4d26a735
Pedro Roque
Increased recogni...
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
|
%-----------------------------------------------------------------------------%
% vim: ts=4 sw=4 et wm=0 tw=0
%-----------------------------------------------------------------------------%
% Model example for Multi-Skilled Project Scheduling Problems (MSPSP)
%
% MSPSP is a variation of the basic resource-constrained project scheduling
% problem. Here, a set of activities must be executed so that the project
% duration is minimised while satisfying all constraints involved. These
% constraints are
% 1) precedence relations between some activities expressing that an activity
% can only be run after its preceding activity's execution is finished,
% 2) skills requirements of activities on workers who have the capability to
% perform the activity, and
% 3) workers availibility, i.e., a worker can perform only one activity in
% each time period.
%
%-----------------------------------------------------------------------------%
include "globals.mzn";
%-----------------------------------------------------------------------------%
% Model parameters.
% Skills parameters
%
int: n_skills;
set of int: Skills = 1 .. n_skills;
int: n_workers;
set of int: Workers = 1 .. n_workers;
array [Workers] of set of Skills: has_skills;
array [Skills] of int: rc =
[ card({j | j in Workers where i in has_skills[j]}) | i in Skills ];
% Task parameters
%
int: n_tasks; % Number of tasks
set of int: Tasks = 1 .. n_tasks; % Set of tasks
array [Tasks] of int : d ; % Durations
array [Skills, Tasks] of int : rr ; % Resource requirements
array [Tasks] of set of int: suc; % Successors
% Planning horizon
%
int: tmax = sum(i in Tasks)( d[i] ); % Trivial upper bound
set of int: Times = 0 .. tmax;
%-----------------------------------------------------------------------------%
% Model variables.
array [Tasks] of var Times: s; % Start times
array [Workers, Tasks] of var bool: w; % Assignment of workers to tasks
var Times: objective; % Project duration (makespan)
%-----------------------------------------------------------------------------%
% Constraints.
% Precedence constraints
%
constraint
forall ( i in Tasks, j in suc[i] )
(
s[i] + d[i] <= s[j]
);
% Skills constraints
%
constraint
forall ( i in Tasks )
(
let {
set of int: TWorkers =
{ j | j in Workers where
exists(k in has_skills[j])(rr[k, i] > 0)
}
} in (
forall ( k in Skills where rr[k, i] > 0 )
(
sum(j in TWorkers where k in has_skills[j])
(
bool2int(w[j, i])
) >= rr[k, i]
)
/\ forall ( j in Workers where not(j in TWorkers) )
(
w[j, i] = false
)
)
);
% Redundant non-overlapping constraints for the workers
%
constraint
forall ( j in Workers )
(
let {
set of int: WTasks =
{ i | i in Tasks where
exists(k in has_skills[j])(rr[k, i] > 0)
}
} in (
if card(WTasks) > 1 then
cumulative(
[ s[i] | i in WTasks ],
[ d[i] | i in WTasks ],
[ bool2int(w[j, i]) | i in WTasks ],
1
)
else
true
endif
)
);
% Redundant non-overlapping constraints
%
constraint
forall (
i, j in Tasks
where
i < j /\ not(j in suc[i]) /\ not(i in suc[j])
)(
if exists( k in Skills )( rr[k,i] + rr[k,j] > rc[k] ) then
let { var bool: before } in (
( before -> s[i] + d[i] <= s[j] )
/\ ( not(before) -> s[j] + d[j] <= s[i] )
)
else
true
endif
);
% Redudant cumulative resource constraints
%
constraint
forall ( k in Skills )
(
let {
set of int: RTasks = { i | i in Tasks where rr[k, i] > 0 },
int: sum_rr = sum(i in RTasks)( rr[k,i] )
} in (
if card(RTasks) > 1 /\ sum_rr > rc[k] then
cumulative(
[ s[i] | i in RTasks ],
[ d[i] | i in RTasks ],
[ rr[k,i] | i in RTasks ],
rc[k]
)
else
true
endif
)
);
% Makespan constraints
%
constraint
forall ( i in Tasks where suc[i] == {} )
(
s[i] + d[i] <= objective
);
%-----------------------------------------------------------------------------%
% Objective.
solve
:: seq_search([
int_search(s, smallest, indomain_split, complete),
bool_search([w[i,j] | i in Workers, j in Tasks], input_order,
indomain_max, complete),
int_search([objective], input_order, indomain_min, complete)
])
minimize objective;
%-----------------------------------------------------------------------------%
% Output.
output [
"% mspsp\n",
"s = " ++ show( s ) ++ ";\n",
"w = " ++ show( w ) ++ ";\n",
"objective = " ++ show( objective ) ++ ";\n"
];
%-----------------------------------------------------------------------------%
%%% EOF %%%
|