at_most_one.c 16 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
/*
 * at_most_one.c
 *
 *  Created on: 26/03/2017
 *      Author: pedro
 */

#ifndef __OPENCL_VERSION__

#include <stddef.h>
#include <stdio.h>

#include "at_most_one.h"

#include "../bitmaps.h"
#include "../config.h"
#include "../variables.h"

#endif

#include "../kernels/cl_aux_functions.h"
#if CL_D_TYPE == CL_BITMAP
#include "../kernels/cl_bitmaps.h"
#elif CL_D_TYPE == CL_INTERVAL
#include  "../kernels/cl_intervals.h"
#endif
#include "../kernels/cl_constraints.h"
#include "../kernels/cl_variables.h"
#include "../kernels/cl_ttl.h"

#ifndef __OPENCL_VERSION__

/*
 * Creates a new constraint of the at_most_one type and return the constraint ID
 * ∀i∈[1,n]:|si|=ci ; ∀i,j∈[1,n](i<j):∣si⋂sj|≤1
 * S_ids - vector with the ID of the variables of all the sets, ordered by set
 * N_vs - number of variables on each set, per set order (c)
 * n_sets - number of sets
 */
unsigned int c_at_most_one(unsigned int* S_ids, int* N_vs, unsigned int n_sets) {
	unsigned int n_vs, i;

	// set to include in kernel compilation
	USE_CS[AT_MOST_ONE] = 1;
	USE_NON_CS_REIFI[AT_MOST_ONE] = 1;

	n_vs = 0;
	for (i = 0; i < n_sets; i++) {
		n_vs += (unsigned int)N_vs[i];
	}

	unsigned int* c_vs = malloc(n_vs * sizeof(unsigned int));

	for (i = 0; i < n_vs; i++) {
		c_vs[i] = S_ids[i];
	}

	// creates a new generic constraint
	unsigned int c_id = c_new(c_vs, n_vs, N_vs, n_sets, -1);

	// pointers to this type of constraint functions
	CS[c_id].kind = AT_MOST_ONE;
	CS[c_id].check_sol_f = &at_most_one_check;
	CS[c_id].constant_val = (int)n_sets;

	free(c_vs);

	return c_id;
}

/*
 * Creates a new reified constraint of the at_most_one type and return the constraint ID
 * ∀i∈[1,n]:|si|=ci ; ∀i,j∈[1,n](i<j):∣si⋂sj|≤1
 * S_ids - vector with the ID of the variables of all the sets, ordered by set
 * N_vs - number of variables on each set, per set order (c)
 * n_sets - number of sets
 * reif_v_id - ID of the reification variable
 */
unsigned int c_at_most_one_reif(unsigned int* S_ids, int* N_vs, unsigned int n_sets, int reif_v_id) {
	unsigned int n_vs, i;

	if (VS[reif_v_id].max > 1) {
		v_del_gt(&VS[reif_v_id], 1);

		if (VS[reif_v_id].n_vals == 0) {
			fprintf(stderr, "\nError: Constraint AT_MOST_ONE_REIF makes model inconsistent at creation:\n");
			exit(-1);
		}
	}

	// set to include in kernel compilation
	USE_CS[AT_MOST_ONE] = 1;
	USE_CS_REIFI[AT_MOST_ONE] = 1;

	n_vs = 0;
	for (i = 0; i < n_sets; i++) {
		n_vs += (unsigned int)N_vs[i];
	}

	unsigned int* c_vs = malloc(n_vs * sizeof(unsigned int));

	for (i = 0; i < n_vs; i++) {
		c_vs[i] = S_ids[i];
	}

	// creates a new generic constraint
	unsigned int c_id = c_new(c_vs, n_vs, N_vs, n_sets, reif_v_id);

	// pointers to this type of constraint functions
	CS[c_id].kind = AT_MOST_ONE;
	CS[c_id].check_sol_f = &at_most_one_check;
	CS[c_id].constant_val = (int)n_sets;

	free(c_vs);

	return c_id;
}

/*
 * Return true if the at_most_one constraint is respected or false if not
 * ∀i∈[1,n]:|si|=ci ; ∀i,j∈[1,n](i<j):∣si⋂sj|≤1
 * c - constraint to check if is respected
 * explored - if the CSP was already explored, which mean that all the variables must already be singletons
 * */
bool at_most_one_check(constr* c, bool explored) {
	int* cards = c->c_consts;
	var** sets = c->c_vs;
	int n_sets = c->constant_val;
	unsigned int v_iter1;
	unsigned int v_iter2;
	unsigned int vals_eq;
	int i, j, k, l;

	// if any variable have more than one value
#if CHECK_SOL_N_VALS
	for (i = 0; i < c->n_c_vs; i++) {
		if (sets[i]->to_label && sets[i]->n_vals != 1) {

			if (explored) {
				fprintf(stderr, "\nError: Constraint LINEAR_VAR (%d) not respected:\n", c->c_id);

				for (i = 0; i < c->n_c_vs; i++) {
					fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[i]->v_id, b_get_min_val(&c->c_vs[i]->domain_b),
							b_get_max_val(&c->c_vs[i]->domain_b),
							b_cnt_vals(&c->c_vs[i]->domain_b));
				}
			}
			return false;
		}
	}
#endif

	// if any two sets share more than one value
	v_iter1 = 0;
	v_iter2 = (unsigned int)cards[0];
	for (i = 0; i < n_sets; i++) {
		for (j = 0; j < cards[i]; j++) {
			for (k = i + 1; k < n_sets; k++) {
				vals_eq = 0;
				for (l = 0; l < cards[k]; l++) {

					if (sets[v_iter1]->min == sets[v_iter2]->min) {
						vals_eq++;

						if (vals_eq > 1) {

							if (explored) {
								fprintf(stderr, "\nError: Constraint AT_MOST_ONE (%d) not respected:\n", c->c_id);

								for (i = 0; i < c->n_c_vs; i++) {
									fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[i]->v_id,
											b_get_min_val(&c->c_vs[i]->domain_b), b_get_max_val(&c->c_vs[i]->domain_b),	b_cnt_vals(&c->c_vs[i]->domain_b));
								}
							}
							return false;
						}
					}
					v_iter2++;
				}
				v_iter2 -= (unsigned int)cards[k];
			}
			v_iter2 += (unsigned int)cards[k];
			v_iter1++;
		}
	}
	return true;
}

#endif

#if CS_AT_MOST_ONE == 1
/*
 * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID at_most_one constraint
 * ∀i∈[1,n]:|si|=ci ; ∀i,j∈[1,n](i<j):∣si⋂sj|≤1
 * prop_ok will be set to 1 if success or to 0 if any domain became empty
 * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order
 * c_consts - vector with all constrained constants per constraint, per constraint ID order
 * vs_prop_ - all CSP variables with current step values
 * prop_v_id - variable ID to propagate
 * current_cs - constraint that should be propagated for the variable with prop_v_id ID
 * vs_id_to_prop_ - circular vector with the ids of the variables to propagate
 */
CUDA_FUNC void at_most_one_prop(CL_INTS_MEM int* vs_per_c_idx, CL_INTS_MEM int* c_consts, CL_MEMORY VARS_PROP* vs_prop_, unsigned int prop_v_id, CL_CS_MEM cl_constr* current_cs,
		CL_MEMORY unsigned short* vs_id_to_prop_, bool* prop_ok TTL_CTR) {

	CL_INTS_MEM int* cards = c_consts;
	int n_sets = current_cs->constant_val;
	int set_to_prop_idx;	// set with the variables to propagate
	int set_to_prun_idx;	// Iterator for the other sets to prune
	int set_to_prop_n = -1;
	int v_to_prop_id;
	int v_to_prun_id;
	int v_iter = 0;
	int val;
	int vals_repeat_ctr;
	bool changed = 0;
	int i, j, k;

	// if the variable to propagate is singleton, propagate all the variables already singleton on that set to all the other sets
	if (V_N_VALS(vs_prop_[prop_v_id]) == 1) {

		// get the number of the set where the variable to propagate belong and initialize set_to_prop
		v_iter = 0;
		for (i = 0; i < n_sets; i++) {
			CHECK_TTL(ttl_ctr, 43)
			set_to_prop_idx = v_iter;
			for (j = 0; j < cards[i]; j++) {
				CHECK_TTL(ttl_ctr, 44)
				if (prop_v_id == (unsigned int)vs_per_c_idx[v_iter]) {
					set_to_prop_n = i;
					break;
				}
				v_iter++;
			}
			if (set_to_prop_n != -1) {
				break;
			}
		}

		// iterate over all the sets
		set_to_prun_idx = 0;
		for (i = 0; i < n_sets; i++) {
			CHECK_TTL(ttl_ctr, 45)
			if (i > 0) {
				set_to_prun_idx += cards[i - 1];
			}
			// if this set is not the one being propagated
			if (i != set_to_prop_n) {

				// iterate all the variables on the set to propagate and propagate all the singleton variables on that set
				vals_repeat_ctr = 0;
				for (j = 0; j < cards[set_to_prop_n]; j++) {
					CHECK_TTL(ttl_ctr, 46)

					v_to_prop_id = vs_per_c_idx[set_to_prop_idx + j];
					if (V_N_VALS(vs_prop_[v_to_prop_id]) == 1) {
						val = V_MIN(vs_prop_[v_to_prop_id]);

						for (k = 0; k < cards[i]; k++) {
							CHECK_TTL(ttl_ctr, 47)
							v_to_prun_id = vs_per_c_idx[set_to_prun_idx + k];
							// count number of singleton variable values repeated on both sets
							if (V_N_VALS(vs_prop_[v_to_prun_id]) == 1 && V_MIN(vs_prop_[v_to_prun_id]) == val) {
								vals_repeat_ctr++;

								if (vals_repeat_ctr > 1) {
									*prop_ok = 0;
									return;
								}
							}
							// if only one singleton variable value is repeated on both sets remove that value from the other variables
							if (vals_repeat_ctr == 1 && V_N_VALS(vs_prop_[v_to_prun_id]) > 1) {

								cl_v_del_val_m(&changed, &vs_prop_[v_to_prun_id], val TTL_CTR_V);
								if (changed) {
									if (V_N_VALS(vs_prop_[v_to_prun_id]) == 0) {
										*prop_ok = 0;
										return;
									}
									v_add_to_prop(vs_id_to_prop_, vs_prop_, v_to_prun_id);
								}
							}
						}
					}
				}
			}
		}
	}
}

#if CS_R_AT_MOST_ONE == 1
/*
 * Validate at_most_one constraint to be normally propagated, when reified
 * ∀i∈[1,n]:|si|=ci ; ∀i,j∈[1,n](i<j):∣si⋂sj|≤1
 * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order
 * c_consts - vector with all constrained constants per constraint, per constraint ID order
 * vs_prop_ - all CSP variables with current step values
 * current_cs - constraint that should be propagated for the variable with prop_v_id ID
 * vs_id_to_prop_ - circular vector with the ids of the variables to propagate
 */
CUDA_FUNC void at_most_one_reif( CL_INTS_MEM int* vs_per_c_idx, CL_INTS_MEM int* c_consts, CL_MEMORY VARS_PROP* vs_prop_, unsigned int prop_v_id, CL_CS_MEM cl_constr* current_cs,
		CL_MEMORY unsigned short* vs_id_to_prop_ TTL_CTR) {

	CL_INTS_MEM int* cards = c_consts;
	int n_sets = current_cs->constant_val;
	int set_to_prop_idx;	// set with the variables to propagate
	int set_to_prun_idx;	// Iterator for the other sets to prune
	int set_to_prop_n = -1;
	int v_to_prop_id;
	VARS_PROP v_to_prun;
	int v_iter = 0;
	int val;
	int vals_repeat_ctr;
	bool changed = 0;
	int i, j, k;

	// if the variable to propagate is singleton, propagate all the variables already singleton on that set to all the other sets
	if (V_N_VALS(vs_prop_[prop_v_id]) == 1) {

		// get the number of the set where the variable to propagate belong and initialize set_to_prop
		v_iter = 0;
		for (i = 0; i < n_sets; i++) {
			CHECK_TTL(ttl_ctr, 48)
			set_to_prop_idx = v_iter;
			for (j = 0; j < cards[i]; j++) {
				CHECK_TTL(ttl_ctr, 49)
				if (prop_v_id == (unsigned int)vs_per_c_idx[v_iter]) {
					set_to_prop_n = i;
					break;
				}
				v_iter++;
			}
			if (set_to_prop_n != -1) {
				break;
			}
		}

		// iterate over all the sets
		set_to_prun_idx = 0;
		for (i = 0; i < n_sets; i++) {
			CHECK_TTL(ttl_ctr, 50)
			if (i > 0) {
				set_to_prun_idx += cards[i - 1];
			}
			// if this set is not the one being propagated
			if (i != set_to_prop_n) {

				// iterate all the variables on the set to propagate and propagate all the singleton variables on that set
				vals_repeat_ctr = 0;
				for (j = 0; j < cards[set_to_prop_n]; j++) {
					CHECK_TTL(ttl_ctr, 51)

					v_to_prop_id = vs_per_c_idx[set_to_prop_idx + j];
					if (V_N_VALS(vs_prop_[v_to_prop_id]) == 1) {
						val = V_MIN(vs_prop_[v_to_prop_id]);

						for (k = 0; k < cards[i]; k++) {
							CHECK_TTL(ttl_ctr, 52)

							cl_v_copy_pm(&v_to_prun, &vs_prop_[vs_per_c_idx[set_to_prun_idx + k]] TTL_CTR_V);

							// count number of singleton variable values repeated on both sets
							if (V_N_VALS(v_to_prun) == 1 && V_MIN(v_to_prun) == val) {
								vals_repeat_ctr++;

								if (vals_repeat_ctr > 1) {
									cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V);

									v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id));
									return;
								}
							}
							// if only one singleton variable value is repeated on both sets remove that value from the other variables
							if (vals_repeat_ctr == 1 && V_N_VALS(v_to_prun) > 1) {

								cl_v_del_val_n(&changed, &v_to_prun, val TTL_CTR_V);
								if (V_N_VALS(v_to_prun) == 0) {
									cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V);
									v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id));
									return;
								}
							}
						}
					}
				}
			}
		}

		// check if constraint is already fixed
		v_iter = 0;
		for (i = 0; i < current_cs->n_c_vs; i++) {
			CHECK_TTL(ttl_ctr, 187)

			if (V_N_VALS(vs_prop_[vs_per_c_idx[v_iter]]) != 1) {
				return;
			}
		}
		cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 0 TTL_CTR_V);
		v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id));
	}
}

/*
 * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID at_most_one opposite constraint
 * ∀i∈[1,n]:|si|=ci ; ∀i,j∈[1,n](i<j):∣si⋂sj|>1
 * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order
 * c_consts - vector with all constrained constants per constraint, per constraint ID order
 * vs_prop_ - all CSP variables with current step values
 * prop_v_id - variable ID to propagate
 * current_cs - constraint that should be propagated for the variable with prop_v_id ID
 * vs_id_to_prop_ - circular vector with the ids of the variables to propagate
 */
CUDA_FUNC void at_most_one_prop_opposite(CL_INTS_MEM int* vs_per_c_idx, CL_INTS_MEM int* c_consts, CL_MEMORY VARS_PROP* vs_prop_, unsigned int prop_v_id
		, CL_CS_MEM cl_constr* current_cs TTL_CTR) {

	CL_INTS_MEM int* cards = c_consts;
	int n_sets = current_cs->constant_val;
	int set_to_prop_idx;	// set with the variables to propagate
	int set_to_prun_idx;	// Iterator for the other sets to prune
	int set_to_prop_n = -1;
	int v_to_prop_id;
	int v_to_prun_id;
	int v_iter = 0;
	int val;
	int vals_repeat_ctr;
	bool contains;
	int i, j, k;

	// if the variable to propagate is singleton, propagate all the variables already singleton on that set to all the other sets
	if (V_N_VALS(vs_prop_[prop_v_id]) == 1) {

		// get the number of the set where the variable to propagate belong and initialize set_to_prop
		v_iter = 0;
		for (i = 0; i < n_sets; i++) {
			CHECK_TTL(ttl_ctr, 200)
			set_to_prop_idx = v_iter;
			for (j = 0; j < cards[i]; j++) {
				CHECK_TTL(ttl_ctr, 201)
				if (prop_v_id == (unsigned int)vs_per_c_idx[v_iter]) {
					set_to_prop_n = i;
					break;
				}
				v_iter++;
			}
			if (set_to_prop_n != -1) {
				break;
			}
		}

		// iterate over all the sets
		set_to_prun_idx = 0;
		for (i = 0; i < n_sets; i++) {
			CHECK_TTL(ttl_ctr, 202)
			if (i > 0) {
				set_to_prun_idx += cards[i - 1];
			}
			// if this set is not the one being propagated
			if (i != set_to_prop_n) {

				// iterate all the variables on the set to propagate and propagate all the singleton variables on that set
				vals_repeat_ctr = 0;
				for (j = 0; j < cards[set_to_prop_n]; j++) {
					CHECK_TTL(ttl_ctr, 203)

					v_to_prop_id = vs_per_c_idx[set_to_prop_idx + j];
					if (V_N_VALS(vs_prop_[v_to_prop_id]) == 1) {
						val = V_MIN(vs_prop_[v_to_prop_id]);

						for (k = 0; k < cards[i]; k++) {
							CHECK_TTL(ttl_ctr, 204)
							v_to_prun_id = vs_per_c_idx[set_to_prun_idx + k];

							// count number of variable values repeated on both sets
							cl_v_contains_val_m(&contains, &vs_prop_[v_to_prun_id], val TTL_CTR_V);
							if (contains) {

								if (++vals_repeat_ctr > 1) {
									return;
								}
							}
						}
					}
				}
			}
		}
	}
}

#endif

CUDA_FUNC void at_most_one_propagate(CL_INTS_MEM int* vs_per_c_idx, CL_INTS_MEM int* c_consts, CL_MEMORY VARS_PROP* vs_prop_, unsigned int prop_v_id, CL_CS_MEM cl_constr* current_cs,
		CL_MEMORY unsigned short* vs_id_to_prop_, bool* prop_ok PROPAGATED_FUNC TTL_CTR) {

#if CS_R_AT_MOST_ONE == 0
	at_most_one_prop(vs_per_c_idx, c_consts, vs_prop_, prop_v_id, current_cs, vs_id_to_prop_, prop_ok TTL_CTR_V);
#if CL_STATS == 1
	*propagated = true;
#endif
#elif CS_R_AT_MOST_ONE == 1
	if (current_cs->reified == 1) {
		if (prop_v_id != current_cs->reif_var_id) {
			if (V_N_VALS(vs_prop_[current_cs->reif_var_id]) > 1) {
				at_most_one_reif(vs_per_c_idx, c_consts, vs_prop_, prop_v_id, current_cs, vs_id_to_prop_ TTL_CTR_V);

			} else {
				if (V_MIN(vs_prop_[current_cs->reif_var_id]) == 1) {
					at_most_one_prop(vs_per_c_idx, c_consts, vs_prop_, prop_v_id, current_cs, vs_id_to_prop_, prop_ok TTL_CTR_V);
				} else {
					at_most_one_prop_opposite(vs_per_c_idx, c_consts, vs_prop_, prop_v_id, current_cs TTL_CTR_V);
				}
#if CL_STATS == 1
				*propagated = true;
#endif
			}
		}
	} else {
		at_most_one_prop(vs_per_c_idx, c_consts, vs_prop_, prop_v_id, current_cs, vs_id_to_prop_, prop_ok TTL_CTR_V);
#if CL_STATS == 1
		*propagated = true;
#endif
	}
#endif
}

#endif