sum.c
11.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
/*
* sum.c
*
* Created on: 14/03/2017
* Author: pedro
*/
#ifndef __OPENCL_VERSION__
#include <stddef.h>
#include <stdio.h>
#include "sum.h"
#include "../bitmaps.h"
#include "../config.h"
#include "../variables.h"
#endif
#include "../kernels/cl_aux_functions.h"
#if CL_D_TYPE == CL_BITMAP
#include "../kernels/cl_bitmaps.h"
#elif CL_D_TYPE == CL_INTERVAL
#include "../kernels/cl_intervals.h"
#endif
#include "../kernels/cl_constraints.h"
#include "../kernels/cl_variables.h"
#include "../kernels/cl_ttl.h"
#ifndef __OPENCL_VERSION__
/*
* Creates a new constraint of the sum type and return the ID of the constraint
* sum(X, k)
* X_ids - vector with the ID of the variables that may contain the value of y
* n_vs - maximum number of variables in X vector
* k - value of the sum of all the variables in X
*/
unsigned int c_sum(unsigned int* X_ids, unsigned int n_vs, unsigned int k) {
unsigned int i;
// set to include in kernel compilation
USE_CS[SUM] = 1;
USE_NON_CS_REIFI[SUM] = 1;
REV = 1;
unsigned int* c_vs = malloc((n_vs) * sizeof(unsigned int));
for (i = 0; i < n_vs; i++) {
c_vs[i] = X_ids[i];
}
// creates a new generic constraint
unsigned int c_id = c_new(c_vs, n_vs, NULL, 0, -1);
// pointers to this type of constraint functions
CS[c_id].kind = SUM;
CS[c_id].check_sol_f = &sum_check;
CS[c_id].constant_val = (int)k;
free(c_vs);
return c_id;
}
/*
* Creates a new reified constraint of the sum type and return the ID of the constraint
* sum(X, k)
* X_ids - vector with the ID of the variables that may contain the value of y
* n_vs - maximum number of variables in X vector
* k - value of the sum of all the variables in X
* reif_v_id - ID of the reification variable
*/
unsigned int c_sum_reif(unsigned int* X_ids, unsigned int n_vs, unsigned int k, int reif_v_id) {
unsigned int i;
if (VS[reif_v_id].max > 1) {
v_del_gt(&VS[reif_v_id], 1);
if (VS[reif_v_id].n_vals == 0) {
fprintf(stderr, "\nError: Constraint SUM_REIF makes model inconsistent at creation:\n");
exit(-1);
}
}
// set to include in kernel compilation
USE_CS[SUM] = 1;
USE_CS_REIFI[SUM] = 1;
REV = 1;
unsigned int* c_vs = malloc((n_vs) * sizeof(unsigned int));
for (i = 0; i < n_vs; i++) {
c_vs[i] = X_ids[i];
}
// creates a new generic constraint
unsigned int c_id = c_new(c_vs, n_vs, NULL, 0, reif_v_id);
// pointers to this type of constraint functions
CS[c_id].kind = SUM;
CS[c_id].check_sol_f = &sum_check;
CS[c_id].constant_val = (int)k;
free(c_vs);
return c_id;
}
/*
* Return true if the sum constraint is respected or false if not
* sum(X, k)
* c - constraint to check if is respected
* explored - if the CSP was already explored, which mean that all the variables must already be singletons
* */
bool sum_check(constr* c, bool explored) {
var** X = c->c_vs;
var* x;
int k = c->constant_val;
int sum = 0;
unsigned int i;
for (i = 0; i < c->n_c_vs; i++) {
x = X[i];
#if CHECK_SOL_N_VALS
if (x->to_label && x->n_vals != 1) {
if (explored) {
fprintf(stderr, "\nError: Constraint SUM (%d) not respected:\n", c->c_id);
for (i = 0; i < c->n_c_vs; i++) {
fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[i]->v_id, b_get_min_val(&c->c_vs[i]->domain_b),
b_get_max_val(&c->c_vs[i]->domain_b), b_cnt_vals(&c->c_vs[i]->domain_b));
}
}
return false;
}
#endif
sum += x->min;
}
if (sum != k) {
if (explored) {
fprintf(stderr, "\nError: Constraint SUM (%d) not respected:\n", c->c_id);
for (i = 0; i < c->n_c_vs; i++) {
fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[i]->v_id, b_get_min_val(&c->c_vs[i]->domain_b),
b_get_max_val(&c->c_vs[i]->domain_b), b_cnt_vals(&c->c_vs[i]->domain_b));
}
}
return false;
}
return true;
}
#endif
#if CS_SUM == 1
/*
* Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID sum constraint
* sum(X, k)
* prop_ok will be set to 1 if success or to 0 if any domain became empty
* vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order
* vs_prop_ - all CSP variables with current step values
* prop_v_id - variable ID to propagate
* current_cs - constraint that should be propagated for the variable with prop_v_id ID
* vs_id_to_prop_ - circular vector with the ids of the variables to propagate
*/
CUDA_FUNC void sum_prop(CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_,
bool* prop_ok, __global int* terms_mem CS_IGNORE_FUNC TTL_CTR) {
int terms = current_cs->n_c_vs; // number of constants and variables constrained by this constraint
int equat_result = current_cs->constant_val;
int y_id;
__global int* mins = terms_mem;
__global int* maxs = &terms_mem[current_cs->n_c_vs];
int min, max;
int xmin, xmax, bound;
bool changed = 0;
int i;
min = 0;
max = 0;
for (i = 0; i < terms; i++) {
CHECK_TTL(ttl_ctr, 69)
y_id = vs_per_c_idx[i];
min += mins[i] = V_MIN(vs_prop_[y_id]);
max += maxs[i] = V_MAX(vs_prop_[y_id]);
}
if (min > equat_result || max < equat_result) {
*prop_ok = 0;
return;
}
if (min == max) {
#if CL_CS_IGNORE
cs_ignore[current_cs->c_id] = 1;
#endif
return;
}
if (min == equat_result) {
for (i = 0; i < terms; i++) {
CHECK_TTL(ttl_ctr, 70)
y_id = vs_per_c_idx[i];
if (V_N_VALS(vs_prop_[y_id]) > 1) {
cl_v_del_all_except_val_m(&changed, &vs_prop_[y_id], mins[i] TTL_CTR_V);
v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id);
}
}
#if CL_CS_IGNORE
cs_ignore[current_cs->c_id] = 1;
#endif
return;
}
if (max == equat_result) {
for (i = 0; i < terms; ++i) {
CHECK_TTL(ttl_ctr, 71)
y_id = vs_per_c_idx[i];
if (V_N_VALS(vs_prop_[y_id]) > 1) {
cl_v_del_all_except_val_m(&changed, &vs_prop_[y_id], maxs[i] TTL_CTR_V);
v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id);
}
}
#if CL_CS_IGNORE
cs_ignore[current_cs->c_id] = 1;
#endif
return;
}
#if CL_BOOLEAN_VS
if (current_cs->boolean == 0) { // not all X are boolean
#endif
if (max > equat_result) {
for (i = 0; i < terms; ++i) {
CHECK_TTL(ttl_ctr, 72)
y_id = vs_per_c_idx[i];
if (V_N_VALS(vs_prop_[y_id]) > 1) {
xmin = mins[i];
xmax = maxs[i];
if (xmax - xmin > equat_result - min) {
bound = equat_result - min + xmin;
cl_v_del_gt_m(&changed, &vs_prop_[y_id], bound TTL_CTR_V);
if (changed) {
if (V_IS_EMPTY(vs_prop_[y_id])) {
*prop_ok = 0;
return;
}
v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id);
}
}
}
}
}
if (min < equat_result) {
for (i = 0; i < terms; ++i) {
CHECK_TTL(ttl_ctr, 73)
y_id = vs_per_c_idx[i];
if (V_N_VALS(vs_prop_[y_id]) > 1) {
xmin = mins[i];
xmax = maxs[i];
if (xmax - xmin > max - equat_result) {
bound = equat_result - max + xmax;
cl_v_del_lt_m(&changed, &vs_prop_[y_id], bound TTL_CTR_V);
if (changed) {
if (V_IS_EMPTY(vs_prop_[y_id])) {
*prop_ok = 0;
return;
}
v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id);
}
}
}
}
}
#if CL_BOOLEAN_VS
}
#endif
}
#if CS_R_SUM == 1
/*
* Validate sum constraint to be normally propagated, when reified
* sum(X, k)
* vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order
* vs_prop_ - all CSP variables with current step values
* current_cs - constraint that should be propagated for the variable with prop_v_id ID
* vs_id_to_prop_ - circular vector with the ids of the variables to propagate
*/
CUDA_FUNC void sum_reif( CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_
CS_IGNORE_FUNC TTL_CTR) {
int terms = current_cs->n_c_vs; // number of constants and variables constrained by this constraint
int equat_result = current_cs->constant_val;
int y_id;
int min, max;
int i;
min = 0;
max = 0;
for (i = 0; i < terms; ++i) {
CHECK_TTL(ttl_ctr, 74)
y_id = vs_per_c_idx[i];
min += V_MIN(vs_prop_[y_id]);
max += V_MAX(vs_prop_[y_id]);
}
if (min > equat_result || max < equat_result) {
cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V);
v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id));
#if CL_CS_IGNORE
cs_ignore[current_cs->c_id] = 1;
#endif
return;
}
// constraint already fixed
if (min == max && min == equat_result) {
cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 0 TTL_CTR_V);
v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id));
#if CL_CS_IGNORE
cs_ignore[current_cs->c_id] = 1;
#endif
return;
}
}
/*
* Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID sum opposite constraint
* !sum(X, k)
* vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order
* vs_prop_ - all CSP variables with current step values
* prop_v_id - variable ID to propagate
* current_cs - constraint that should be propagated for the variable with prop_v_id ID
* vs_id_to_prop_ - circular vector with the ids of the variables to propagate
*/
CUDA_FUNC void sum_prop_opposite(CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_,
bool* prop_ok CS_IGNORE_FUNC TTL_CTR) {
int terms = current_cs->n_c_vs; // number of constants and variables constrained by this constraint
int equat_result = current_cs->constant_val;
int y_id;
int min, max;
bool changed = 0;
int not_singl = 0;
int not_singl_id = -1;
int val_to_rem;
int sum = 0;
int i;
min = 0;
max = 0;
for (i = 0; i < terms; ++i) {
CHECK_TTL(ttl_ctr, 69)
y_id = vs_per_c_idx[i];
min += V_MIN(vs_prop_[y_id]);
max += V_MAX(vs_prop_[y_id]);
if (V_N_VALS(vs_prop_[y_id]) != 1) {
not_singl_id = y_id;
not_singl++;
} else {
sum += V_MIN(vs_prop_[y_id]);
}
}
sum -= equat_result;
if (min == max && min == equat_result) {
*prop_ok = 0;
return;
}
if (min > equat_result || max < equat_result) {
#if CL_CS_IGNORE
cs_ignore[current_cs->c_id] = 1;
#endif
return;
}
// if all but one variable are already singleton, remove the only value from the one that is not singleton that would lead to equality
if (not_singl == 1) {
val_to_rem = (-1) * sum;
if (val_to_rem >= 0) {
cl_v_del_val_m(&changed, &vs_prop_[not_singl_id], val_to_rem TTL_CTR_V);
if (changed) {
v_add_to_prop(vs_id_to_prop_, vs_prop_, not_singl_id);
}
}
#if CL_CS_IGNORE
cs_ignore[current_cs->c_id] = 1;
#endif
}
}
#endif
CUDA_FUNC void sum_propagate(CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_,
bool* prop_ok, __global int* terms_mem PROPAGATED_FUNC CS_IGNORE_FUNC TTL_CTR) {
#if CS_R_SUM == 0
sum_prop(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok, terms_mem CS_IGNORE_CALL TTL_CTR_V);
#if CL_STATS == 1
*propagated = true;
#endif
#elif CS_R_SUM == 1
if (current_cs->reified == 1) {
if (V_N_VALS(vs_prop_[current_cs->reif_var_id]) > 1) {
sum_reif(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_ CS_IGNORE_CALL TTL_CTR_V);
} else {
if (V_MIN(vs_prop_[current_cs->reif_var_id]) == 1) {
sum_prop(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok, terms_mem CS_IGNORE_CALL TTL_CTR_V);
} else {
sum_prop_opposite(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V);
}
#if CL_STATS == 1
*propagated = true;
#endif
}
} else {
sum_prop(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok, terms_mem CS_IGNORE_CALL TTL_CTR_V);
#if CL_STATS == 1
*propagated = true;
#endif
}
#endif
}
#endif