sum.c 11.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
/*
 * sum.c
 *
 *  Created on: 14/03/2017
 *      Author: pedro
 */

#ifndef __OPENCL_VERSION__

#include <stddef.h>
#include <stdio.h>

#include "sum.h"

#include "../bitmaps.h"
#include "../config.h"
#include "../variables.h"

#endif

#include "../kernels/cl_aux_functions.h"
#if CL_D_TYPE == CL_BITMAP
#include "../kernels/cl_bitmaps.h"
#elif CL_D_TYPE == CL_INTERVAL
#include  "../kernels/cl_intervals.h"
#endif
#include "../kernels/cl_constraints.h"
#include "../kernels/cl_variables.h"
#include "../kernels/cl_ttl.h"

#ifndef __OPENCL_VERSION__

/*
 * Creates a new constraint of the sum type and return the ID of the constraint
 * sum(X, k)
 * X_ids - vector with the ID of the variables that may contain the value of y
 * n_vs - maximum number of variables in X vector
 * k - value of the sum of all the variables in X
 */
unsigned int c_sum(unsigned int* X_ids, unsigned int n_vs, unsigned int k) {
	unsigned int i;

	// set to include in kernel compilation
	USE_CS[SUM] = 1;
	USE_NON_CS_REIFI[SUM] = 1;
	REV = 1;

	unsigned int* c_vs = malloc((n_vs) * sizeof(unsigned int));

	for (i = 0; i < n_vs; i++) {
		c_vs[i] = X_ids[i];
	}

	// creates a new generic constraint
	unsigned int c_id = c_new(c_vs, n_vs, NULL, 0, -1);

	// pointers to this type of constraint functions
	CS[c_id].kind = SUM;
	CS[c_id].check_sol_f = &sum_check;
	CS[c_id].constant_val = (int)k;

	free(c_vs);

	return c_id;
}

/*
 * Creates a new reified constraint of the sum type and return the ID of the constraint
 * sum(X, k)
 * X_ids - vector with the ID of the variables that may contain the value of y
 * n_vs - maximum number of variables in X vector
 * k - value of the sum of all the variables in X
 * reif_v_id - ID of the reification variable
 */
unsigned int c_sum_reif(unsigned int* X_ids, unsigned int n_vs, unsigned int k, int reif_v_id) {
	unsigned int i;

	if (VS[reif_v_id].max > 1) {
		v_del_gt(&VS[reif_v_id], 1);

		if (VS[reif_v_id].n_vals == 0) {
			fprintf(stderr, "\nError: Constraint SUM_REIF makes model inconsistent at creation:\n");
			exit(-1);
		}
	}

	// set to include in kernel compilation
	USE_CS[SUM] = 1;
	USE_CS_REIFI[SUM] = 1;
	REV = 1;

	unsigned int* c_vs = malloc((n_vs) * sizeof(unsigned int));

	for (i = 0; i < n_vs; i++) {
		c_vs[i] = X_ids[i];
	}

	// creates a new generic constraint
	unsigned int c_id = c_new(c_vs, n_vs, NULL, 0, reif_v_id);

	// pointers to this type of constraint functions
	CS[c_id].kind = SUM;
	CS[c_id].check_sol_f = &sum_check;
	CS[c_id].constant_val = (int)k;

	free(c_vs);

	return c_id;
}

/*
 * Return true if the sum constraint is respected or false if not
 * sum(X, k)
 * c - constraint to check if is respected
 * explored - if the CSP was already explored, which mean that all the variables must already be singletons
 * */
bool sum_check(constr* c, bool explored) {
	var** X = c->c_vs;
	var* x;
	int k = c->constant_val;
	int sum = 0;
	unsigned int i;

	for (i = 0; i < c->n_c_vs; i++) {
		x = X[i];

#if CHECK_SOL_N_VALS
		if (x->to_label && x->n_vals != 1) {
			if (explored) {
				fprintf(stderr, "\nError: Constraint SUM (%d) not respected:\n", c->c_id);

				for (i = 0; i < c->n_c_vs; i++) {
					fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[i]->v_id, b_get_min_val(&c->c_vs[i]->domain_b),
							b_get_max_val(&c->c_vs[i]->domain_b), b_cnt_vals(&c->c_vs[i]->domain_b));
				}
			}
			return false;
		}
#endif
		sum += x->min;
	}

	if (sum != k) {
		if (explored) {
			fprintf(stderr, "\nError: Constraint SUM (%d) not respected:\n", c->c_id);

			for (i = 0; i < c->n_c_vs; i++) {
				fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[i]->v_id, b_get_min_val(&c->c_vs[i]->domain_b),
						b_get_max_val(&c->c_vs[i]->domain_b), b_cnt_vals(&c->c_vs[i]->domain_b));
			}
		}
		return false;
	}

	return true;
}

#endif

#if CS_SUM == 1
/*
 * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID sum constraint
 * sum(X, k)
 * prop_ok will be set to 1 if success or to 0 if any domain became empty
 * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order
 * vs_prop_ - all CSP variables with current step values
 * prop_v_id - variable ID to propagate
 * current_cs - constraint that should be propagated for the variable with prop_v_id ID
 * vs_id_to_prop_ - circular vector with the ids of the variables to propagate
 */
CUDA_FUNC void sum_prop(CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_,
		bool* prop_ok, __global int* terms_mem CS_IGNORE_FUNC TTL_CTR) {

	int terms = current_cs->n_c_vs;	// number of constants and variables constrained by this constraint
	int equat_result = current_cs->constant_val;
	int y_id;
	__global int* mins = terms_mem;
	__global int* maxs = &terms_mem[current_cs->n_c_vs];
	int min, max;
	int xmin, xmax, bound;
	bool changed = 0;
	int i;

	min = 0;
	max = 0;
	for (i = 0; i < terms; i++) {
		CHECK_TTL(ttl_ctr, 69)
		y_id = vs_per_c_idx[i];

		min += mins[i] = V_MIN(vs_prop_[y_id]);
		max += maxs[i] = V_MAX(vs_prop_[y_id]);
	}

	if (min > equat_result || max < equat_result) {
		*prop_ok = 0;
		return;
	}

	if (min == max) {

#if CL_CS_IGNORE
		cs_ignore[current_cs->c_id] = 1;
#endif
		return;
	}

	if (min == equat_result) {
		for (i = 0; i < terms; i++) {
			CHECK_TTL(ttl_ctr, 70)
			y_id = vs_per_c_idx[i];

			if (V_N_VALS(vs_prop_[y_id]) > 1) {
				cl_v_del_all_except_val_m(&changed, &vs_prop_[y_id], mins[i] TTL_CTR_V);
				v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id);
			}
		}

#if CL_CS_IGNORE
		cs_ignore[current_cs->c_id] = 1;
#endif

		return;
	}

	if (max == equat_result) {
		for (i = 0; i < terms; ++i) {
			CHECK_TTL(ttl_ctr, 71)
			y_id = vs_per_c_idx[i];

			if (V_N_VALS(vs_prop_[y_id]) > 1) {
				cl_v_del_all_except_val_m(&changed, &vs_prop_[y_id], maxs[i] TTL_CTR_V);
				v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id);
			}
		}

#if CL_CS_IGNORE
		cs_ignore[current_cs->c_id] = 1;
#endif
		return;
	}

#if CL_BOOLEAN_VS
	if (current_cs->boolean == 0) {	// not all X are boolean
#endif
		if (max > equat_result) {
			for (i = 0; i < terms; ++i) {
				CHECK_TTL(ttl_ctr, 72)
				y_id = vs_per_c_idx[i];

				if (V_N_VALS(vs_prop_[y_id]) > 1) {

					xmin = mins[i];
					xmax = maxs[i];

					if (xmax - xmin > equat_result - min) {
						bound = equat_result - min + xmin;

						cl_v_del_gt_m(&changed, &vs_prop_[y_id], bound TTL_CTR_V);
						if (changed) {
							if (V_IS_EMPTY(vs_prop_[y_id])) {
								*prop_ok = 0;
								return;
							}
							v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id);
						}
					}
				}
			}
		}

		if (min < equat_result) {
			for (i = 0; i < terms; ++i) {
				CHECK_TTL(ttl_ctr, 73)
				y_id = vs_per_c_idx[i];

				if (V_N_VALS(vs_prop_[y_id]) > 1) {

					xmin = mins[i];
					xmax = maxs[i];

					if (xmax - xmin > max - equat_result) {
						bound = equat_result - max + xmax;

						cl_v_del_lt_m(&changed, &vs_prop_[y_id], bound TTL_CTR_V);
						if (changed) {
							if (V_IS_EMPTY(vs_prop_[y_id])) {
								*prop_ok = 0;
								return;
							}
							v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id);
						}
					}
				}
			}
		}
#if CL_BOOLEAN_VS
	}
#endif
}

#if CS_R_SUM == 1
/*
 * Validate sum constraint to be normally propagated, when reified
 * sum(X, k)
 * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order
 * vs_prop_ - all CSP variables with current step values
 * current_cs - constraint that should be propagated for the variable with prop_v_id ID
 * vs_id_to_prop_ - circular vector with the ids of the variables to propagate
 */
CUDA_FUNC void sum_reif( CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_
		CS_IGNORE_FUNC TTL_CTR) {

	int terms = current_cs->n_c_vs;	// number of constants and variables constrained by this constraint
	int equat_result = current_cs->constant_val;
	int y_id;
	int min, max;
	int i;

	min = 0;
	max = 0;
	for (i = 0; i < terms; ++i) {
		CHECK_TTL(ttl_ctr, 74)
		y_id = vs_per_c_idx[i];

		min += V_MIN(vs_prop_[y_id]);
		max += V_MAX(vs_prop_[y_id]);
	}

	if (min > equat_result || max < equat_result) {
		cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V);
		v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id));

#if CL_CS_IGNORE
	cs_ignore[current_cs->c_id] = 1;
#endif
		return;
	}

	// constraint already fixed
	if (min == max && min == equat_result) {
		cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 0 TTL_CTR_V);
		v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id));

#if CL_CS_IGNORE
	cs_ignore[current_cs->c_id] = 1;
#endif
		return;
	}
}

/*
 * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID sum opposite constraint
 * !sum(X, k)
 * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order
 * vs_prop_ - all CSP variables with current step values
 * prop_v_id - variable ID to propagate
 * current_cs - constraint that should be propagated for the variable with prop_v_id ID
 * vs_id_to_prop_ - circular vector with the ids of the variables to propagate
 */
CUDA_FUNC void sum_prop_opposite(CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_,
		bool* prop_ok CS_IGNORE_FUNC TTL_CTR) {

	int terms = current_cs->n_c_vs;	// number of constants and variables constrained by this constraint
	int equat_result = current_cs->constant_val;
	int y_id;
	int min, max;
	bool changed = 0;
	int not_singl = 0;
	int not_singl_id = -1;
	int val_to_rem;
	int sum = 0;
	int i;

	min = 0;
	max = 0;
	for (i = 0; i < terms; ++i) {
		CHECK_TTL(ttl_ctr, 69)
		y_id = vs_per_c_idx[i];

		min += V_MIN(vs_prop_[y_id]);
		max += V_MAX(vs_prop_[y_id]);

		if (V_N_VALS(vs_prop_[y_id]) != 1) {
			not_singl_id = y_id;
			not_singl++;

		} else {
			sum += V_MIN(vs_prop_[y_id]);
		}
	}
	sum -= equat_result;

	if (min == max && min == equat_result) {
		*prop_ok = 0;
		return;
	}

	if (min > equat_result || max < equat_result) {

#if CL_CS_IGNORE
		cs_ignore[current_cs->c_id] = 1;
#endif
		return;
	}

	// if all but one variable are already singleton, remove the only value from the one that is not singleton that would lead to equality
	if (not_singl == 1) {
		val_to_rem = (-1) * sum;

		if (val_to_rem >= 0) {

			cl_v_del_val_m(&changed, &vs_prop_[not_singl_id], val_to_rem TTL_CTR_V);

			if (changed) {
				v_add_to_prop(vs_id_to_prop_, vs_prop_, not_singl_id);
			}
		}

#if CL_CS_IGNORE
		cs_ignore[current_cs->c_id] = 1;
#endif
	}
}

#endif

CUDA_FUNC void sum_propagate(CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_,
		bool* prop_ok, __global int* terms_mem PROPAGATED_FUNC CS_IGNORE_FUNC TTL_CTR) {

#if CS_R_SUM == 0
	sum_prop(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok, terms_mem CS_IGNORE_CALL TTL_CTR_V);
#if CL_STATS == 1
	*propagated = true;
#endif

#elif CS_R_SUM == 1
	if (current_cs->reified == 1) {
		if (V_N_VALS(vs_prop_[current_cs->reif_var_id]) > 1) {
			sum_reif(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_ CS_IGNORE_CALL TTL_CTR_V);

		} else {
			if (V_MIN(vs_prop_[current_cs->reif_var_id]) == 1) {
				sum_prop(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok, terms_mem CS_IGNORE_CALL TTL_CTR_V);
			} else {
				sum_prop_opposite(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V);
			}
#if CL_STATS == 1
			*propagated = true;
#endif
		}
	} else {
		sum_prop(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok, terms_mem CS_IGNORE_CALL TTL_CTR_V);
#if CL_STATS == 1
		*propagated = true;
#endif
	}
#endif
}

#endif