student.py
11.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# python standard library
from datetime import datetime
import logging
import random
from typing import Dict, List, Optional, Tuple
# third party libraries
import networkx as nx
# this project
from .questions import Question
# setup logger for this module
logger = logging.getLogger(__name__)
# ----------------------------------------------------------------------------
# kowledge state of a student
# Contains:
# state - dict of unlocked topics and their levels
# deps - access to dependency graph shared between students
# topic_sequence - list with the recommended topic sequence
# current_topic - nameref of the current topic
# ----------------------------------------------------------------------------
class StudentState(object):
# =======================================================================
# methods that update state
# =======================================================================
def __init__(self, uid, state, courses, deps, factory) -> None:
# shared application data between all students
self.deps = deps # dependency graph
self.factory = factory # question factory
self.courses = courses # {'course': ['topic_id1', 'topic_id2',...]}
# data of this student
self.uid = uid # user id '12345'
self.state = state # {'topic': {'level': 0.5, 'date': datetime}, ...}
# prepare for running
self.update_topic_levels() # applies forgetting factor
self.unlock_topics() # whose dependencies have been completed
self.start_course(None)
# ------------------------------------------------------------------------
def start_course(self, course: Optional[str]) -> None:
if course is None:
logger.debug('no active course')
self.current_course: Optional[str] = None
self.topic_sequence: List[str] = []
self.current_topic: Optional[str] = None
else:
logger.debug(f'starting course {course}')
self.current_course = course
topics = self.courses[course]['topics']
self.topic_sequence = self.recommend_topic_sequence(topics)
# ------------------------------------------------------------------------
# Start a new topic.
# questions: list of generated questions to do in the topic
# current_question: the current question to be presented
# ------------------------------------------------------------------------
async def start_topic(self, topic: str) -> None:
logger.debug(f'start topic "{topic}"')
# avoid regenerating questions in the middle of the current topic
if self.current_topic == topic:
logger.info('Restarting current topic is not allowed.')
return
# do not allow locked topics
if self.is_locked(topic):
logger.debug(f'is locked "{topic}"')
return
# starting new topic
self.current_topic = topic
self.correct_answers = 0
self.wrong_answers = 0
t = self.deps.node[topic]
k = t['choose']
if t['shuffle_questions']:
questions = random.sample(t['questions'], k=k)
else:
questions = t['questions'][:k]
logger.debug(f'selected questions: {", ".join(questions)}')
self.questions: List[Question] = [await self.factory[ref].gen_async()
for ref in questions]
n = len(self.questions)
logger.debug(f'generated {n} questions')
# get first question
self.next_question()
# ------------------------------------------------------------------------
# The topic has finished and there are no more questions.
# The topic level is updated in state and unlocks are performed.
# The current topic is unchanged.
# ------------------------------------------------------------------------
def finish_topic(self) -> None:
logger.debug(f'finished {self.current_topic}')
self.state[self.current_topic] = {
'date': datetime.now(),
'level': self.correct_answers / (self.correct_answers +
self.wrong_answers)
}
self.current_topic = None
self.unlock_topics()
# ------------------------------------------------------------------------
# corrects current question with provided answer.
# implements the logic:
# - if answer ok, goes to next question
# - if wrong, counts number of tries. If exceeded, moves on.
# ------------------------------------------------------------------------
async def check_answer(self, answer) -> Tuple[Question, str]:
q: Question = self.current_question
q['answer'] = answer
q['finish_time'] = datetime.now()
logger.debug(f'checking answer of {q["ref"]}...')
await q.correct_async()
logger.debug(f'grade = {q["grade"]:.2}')
if q['grade'] > 0.999:
self.correct_answers += 1
self.next_question()
action = 'right'
else:
self.wrong_answers += 1
self.current_question['tries'] -= 1
if self.current_question['tries'] > 0:
action = 'try_again'
else:
action = 'wrong'
if self.current_question['append_wrong']:
logger.debug('wrong answer, append new question')
# self.questions.append(self.factory[q['ref']].generate())
new_question = await self.factory[q['ref']].gen_async()
self.questions.append(new_question)
self.next_question()
# returns corrected question (not new one) which might include comments
return q, action
# ------------------------------------------------------------------------
# Move to next question, or None
# ------------------------------------------------------------------------
def next_question(self) -> Optional[Question]:
try:
self.current_question = self.questions.pop(0)
except IndexError:
self.current_question = None
self.finish_topic()
else:
self.current_question['start_time'] = datetime.now()
default_maxtries = self.deps.nodes[self.current_topic]['max_tries']
maxtries = self.current_question.get('max_tries', default_maxtries)
self.current_question['tries'] = maxtries
logger.debug(f'current_question = {self.current_question["ref"]}')
return self.current_question # question or None
# ------------------------------------------------------------------------
# Update proficiency level of the topics using a forgetting factor
# ------------------------------------------------------------------------
def update_topic_levels(self) -> None:
now = datetime.now()
for tref, s in self.state.items():
dt = now - s['date']
forgetting_factor = self.deps.node[tref]['forgetting_factor']
s['level'] *= forgetting_factor ** dt.days # forgetting factor
# ------------------------------------------------------------------------
# Unlock topics whose dependencies are satisfied (> min_level)
# ------------------------------------------------------------------------
def unlock_topics(self) -> None:
for topic in self.deps.nodes():
if topic not in self.state: # if locked
pred = self.deps.predecessors(topic)
min_level = self.deps.node[topic]['min_level']
if all(d in self.state and self.state[d]['level'] > min_level
for d in pred): # all deps are greater than min_level
self.state[topic] = {
'level': 0.0, # unlock
'date': datetime.now()
}
logger.debug(f'unlocked "{topic}"')
# else: # lock this topic if deps do not satisfy min_level
# del self.state[topic]
# ========================================================================
# pure functions of the state (no side effects)
# ========================================================================
def topic_has_finished(self) -> bool:
return self.current_topic is None
# ------------------------------------------------------------------------
# compute recommended sequence of topics ['a', 'b', ...]
# ------------------------------------------------------------------------
def recommend_topic_sequence(self, targets: List[str] = []) -> List[str]:
G = self.deps
ts = set(targets)
for t in targets:
ts.update(nx.ancestors(G, t))
tl = list(nx.topological_sort(G.subgraph(ts)))
# sort with unlocked first
unlocked = [t for t in tl if t in self.state]
locked = [t for t in tl if t not in unlocked]
return unlocked + locked
# ------------------------------------------------------------------------
def get_current_question(self) -> Optional[Question]:
return self.current_question
# ------------------------------------------------------------------------
def get_current_topic(self) -> Optional[str]:
return self.current_topic
# ------------------------------------------------------------------------
def get_current_course_title(self) -> Optional[str]:
return self.courses[self.current_course]['title']
# ------------------------------------------------------------------------
def is_locked(self, topic: str) -> bool:
return topic not in self.state
# ------------------------------------------------------------------------
# Return list of {ref: 'xpto', name: 'long name', leve: 0.5}
# Levels are in the interval [0, 1] if unlocked or None if locked.
# Topics unlocked but not yet done have level 0.0.
# ------------------------------------------------------------------------
def get_knowledge_state(self):
return [{
'ref': ref,
'type': self.deps.nodes[ref]['type'],
'name': self.deps.nodes[ref]['name'],
'level': self.state[ref]['level'] if ref in self.state else None
} for ref in self.topic_sequence]
# ------------------------------------------------------------------------
def get_topic_progress(self) -> float:
return self.correct_answers / (1 + self.correct_answers +
len(self.questions))
# ------------------------------------------------------------------------
def get_topic_level(self, topic: str) -> float:
return self.state[topic]['level']
# ------------------------------------------------------------------------
def get_topic_date(self, topic: str):
return self.state[topic]['date']
# ------------------------------------------------------------------------
# Recommends a topic to practice/learn from the state.
# ------------------------------------------------------------------------
# def get_recommended_topic(self): # FIXME untested
# return min(self.state.items(), key=lambda x: x[1]['level'])[0]