Commit f13e65f93fbaa3f559a6343d08326c8ca7cf88b9
1 parent
3f125ca5
Exists in
master
content for EQ.REL
Showing
4 changed files
with
54 additions
and
3 deletions
Show diff stats
task_01/proposal.pdf
No preview for this file type
task_01/proposal.tex
@@ -2,8 +2,8 @@ | @@ -2,8 +2,8 @@ | ||
2 | 2 | ||
3 | 3 | ||
4 | \usepackage[ | 4 | \usepackage[ |
5 | - bibstyle=authoryear, | ||
6 | - citestyle=alphabetic | 5 | + bibstyle=numeric, |
6 | + citestyle=numeric | ||
7 | ]{biblatex} %Imports biblatex package | 7 | ]{biblatex} %Imports biblatex package |
8 | \addbibresource{zugzwang.bib} %Import the bibliography file | 8 | \addbibresource{zugzwang.bib} %Import the bibliography file |
9 | 9 | ||
@@ -24,8 +24,11 @@ | @@ -24,8 +24,11 @@ | ||
24 | } | 24 | } |
25 | 25 | ||
26 | \begin{document} | 26 | \begin{document} |
27 | + | ||
27 | \maketitle | 28 | \maketitle |
28 | -\cite{*} | 29 | + |
30 | +\nocite{*} | ||
31 | + | ||
29 | \begin{abstract} | 32 | \begin{abstract} |
30 | A major limitation of logical representations is the implicit assumption that the Background Knowledge (BK) is perfect. This assumption is problematic if data is noisy, which is often the case. Here we aim to explore how ASP specifications with probabilistic facts can lead to characterizations of probability functions on the specification's domain. | 33 | A major limitation of logical representations is the implicit assumption that the Background Knowledge (BK) is perfect. This assumption is problematic if data is noisy, which is often the case. Here we aim to explore how ASP specifications with probabilistic facts can lead to characterizations of probability functions on the specification's domain. |
31 | \end{abstract} | 34 | \end{abstract} |
text/paper_01/pre-paper.pdf
No preview for this file type
@@ -0,0 +1,48 @@ | @@ -0,0 +1,48 @@ | ||
1 | +@inproceedings{verreet2022inference, | ||
2 | + title={Inference and learning with model uncertainty in probabilistic logic programs}, | ||
3 | + author={Verreet, Victor and Derkinderen, Vincent and Dos Martires, Pedro Zuidberg and De Raedt, Luc}, | ||
4 | + booktitle={Proceedings of the AAAI Conference on Artificial Intelligence}, | ||
5 | + volume={36}, | ||
6 | + number={9}, | ||
7 | + pages={10060--10069}, | ||
8 | + year={2022} | ||
9 | +} | ||
10 | + | ||
11 | +@article{cropper2022inductive, | ||
12 | + title={Inductive logic programming at 30}, | ||
13 | + author={Cropper, Andrew and Duman{\v{c}}i{\'c}, Sebastijan and Evans, Richard and Muggleton, Stephen H}, | ||
14 | + journal={Machine Learning}, | ||
15 | + volume={111}, | ||
16 | + number={1}, | ||
17 | + pages={147--172}, | ||
18 | + year={2022}, | ||
19 | + publisher={Springer} | ||
20 | +} | ||
21 | + | ||
22 | +@article{cozman2020joy, | ||
23 | + title={The joy of probabilistic answer set programming: semantics, complexity, expressivity, inference}, | ||
24 | + author={Cozman, Fabio Gagliardi and Mau{\'a}, Denis Deratani}, | ||
25 | + journal={International Journal of Approximate Reasoning}, | ||
26 | + volume={125}, | ||
27 | + pages={218--239}, | ||
28 | + year={2020}, | ||
29 | + publisher={Elsevier} | ||
30 | +} | ||
31 | + | ||
32 | +@book{riguzzi2022foundations, | ||
33 | + title={Foundations of probabilistic logic programming: Languages, semantics, inference and learning}, | ||
34 | + author={Riguzzi, Fabrizio}, | ||
35 | + year={2022}, | ||
36 | + publisher={CRC Press} | ||
37 | +} | ||
38 | + | ||
39 | +@article{gebser2012answer, | ||
40 | + title={Answer set solving in practice}, | ||
41 | + author={Gebser, Martin and Kaminski, Roland and Kaufmann, Benjamin and Schaub, Torsten}, | ||
42 | + journal={Synthesis lectures on artificial intelligence and machine learning}, | ||
43 | + volume={6}, | ||
44 | + number={3}, | ||
45 | + pages={1--238}, | ||
46 | + year={2012}, | ||
47 | + publisher={Morgan \& Claypool Publishers} | ||
48 | +} |