&changed, hist, val_to_opt_aux TTL_CTR_V);
#else
	cl_d_del_lt_g(&changed, hist, val_to_opt_aux TTL_CTR_V);
#endif
}
#endif

#if CL_N_SHARED_SS > 0
/*
 * Pick a new store from the shared stores and prepares all the structures to begin its exploration.
 * prop_v_id will get CL_N_VS if no store is available.
 * shared_ss - All the shared stores
 * shared_ss_flags - flags for each shared store state
 * vs - CSP variables
 * vs_id_to_prop_ - List with the ID of the variables to propagate
 * vs_prop_ - variables on the current state
 * hist - backtracking history
 * hist_tree_level - level of the backtracking
 * hist_labeleds_id - list of the ID of the variables that were labeled for each backtracking history level
 * hist_labeleds_n_vals - number of values that remain on the variables that were labeled for each backtracking history level
 * prop_v_id - ID of the variable that must be propagated
 */
CUDA_FUNC void get_shared_store(
		__global DOMAIN_* shared_ss, __global int* shared_ss_flags, CL_MEMORY unsigned short* vs_id_to_prop_,
		CL_MEMORY VARS_PROP* vs_prop_, __global DOMAIN_* hist, int* hist_tree_level, __global int* hist_labeleds_id,
		__global int* hist_labeleds_n_vals, unsigned int* prop_v_id TTL_CTR) {

	int ss_to_get;

	// flags for signaling the state of each work-sharing store
	// 0 - next shared SS to be picked
	// 1 - next shared SS to be filled
	// 2...number of SS already filled
	// 3..3+CL_N_SHARED_SS - V_ID that was labeled to generate this SS
	if ((ss_to_get = atomic_inc(&shared_ss_flags[0])) < atomic_add(&shared_ss_flags[2], 0)) {

		__global DOMAIN_* new_ss;
		*prop_v_id = convert_uint(shared_ss_flags[3 + ss_to_get]);
		int i;

		// copy the new store
		new_ss = &shared_ss[ss_to_get * CL_N_VS];
		for (i = 0; i < CL_N_VS; i++) {
			CHECK_TTL(ttl_ctr, 35)

			cl_d_copy_mg(&vs_prop_[i].prop_d, &new_ss[i] TTL_CTR_V);
			cl_d_copy_g(&hist[i], &new_ss[i] TTL_CTR_V);

			vs_prop_[i].to_prop = 0;
			cl_v_calc_min_val_m(&vs_prop_[i] TTL_CTR_V);
			cl_v_calc_max_val_m(&vs_prop_[i] TTL_CTR_V);
			cl_v_cnt_vals_m(&vs_prop_[i] TTL_CTR_V);
		}

		cl_d_clear_g(&hist[*prop_v_id] TTL_CTR_V);

		// reset the indexes of the array that contains the IDs of the variables to propagate
		vs_id_to_prop_[0] = 2;
		vs_id_to_prop_[1] = 2;

		(*hist_tree_level) = 1;
		hist_labeleds_id[0] = convert_int(*prop_v_id);
		(*hist_labeleds_n_vals) = 0;
	}
}

/*
 * Set a new store on the shared stores
 * shared_ss - All the shared stores
 * shared_ss_flags - flags for each shared store state
 * vs_prop_ - variables on the current state
 * v_id - ID of the variable whose domain is to be pruned to create a new shared store
 * hist - backtracking history
 * hist_labeleds_n_vals - number of values that remain on the variables that were labeled for each backtracking history level
 */
CUDA_FUNC void set_shared_store(
		__global DOMAIN_* shared_ss, __global int* shared_ss_flags,
		CL_MEMORY VARS_PROP* vs_prop_, int v_id,
		__global DOMAIN_* hist, __global int* hist_labeleds_n_vals TTL_CTR) {

	int ss_to_fill;

	// flags for signaling the state of each work-sharing store
	// 0 - next shared SS to be picked
	// 1 - next shared SS to be filled
	// 2...number of SS already filled
	// 3..3+CL_N_SHARED_SS - V_ID that was labeled to generate this SS
	if ((ss_to_fill = atomic_inc(&shared_ss_flags[1])) < CL_N_SHARED_SS) {

		__global DOMAIN_* new_ss;
		int min;
		int i;

		// copy the new store
		new_ss = &shared_ss[ss_to_fill * CL_N_VS];
		for (i = 0; i < CL_N_VS; i++) {
			CHECK_TTL(ttl_ctr, 33)

			cl_d_copy_gm(&new_ss[i], &vs_prop_[i].prop_d TTL_CTR_V);
		}

		cl_d_calc_min_val_g(&min, hist TTL_CTR_V);

		// remove value from backtracking history
		cl_d_del_val_no_tests_g(hist, min);
		(*hist_labeleds_n_vals)--;

		cl_d_new_vals_gp(&new_ss[v_id], &min, 1 TTL_CTR_V);

		// save the ID of the variable that was labeled to generate the new SS
		shared_ss_flags[3 + ss_to_fill] = v_id;

		atomic_inc(&shared_ss_flags[2]);
	}
}
#endif

#if CL_CS_IGNORE
CUDA_FUNC void clear_cs_ignore(__global char* cs_ignore) {
	int i;

	for (i = 0; i < CL_N_CS; i++) {
		cs_ignore[i] = 0;
	}
}
#endif

#if CL_PRINT_CSP

/*
 * Print the name of the constraint
 * cs -constraint to print the name
 */
CUDA_FUNC void cs_print_type_device(CL_CS_MEM cl_constr* cs) {
	switch (cs->kind) {
		case ALL_DIFFERENT:
			printf((__constant char *)"ALL_DIFFERENT");
			break;
		case AT_LEAST:
			printf((__constant char *)"AT_LEAST");
			break;
		case AT_MOST:
			printf((__constant char *)"AT_MOST");
			break;
		case AT_MOST_ONE:
			printf((__constant char *)"AT_MOST_ONE");
			break;
		case ELEMENT:
			printf((__constant char *)"ELEMENT");
			break;
		case ELEMENT_INT_VAR:
			printf((__constant char *)"ELEMENT_INT_VAR");
			break;
		case ELEMENT_VAR:
			printf((__constant char *)"ELEMENT_VAR");
			break;
		case EQ:
			printf((__constant char *)"EQ");
			break;
		case EQ_VAR:
			printf((__constant char *)"EQ_VAR");
			break;
		case EXACTLY:
			printf((__constant char *)"EXACTLY");
			break;
		case EXACTLY_VAR:
			printf((__constant char *)"EXACTLY_VAR");
			break;
		case LE:
			printf((__constant char *)"LE");
			break;
		case LINEAR:
			printf((__constant char *)"LINEAR");
			break;
		case LINEAR_VAR:
			printf((__constant char *)"LINEAR_VAR");
			break;
		case LT:
			printf((__constant char *)"LT");
			break;
		case MAX:
			printf((__constant char *)"MAX");
			break;
		case MAXIMIZE:
			printf((__constant char *)"MAXIMIZE");
			break;
		case MIN:
			printf((__constant char *)"MIN");
			break;
		case MINIMIZE:
			printf((__constant char *)"MINIMIZE");
			break;
		case MINUS_EQ:
			printf((__constant char *)"MINUS_EQ");
			break;
		case MINUS_NE:
			printf((__constant char *)"MINUS_NE");
			break;
		case NE:
			printf((__constant char *)"NE");
			break;
		case SUM:
			printf((__constant char *)"SUM");
			break;
		case SUM_PROD:
			printf((__constant char *)"SUM_PROD");
			break;
		case SUM_VAR:
			printf((__constant char *)"SUM_VAR");
			break;
		case VAR_EQ_MINUS:
			printf((__constant char *)"VAR_EQ_MINUS");
			break;
		case VAR_EQ_PLUS:
			printf((__constant char *)"VAR_EQ_PLUS");
			break;
		case VAR_EQ_TIMES:
			printf((__constant char *)"VAR_EQ_TIMES");
			break;
		case VAR_EQ_MINUS_ABS:
			printf((__constant char *)"VAR_EQ_MINUS_ABS");
			break;
		case LINEAR_NE:
			printf((__constant char *)"LINEAR_NE");
			break;
		case LINEAR_LT:
			printf((__constant char *)"LINEAR_LT");
			break;
		case BOOL_OR:
			printf((__constant char *)"BOOL_OR");
			break;
		case BOOL_AND:
			printf((__constant char *)"BOOL_AND");
			break;
		case BOOL_CLAUSE:
			printf((__constant char *)"BOOL_CLAUSE");
			break;
		case BOOL2INT:
			printf((__constant char *)"BOOL2INT");
			break;
		default:
			printf((__constant char *)"NOT_RECOGNIZED");
			break;
	}

	if (cs->reified) {
		printf((__constant char *)"_REIF");
	}
}

/*
 * Print all the CSP variables and constraints, including the variables values and ID and
 * the constraints ID and the ID of the variables that they constrain
 * vs - CSP variables
 * cs - CSP constraints
 * cs_per_v_idx - vector with all the constraints ID that constrain each variable, per variable ID order
 * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order
 * c_consts - vector with all the constant values of a CSP
 */
CUDA_FUNC void print_CSP_device(CL_VS_MEM VARS* vs, CL_CS_MEM cl_constr* cs, CL_INTS_MEM int* cs_per_v_idx, CL_INTS_MEM int* vs_per_c_idx
#if CS_AT_LEAST == 1 || CS_AT_MOST == 1 || CS_AT_MOST_ONE == 1 || CS_EXACTLY == 1 || CS_LINEAR == 1 || CS_LINEAR_LT == 1 || CS_LINEAR_NE == 1 || CS_LINEAR_VAR == 1 || CS_ELEMENT_INT_VAR == 1
		, CL_INTS_MEM int* c_consts
#endif
#if CL_D_TYPE == CL_BITMAP
		, CL_B_DS_MEM cl_bitmap* b_ds
#endif
		) {

	unsigned int prev_val;
	unsigned int new_val;
	unsigned int cntr;
	int d_vals[CL_D_MAX + 1];
	int n_vals, max;
	CL_INTS_MEM int* vs_per_c_idx_;
	CL_INTS_MEM int* cs_per_v_idx_;
	DOMAIN_ d;
	unsigned int i;
	int j;

#if CS_AT_LEAST == 1 || CS_AT_MOST == 1 || CS_AT_MOST_ONE == 1 || CS_EXACTLY == 1 || CS_LINEAR == 1 || CS_LINEAR_LT == 1 || CS_LINEAR_NE == 1 || CS_LINEAR_VAR == 1 || CS_ELEMENT_INT_VAR == 1
	CL_INTS_MEM int* c_consts_;
#endif

	printf((__constant char *)"\n\n--------------------------------\n");
	printf((__constant char *)"CSP as received by the device:\n");

	printf((__constant char *)"\nVariables:\n");
	for (i = 0; i < CL_N_VS; i++) {
		printf((__constant char *)"   ID=%u:  Values={", i);

#if CL_D_TYPE == CL_BITMAP
#if CL_N_WORDS == 1
		d = b_ds[i];
#else
		for (j = 0; j < CL_N_WORDS; j++) {
			CHECK_TTL(ttl_ctr, 117)
			d[j] = b_ds[i][j];
		}
#endif

		cl_d_cnt_vals_n(&d, &n_vals);
		cl_d_calc_max_val_n(&max, &d);
		cl_d_get_nth_vals_n(&d, 1, n_vals, d_vals TTL_CTR_V);

		j = 0;

		prev_val = convert_uint(d_vals[j++]);
		new_val = prev_val;
		printf((__constant char *)"%u", prev_val);
		while (new_val < (uint)max) {

			cntr = 0;
			while ((new_val = convert_uint(d_vals[j++])) == prev_val + 1 && new_val < (uint)max) {
				prev_val = new_val;
				cntr++;
			}

			if (cntr == 0) {
				printf((__constant char *)",%u", new_val);
			} else {
				if (new_val == (uint)max && new_val == prev_val + 1) {
					printf((__constant char *)"-%u", new_val);
				} else if (cntr == 1) {
					printf((__constant char *)",%u,%u", prev_val, new_val);
				} else {
					printf((__constant char *)"-%u,%u", prev_val, new_val);
				}
			}
			prev_val = new_val;
		}

#else
		printf((__constant char *)"%u,%u", vs[i].domain.s0, vs[i].domain.s1);
#endif

		if (vs[i].to_label) {
			printf((__constant char *)"}  Label=true");
		} else {
			printf((__constant char *)"}  Label=false");
		}

		if (vs[i].expanded) {
			printf((__constant char *)"  expanded");
		}

		if (vs[i].n_cs > 0) {
			printf((__constant char *)"  Constraints={");

			cs_per_v_idx_ = &cs_per_v_idx[vs[i].c_idx];

			for (j = 0; j < vs[i].n_cs - 1; j++) {
				printf((__constant char *)"%u,", cs_per_v_idx_[j]);
			}
			if (vs[i].n_cs > 0) {
				printf((__constant char *)"%u}\n", cs_per_v_idx_[j]);
			} else {
				printf((__constant char *)"\n");
			}
		} else {
			printf((__constant char *)"\n");
		}
	}

	printf((__constant char *)"Constraints:\n");
	for (i = 0; i < CL_N_CS; i++) {

		vs_per_c_idx_ = &vs_per_c_idx[cs[i].v_idx];

#if CS_AT_LEAST == 1 || CS_AT_MOST == 1 || CS_AT_MOST_ONE == 1 || CS_EXACTLY == 1 || CS_LINEAR == 1 || CS_LINEAR_LT == 1 || CS_LINEAR_NE == 1 || CS_LINEAR_VAR == 1 || CS_ELEMENT_INT_VAR == 1
		c_consts_ = &c_consts[cs[i].const_idx];
#endif

		printf((__constant char *)"   ID=%u:  Type=", i);
		cs_print_type_device(&cs[i]);
		printf((__constant char *)"  Variables={");
		for (j = 0; j < cs[i].n_c_vs - 1; j++) {
			printf((__constant char *)"%u,", vs_per_c_idx_[j]);
		}
		printf((__constant char *)"%u}", vs_per_c_idx_[j]);

		if (cs[i].n_c_consts > 0) {

#if CS_AT_LEAST == 1 || CS_AT_MOST == 1 || CS_AT_MOST_ONE == 1 || CS_EXACTLY == 1 || CS_LINEAR == 1 || CS_LINEAR_LT == 1 || CS_LINEAR_NE == 1 || CS_LINEAR_VAR == 1 || CS_ELEMENT_INT_VAR == 1
			printf((__constant char *)"  Constants={");
			for (j = 0; j < cs[i].n_c_consts - 1; j++) {
				printf((__constant char *)"%d,", c_consts_[j]);
			}

			if (cs[i].kind == LINEAR || cs[i].kind == LINEAR_NE || cs[i].kind == LINEAR_LT) {

				printf((__constant char *)"%d, %d}", c_consts_[j], cs[i].constant_val);
			} else {
				printf((__constant char *)"%d}", c_consts_[j]);
			}
#endif

		} else if (cs[i].kind == ELEMENT || cs[i].kind == EXACTLY_VAR || cs[i].kind == LINEAR || cs[i].kind == LINEAR_NE || cs[i].kind == MINUS_EQ
				|| cs[i].kind == MINUS_NE || cs[i].kind == SUM_PROD || cs[i].kind == SUM || cs[i].kind == LINEAR_LT || cs[i].kind == ELEMENT_INT_VAR
				|| cs[i].kind == EQ) {
			printf((__constant char *)"  Constants={%d}", cs[i].constant_val);
		}

		if (cs[i].boolean) {
			printf("  boolean");
		}

		if (cs[i].reified) {
			printf((__constant char *)"  reif_var_ID=%u\n", cs[i].reif_var_id);
		} else {
			printf((__constant char *)"\n");
		}
	}
	printf((__constant char *)"\n");
	printf((__constant char *)"--------------------------------\n\n");
}
#endif

// strs:
// 0...CL_N_VS - strs
// repeat n_strs times
//
// hists:
// 0 - labeled variable for the next level
// 1 - remaining number of values on the labeled variable
// 2...CL_N_VS - level domains
// 2+CL_N_VS - labeled variable for the next level
// 3+CL_N_VS...3+CL_N_VS+CL_N_VS - level domains
// ...
/*
 * place the next unexplored sub-search space available on hist and return 1 if succeeded or 0 if not
 * strs - vector with all stores
 * str_first - index of the next store to pick
 * vs - all CSP variables with the original domains
 * hist - current work-item history vector
 * n_ss - number of sub-search spaces (stores) in strs
 * depth - main search space exploration depth needed to fill all stores
 */
CUDA_FUNC void get_new_str( __global unsigned int* atoms,
		CL_VS_MEM VARS* vs,
		__global DOMAIN_* hist,
		CL_MEMORY VARS_PROP* vs_prop_, CL_MEMORY unsigned short* vs_id_to_prop_, int* hist_tree_level, __global int* hist_labeleds_id, __global int* hist_labeleds_n_vals,
		unsigned int* prop_v_id
#if CL_D_TYPE == CL_BITMAP
		, CL_B_DS_MEM cl_bitmap* b_ds
#endif
#if (CS_MAXIMIZE == 1 || CS_MINIMIZE == 1) && CL_WORK == CL_OPT
		, __global unsigned int* val_to_opt_g
#endif
		,__global int* ss_aux_mem TTL_CTR) {

	// atoms
	__global unsigned int* str_to_expl = atoms;	// first available store index
	unsigned int str_last = atoms[1];	// last available store index
	unsigned int n_ss = atoms[2];	// total number of generated sub-search spaces (n_ss)
	unsigned int depth = atoms[3];	// level of tree expansion needed to create the required number of sub-search spaces
	__global unsigned int* exp_values = atoms + 5;	// each variable number of values expanded

	unsigned int prev_repeat = 0;
	unsigned int curr_repeat = 0;
	unsigned int rel_store_to_synt;
	unsigned int store_to_synt = atomic_inc(str_to_expl);	// increase the next store to pick index
	unsigned int join_n_vals;
	unsigned int join_more_times;
	int first_nth;
	int last_nth;
	bool first_expand = true;
	unsigned int i;

	*prop_v_id = CL_N_VS;

	if (store_to_synt < str_last) {

		for (i = 0; i < depth; i++) {
			CHECK_TTL(ttl_ctr, 4)

				if (exp_values[i] == 0) {
#if CL_D_TYPE == CL_BITMAP
					cl_d_copy_mbd(&vs_prop_[i].prop_d, &b_ds[i] TTL_CTR_V);
#else
					cl_d_copy_mvs(&vs_prop_[i].prop_d, &vs[i].domain TTL_CTR_V);
#endif

				} else {

					if (first_expand) {
						prev_repeat = n_ss;
						rel_store_to_synt = store_to_synt;
						first_expand = false;
					} else {
						rel_store_to_synt = store_to_synt % prev_repeat;
					}
					curr_repeat = prev_repeat / exp_values[i];

					join_n_vals = vs[i].n_vals / exp_values[i];
					if (join_n_vals == 0) {
						join_n_vals = 1;
					}
					join_more_times = (vs[i].n_vals % exp_values[i]) * curr_repeat;

					first_nth = convert_int(1 + (rel_store_to_synt / curr_repeat) * join_n_vals);

					if (join_more_times > 0) {
						if (rel_store_to_synt > join_more_times) {
							first_nth += convert_int(join_more_times / curr_repeat);
						} else {
							first_nth += convert_int(rel_store_to_synt / curr_repeat);
						}
					}

					last_nth = first_nth + convert_int(join_n_vals);
					if (rel_store_to_synt < join_more_times) {
						last_nth++;
					}

					prev_repeat = curr_repeat;

#if CL_D_TYPE == CL_BITMAP
					cl_d_get_nth_vals_bd(&b_ds[i], first_nth, last_nth - 1, ss_aux_mem TTL_CTR_V);
#else
					cl_d_get_nth_vals_vsg(&vs[i].domain, first_nth, last_nth - 1, ss_aux_mem TTL_CTR_V);
#endif
					cl_d_new_vals_mg(&vs_prop_[i].prop_d, ss_aux_mem, last_nth - first_nth TTL_CTR_V);
				}
		}

		for (i = depth; i < CL_N_VS; i++) {
			CHECK_TTL(ttl_ctr, 6)

#if CL_D_TYPE == CL_BITMAP
			cl_d_copy_mbd(&vs_prop_[i].prop_d, &b_ds[i] TTL_CTR_V);
#else
			cl_d_copy_mvs(&vs_prop_[i].prop_d, &vs[i].domain TTL_CTR_V);
#endif
		}

#if CL_WORK == CL_OPT
		unsigned int val_to_opt_aux = atomic_add(val_to_opt_g, 0);
		bool changed = 0;

		vs_prop_[CL_VAR_ID_TO_OPT].to_prop = 0;
#if CL_BOOLEAN_VS
		vs_prop_[CL_VAR_ID_TO_OPT].boolean = vs[CL_VAR_ID_TO_OPT].boolean;
#endif
		cl_v_calc_min_val_m(&vs_prop_[CL_VAR_ID_TO_OPT] TTL_CTR_V);
		cl_v_calc_max_val_m(&vs_prop_[CL_VAR_ID_TO_OPT] TTL_CTR_V);
		cl_v_cnt_vals_m(&vs_prop_[CL_VAR_ID_TO_OPT] TTL_CTR_V);

#if CS_MINIMIZE == 1
		cl_v_del_gt_m(&changed, &vs_prop_[CL_VAR_ID_TO_OPT], convert_int(val_to_opt_aux) TTL_CTR_V);
#else
		cl_v_del_lt_m(&changed, &vs_prop_[CL_VAR_ID_TO_OPT], convert_int(val_to_opt_aux) TTL_CTR_V);
#endif
#endif

		for (i = 0; i < CL_N_VS; i++) {
			CHECK_TTL(ttl_ctr, 7)

		    cl_d_copy_gm(&hist[i], &vs_prop_[i].prop_d TTL_CTR_V);

			vs_prop_[i].to_prop = 0;
#if CL_BOOLEAN_VS
			vs_prop_[i].boolean = vs[i].boolean;
#endif
			cl_v_calc_min_val_m(&vs_prop_[i] TTL_CTR_V);
			cl_v_calc_max_val_m(&vs_prop_[i] TTL_CTR_V);
			cl_v_cnt_vals_m(&vs_prop_[i] TTL_CTR_V);
		}

		*prop_v_id = 0;
		for (i = 0; i < depth; i++) {
			CHECK_TTL(ttl_ctr, 8)

			if (vs[i].to_label || vs[i].expanded) {
				*prop_v_id = i;
				i = depth;
			}
		}

		hist_labeleds_id[0] = convert_int(*prop_v_id);
		hist_labeleds_n_vals[0] = 0;
		(*hist_tree_level) = 1; // reset hist current level

		// reset the indexes of the array that contains the IDs of the variables to propagate
		vs_id_to_prop_[0] = 2;
		vs_id_to_prop_[1] = 2;

		// if optimizing set variable to optimize for being propagated to update its domain
#if CL_WORK == CL_OPT
		v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(*prop_v_id));
		*prop_v_id = CL_VAR_ID_TO_OPT;
#endif

		// Mark variables already expanded to be propagated to check if this sub-search space is already inconsistent
		for (i = 0; i < CL_N_VS; i++) {
			CHECK_TTL(ttl_ctr, 9)

#if CL_FILTERING == 0
			if (i != *prop_v_id && (vs[i].expanded || (i < depth && exp_values[i] > 0))) {
#endif
				v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(i));

#if CL_FILTERING == 0
			}
#endif
		}

#if CL_CHECK_ERRORS
		int l;
		for (l = 0; l < CL_N_VS; l++) {

			bool empty;
#if CL_N_WORDS == 1
			empty = (vs_prop_[l].prop_d == 0);
#else
			int m;
			empty = 1;
			for (m = 0; m < CL_N_WORDS; m++) {
				CHECK_TTL(ttl_ctr, 115)
				if (vs_prop_[l].prop_d[m] != 0) {
					empty = 0;
					m = CL_N_WORDS;
				}
			}
#endif
			if (empty || vs_prop_[l].n_vals > vs_prop_[l].max + 1 || vs_prop_[l].min > vs_prop_[l].max || vs_prop_[l].max > CL_D_MAX) {
				printf((__constant char *)"\n###error 74\n");
				printf((__constant char *)"v_id=%d, empty=%d, vs_prop_[l].n_vals=%u, vs_prop_[l].min=%u, vs_prop_[l].max=%u\n",
						l, empty, vs_prop_[l].n_vals, vs_prop_[l].min, vs_prop_[l].max);
			}
		}
#endif
	}
}