knowledge.py
8.46 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# python standard library
import random
from datetime import datetime
import logging
# libraries
import networkx as nx
# this project
# import questions
# setup logger for this module
logger = logging.getLogger(__name__)
# ----------------------------------------------------------------------------
# kowledge state of each student....??
# Contains:
# state - dict of topics with state of unlocked topics
# deps - dependency graph
# topic_sequence - list with the order of recommended topics
# ----------------------------------------------------------------------------
class StudentKnowledge(object):
# =======================================================================
# methods that update state
# =======================================================================
def __init__(self, deps, state={}):
self.deps = deps # dependency graph shared among students
self.state = state # {'topic': {'level':0.5, 'date': datetime}, ...}
self.update_topic_levels() # forgetting factor
self.topic_sequence = self.recommend_topic_sequence() # ['a', 'b', ...]
self.unlock_topics()
# ------------------------------------------------------------------------
# compute recommended sequence of topics ['a', 'b', ...]
# ------------------------------------------------------------------------
def recommend_topic_sequence(self):
return list(nx.topological_sort(self.deps))
# ------------------------------------------------------------------------
# Updates the proficiency levels of the topics, with forgetting factor
# FIXME no dependencies are considered yet...
# ------------------------------------------------------------------------
def update_topic_levels(self):
now = datetime.now()
for s in self.state.values():
dt = now - s['date']
s['level'] *= 0.95 ** dt.days # forgetting factor 0.95
# ------------------------------------------------------------------------
# Unlock topics whose dependencies are satisfied (> min_level)
# ------------------------------------------------------------------------
def unlock_topics(self):
# minimum level that the dependencies of a topic must have
# for the topic to be unlocked.
min_level = 0.01
for topic in self.topic_sequence:
if topic not in self.state: # if locked
pred = self.deps.predecessors(topic)
if all(d in self.state and self.state[d]['level'] > min_level for d in pred): # and all dependencies are done
self.state[topic] = {
'level': 0.0, # then unlock
'date': datetime.now()
}
logger.debug(f'Unlocked "{topic}".')
# ------------------------------------------------------------------------
# Start a new topic. If not provided, gets a recommendation.
# questions: list of generated questions to do in the topic
# finished_questions: [] will contain correctly answered questions
# current_question: the current question to be presented
# ------------------------------------------------------------------------
def init_topic(self, topic=''):
logger.debug(f'StudentKnowledge.init_topic({topic})')
if not topic:
topic = self.get_recommended_topic()
# check if it's unlocked
if self.is_locked(topic):
return False
self.current_topic = topic
# generate question instances for current topic
factory = self.deps.node[topic]['factory']
questionlist = self.deps.node[topic]['questions']
self.correct_answers = 0
self.wrong_answers = 0
self.finished_questions = []
self.questions = [factory[qref].generate() for qref in questionlist]
logger.debug(f'Total: {len(self.questions)} questions')
try:
self.current_question = self.questions.pop(0) # FIXME crash if empty
except IndexError:
# self.current_question = None
self.finish_topic() # FIXME if no questions, what should be done?
return False
else:
self.current_question['start_time'] = datetime.now()
return True
# ------------------------------------------------------------------------
# The topic has finished and there are no more questions.
# The topic level is updated in state and unlocks are performed.
# The current topic is unchanged.
# ------------------------------------------------------------------------
def finish_topic(self):
logger.debug(f'StudentKnowledge.finish_topic({self.current_topic})')
self.current_question = None
self.state[self.current_topic] = {
'date': datetime.now(),
'level': self.correct_answers / (self.correct_answers + self.wrong_answers)
}
self.unlock_topics()
# ------------------------------------------------------------------------
# returns the current question with correction, time and comments updated
# ------------------------------------------------------------------------
def check_answer(self, answer):
logger.debug('StudentKnowledge.check_answer()')
q = self.current_question
q['answer'] = answer
q['finish_time'] = datetime.now()
grade = q.correct()
logger.debug(f'Grade = {grade:.2} ({q["ref"]})')
# if answer is correct, get next question
if grade > 0.999:
self.correct_answers += 1
self.finished_questions.append(q)
try:
self.current_question = self.questions.pop(0) # FIXME empty?
except IndexError:
self.finish_topic()
else:
self.current_question['start_time'] = datetime.now()
# if answer is wrong, keep same question and add a similar one at the end
else:
self.wrong_answers += 1
factory = self.deps.node[self.current_topic]['factory']
self.questions.append(factory[q['ref']].generate())
# returns answered and corrected question
return grade
# ========================================================================
# pure functions of the state (no side effects)
# ========================================================================
# ------------------------------------------------------------------------
def get_current_question(self):
return self.current_question
# ------------------------------------------------------------------------
def get_finished_questions(self):
return self.finished_questions
# ------------------------------------------------------------------------
def get_current_topic(self):
return self.current_topic
# ------------------------------------------------------------------------
def is_locked(self, topic):
return topic not in self.state
# ------------------------------------------------------------------------
# Return list of {ref: 'xpto', name: 'long name', leve: 0.5}
# Levels are in the interval [0, 1] if unlocked or None if locked.
# Topics unlocked but not yet done have level 0.0.
# ------------------------------------------------------------------------
def get_knowledge_state(self):
return [{
'ref': ref,
'type': self.deps.nodes[ref]['type'],
'name': self.deps.nodes[ref]['name'],
'level': self.state[ref]['level'] if ref in self.state else None
} for ref in self.topic_sequence ]
# ------------------------------------------------------------------------
def get_topic_progress(self):
return len(self.finished_questions) / (1 + len(self.finished_questions) + len(self.questions))
# ------------------------------------------------------------------------
def get_topic_level(self, topic):
return self.state[topic]['level']
# ------------------------------------------------------------------------
def get_topic_date(self, topic):
return self.state[topic]['date']
# ------------------------------------------------------------------------
# Recommends a topic to practice/learn from the state.
# ------------------------------------------------------------------------
def get_recommended_topic(self): # FIXME untested
return min(self.state.items(), key=lambda x: x[1]['level'])[0]