Name Last Update
..
probast_draft Loading commit data...
proposal Loading commit data...
00_DRAFTS.md Loading commit data...
00_PASP.pdf Loading commit data...
00_PASP.synctex.gz Loading commit data...
00_PASP.tex Loading commit data...
00_PASP.xdv Loading commit data...
00_PROB.pdf Loading commit data...
Empty File Loading commit data...
Pabc_alpha03.pdf Loading commit data...
README.md Loading commit data...
README.pdf Loading commit data...
SCASP-best-practices.pdf Loading commit data...
State of the art.txt Loading commit data...
drafts.pdf Loading commit data...
drafts.synctex.gz Loading commit data...
drafts.tex Loading commit data...
drafts.xdv Loading commit data...
meetings.pdf Loading commit data...

README.md

Probabilistic ILP

Check Conformal prediction.

Fonte: Turning 30: New Ideas in Inductive Logic Programming

Introduction

  • How pILP relates to:
    • ILP?
    • ASP?
    • RML?
  • What
    • tools?
    • methods?
    • theory?
    • Distributed semantics
    • applications?

Overview of Bibliography and State of the Art

Recursion; Predicate Invention; Higher order, ASP Hypotheses; Optimality; Prolog, ASP, NNs

Context

Kanren

Inductive Logic Programming

Answer Set Programming

Relational Machine Learning

SAT Solvers

Tools

  • (mini)kanren
  • metagol | archive superseeded by popper.
  • ILP: popper
  • ASP: ILASP
  • Inspire | Kazmi et al. 2017
  • ASP: Potassco: clingo, clasp, ...
  • cplint (on SWISH)
    • exact probabilistic inference (PITA)
    • Fabrizio Riguzzi and Terrance Swift. Well-definedness and efficient inference for probabilistic logic programming under the distribution semantics. Theory and Practice of Logic Programming, 13(Special Issue 02 - 25th Annual GULP Conference):279-302, © Cambridge University Press, March 2013.
    • Monte Carlo inference (MCINTYRE)
    • Fabrizio Riguzzi. MCINTYRE: A Monte Carlo system for probabilistic logic programming. Fundamenta Informaticae, 124(4):521-541, © IOS Press, 2013.
    • Metropolis/Hastings sampling
    • Arun Nampally and C. R. Ramakrishnan. Adaptive MCMC-Based Inference in Probabilistic Logic Programs. arXiv preprint arXiv:1403.6036, 2014.
    • parameter learning (EMBLEM)
    • Elena Bellodi and Fabrizio Riguzzi. Expectation Maximization over binary decision diagrams for probabilistic logic programs. Intelligent Data Analysis, 17(2):343-363, © IOS Press, 2013.
    • SLIPCOVER algorithm for structure learning
    • Elena Bellodi and Fabrizio Riguzzi. Structure learning of probabilistic logic programs by searching the clause space. Theory and Practice of Logic Programming, 15(2):169-212, © Cambridge University Press, 2015.
    • LEMUR algorithm for structure learning
    • Nicola Di Mauro, Elena Bellodi, and Fabrizio Riguzzi. Bandit-based Monte-Carlo structure learning of probabilistic logic programs. Machine Learning, 100(1):127-156, © Springer International Publishing, July 2015.

Methods

Theory

Distributed Semantics

Applications

ELearning