minus_eq.c
10.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
/*
* minus_eq.c
*
* Created on: 26/01/2017
* Author: pedro
*/
#ifndef __OPENCL_VERSION__
#include <stddef.h>
#include <stdio.h>
#include "minus_eq.h"
#include "../bitmaps.h"
#include "../config.h"
#include "../variables.h"
#endif
#include "../kernels/cl_aux_functions.h"
#if CL_D_TYPE == CL_BITMAP
#include "../kernels/cl_bitmaps.h"
#elif CL_D_TYPE == CL_INTERVAL
#include "../kernels/cl_intervals.h"
#endif
#include "../kernels/cl_constraints.h"
#include "../kernels/cl_variables.h"
#include "../kernels/cl_ttl.h"
#ifndef __OPENCL_VERSION__
/*
* Creates a new constraint of the minus_eq type and return the constraint ID
* x − y = k
* x_id - ID of variable x
* y_id - ID of variable y
* k - constant value for this constraint
*/
unsigned int c_minus_eq(unsigned int x_id, unsigned int y_id, int k) {
// set to include in kernel compilation
USE_CS[MINUS_EQ] = 1;
USE_NON_CS_REIFI[MINUS_EQ] = 1;
REV = 1;
unsigned int c_vs[2];
c_vs[0] = x_id;
c_vs[1] = y_id;
// creates a new generic constraint
unsigned int c_id = c_new(c_vs, 2, NULL, 0, -1);
// pointers to this type of constraint functions
CS[c_id].kind = MINUS_EQ;
CS[c_id].check_sol_f = &minus_eq_check;
CS[c_id].constant_val = k;
return c_id;
}
/*
* Creates a new reified constraint of the minus_eq type and return the constraint ID
* x − y = k
* x_id - ID of variable x
* y_id - ID of variable y
* k - constant value for this constraint
* reif_v_id - ID of the reification variable
*/
unsigned int c_minus_eq_reif(unsigned int x_id, unsigned int y_id, int k, int reif_v_id) {
if (VS[reif_v_id].max > 1) {
v_del_gt(&VS[reif_v_id], 1);
if (VS[reif_v_id].n_vals == 0) {
fprintf(stderr, "\nError: Constraint MINUS_EQ_REIF makes model inconsistent at creation:\n");
exit(-1);
}
}
// set to include in kernel compilation
USE_CS[MINUS_EQ] = 1;
USE_CS_REIFI[MINUS_EQ] = 1;
REV = 1;
unsigned int c_vs[2];
c_vs[0] = x_id;
c_vs[1] = y_id;
// creates a new generic constraint
unsigned int c_id = c_new(c_vs, 2, NULL, 0, reif_v_id);
// pointers to this type of constraint functions
CS[c_id].kind = MINUS_EQ;
CS[c_id].check_sol_f = &minus_eq_check;
CS[c_id].constant_val = k;
return c_id;
}
/*
* Return true if the minus_eq constraint is respected or false if not
* x − y = k
* c - constraint to check if is respected
* explored - if the CSP was already explored, which mean that all the variables must already be singletons
* */
bool minus_eq_check(constr* c, bool explored) {
// check if any variable inside same a_minus_b_ne_c constraint has domain 0, more than one value
// or if the difference is equal to constant_val. If so, return false. Else return true.
if (
#if CHECK_SOL_N_VALS
(c->c_vs[0]->to_label && c->c_vs[0]->n_vals != 1) || (c->c_vs[1]->to_label && c->c_vs[1]->n_vals != 1) ||
#endif
c->c_vs[0]->min - c->c_vs[1]->min != c->constant_val) {
if (explored) {
fprintf(stderr, "\nError: Constraint MINUS_EQ (%d) not respected:\n", c->c_id);
fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[0]->v_id, b_get_min_val(&c->c_vs[0]->domain_b),
b_get_max_val(&c->c_vs[0]->domain_b), b_cnt_vals(&c->c_vs[0]->domain_b));
fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[1]->v_id, b_get_min_val(&c->c_vs[1]->domain_b),
b_get_max_val(&c->c_vs[1]->domain_b), b_cnt_vals(&c->c_vs[1]->domain_b));
}
return false;
}
return true;
}
#endif
#if CS_MINUS_EQ == 1
/*
* Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID minus_eq constraint
* x − y = k
* prop_ok will be set to 1 if success or to 0 if any domain became empty
* vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order
* vs_prop_ - all CSP variables with current step values
* prop_v_id - variable ID to propagate
* current_cs - constraint that should be propagated for the variable with prop_v_id ID
* vs_id_to_prop_ - circular vector with the ids of the variables to propagate
*/
CUDA_FUNC void minus_eq_prop(CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, unsigned int prop_v_id, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_,
bool* prop_ok TTL_CTR) {
int x_id = vs_per_c_idx[0];
int y_id = vs_per_c_idx[1];
int k = current_cs->constant_val;
bool changed1 = 0;
bool changed2 = 0;
if (prop_v_id == (unsigned int)x_id) {
cl_v_del_lt_m(&changed1, &vs_prop_[y_id], V_MIN(vs_prop_[x_id]) - k TTL_CTR_V);
if (changed1) {
if (V_IS_EMPTY(vs_prop_[y_id])) {
*prop_ok = 0;
return;
}
}
cl_v_del_gt_m(&changed2, &vs_prop_[y_id], V_MAX(vs_prop_[x_id]) - k TTL_CTR_V);
if (changed2) {
if (V_IS_EMPTY(vs_prop_[y_id])) {
*prop_ok = 0;
return;
}
}
if (changed1 || changed2) {
v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id);
}
return;
}
// if prop_v_id == y_id
cl_v_del_lt_m(&changed1, &vs_prop_[x_id], V_MIN(vs_prop_[y_id]) + k TTL_CTR_V);
if (changed1) {
if (V_IS_EMPTY(vs_prop_[x_id])) {
*prop_ok = 0;
return;
}
}
cl_v_del_gt_m(&changed2, &vs_prop_[x_id], V_MAX(vs_prop_[y_id]) + k TTL_CTR_V);
if (changed2) {
if (V_IS_EMPTY(vs_prop_[x_id])) {
*prop_ok = 0;
return;
}
}
if (changed1 || changed2) {
v_add_to_prop(vs_id_to_prop_, vs_prop_, x_id);
}
}
#if CS_R_MINUS_EQ == 1
/*
* Validate minus_eq constraint to be normally propagated, when reified
* x − y = k
* vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order
* vs_prop_ - all CSP variables with current step values
* current_cs - constraint that should be propagated for the variable with prop_v_id ID
* vs_id_to_prop_ - circular vector with the ids of the variables to propagate
*/
CUDA_FUNC void minus_eq_reif( CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, unsigned int prop_v_id, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_ TTL_CTR) {
int x_id = vs_per_c_idx[0];
VARS_PROP x;
int y_id = vs_per_c_idx[1];
VARS_PROP y;
int k = current_cs->constant_val;
bool changed = 0;
// constraint already fixed
if (V_N_VALS(vs_prop_[x_id]) == 1 && V_N_VALS(vs_prop_[y_id]) == 1 && V_MIN(vs_prop_[x_id]) - V_MIN(vs_prop_[y_id]) == k) {
cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 0 TTL_CTR_V);
v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id));
return;
}
// if the variable have only one value on its domain
if (prop_v_id == (unsigned int)x_id) {
cl_v_copy_pm(&y, &vs_prop_[y_id] TTL_CTR_V);
cl_v_del_lt_n(&changed, &y, V_MIN(vs_prop_[x_id]) - k TTL_CTR_V);
if (V_IS_EMPTY(y)) {
cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V);
v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id));
return;
}
cl_v_del_gt_n(&changed, &y, V_MAX(vs_prop_[x_id]) - k TTL_CTR_V);
if (V_IS_EMPTY(y)) {
cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V);
v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id));
}
return;
}
// if prop_v_id == y_id
cl_v_copy_pm(&x, &vs_prop_[x_id] TTL_CTR_V);
cl_v_del_lt_n(&changed, &x, V_MIN(vs_prop_[y_id]) + k TTL_CTR_V);
if (V_IS_EMPTY(x)) {
cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V);
v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id));
return;
}
cl_v_del_gt_n(&changed, &x, V_MAX(vs_prop_[y_id]) + k TTL_CTR_V);
if (V_IS_EMPTY(x)) {
cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V);
v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id));
}
}
/*
* Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID minus_eq opposite constraint
* x − y != k
* vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order
* vs_prop_ - all CSP variables with current step values
* prop_v_id - variable ID to propagate
* current_cs - constraint that should be propagated for the variable with prop_v_id ID
* vs_id_to_prop_ - circular vector with the ids of the variables to propagate
*/
CUDA_FUNC void minus_eq_prop_opposite(CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, unsigned int prop_v_id, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_,
bool* prop_ok CS_IGNORE_FUNC TTL_CTR) {
int x_id = vs_per_c_idx[0];
int y_id = vs_per_c_idx[1];
bool changed = 0;
// if the variable have only one value on its domain
if (V_N_VALS(vs_prop_[prop_v_id]) == 1) {
if (prop_v_id == (unsigned int)x_id) {
// prune domain
cl_v_del_val_m(&changed, &vs_prop_[y_id], V_MIN(vs_prop_[x_id]) - current_cs->constant_val TTL_CTR_V);
if (changed) {
// if the removal of the value resulted in an empty domain return 0
if (V_IS_EMPTY(vs_prop_[y_id])) {
*prop_ok = 0;
return;
}
// Add variable to the vector that contains the variables that must be propagated
v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id);
}
return;
}
cl_v_del_val_m(&changed, &vs_prop_[x_id], V_MIN(vs_prop_[y_id]) + current_cs->constant_val TTL_CTR_V);
if (changed) {
// if the removal of the value resulted in an empty domain return 0
if (V_IS_EMPTY(vs_prop_[x_id])) {
*prop_ok = 0;
return;
}
// Add variable to the vector that contains the variables that must be propagated
v_add_to_prop(vs_id_to_prop_, vs_prop_, x_id);
}
#if CL_CS_IGNORE
cs_ignore[current_cs->c_id] = 1;
#endif
}
}
#endif
CUDA_FUNC void minus_eq_propagate(CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, unsigned int prop_v_id, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_,
bool* prop_ok PROPAGATED_FUNC CS_IGNORE_FUNC TTL_CTR) {
#if CS_R_MINUS_EQ == 0
minus_eq_prop(vs_per_c_idx, vs_prop_, prop_v_id, current_cs, vs_id_to_prop_, prop_ok TTL_CTR_V);
#if CL_STATS == 1
*propagated = true;
#endif
#elif CS_R_MINUS_EQ == 1
if (current_cs->reified == 1) {
if (prop_v_id != current_cs->reif_var_id) {
if (V_N_VALS(vs_prop_[current_cs->reif_var_id]) > 1) {
minus_eq_reif(vs_per_c_idx, vs_prop_, prop_v_id, current_cs, vs_id_to_prop_ TTL_CTR_V);
}
if (V_N_VALS(vs_prop_[current_cs->reif_var_id]) == 1) {
if (V_MIN(vs_prop_[current_cs->reif_var_id]) == 1) {
minus_eq_prop(vs_per_c_idx, vs_prop_, prop_v_id, current_cs, vs_id_to_prop_, prop_ok TTL_CTR_V);
} else {
minus_eq_prop_opposite(vs_per_c_idx, vs_prop_, prop_v_id, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V);
}
#if CL_STATS == 1
*propagated = true;
#endif
}
}
} else {
minus_eq_prop(vs_per_c_idx, vs_prop_, prop_v_id, current_cs, vs_id_to_prop_, prop_ok TTL_CTR_V);
#if CL_STATS == 1
*propagated = true;
#endif
}
#endif
}
#endif