Commit 9d633d9044371b9654c4a2e3bdbb2ff7429285e4

Authored by Francisco Coelho
1 parent 20cd616b
Exists in master

Paper Draft: Stabilizing notation, concepts

students/amartins/00-record.md
students/amartins/2023-03-13 | Tarefa 01.eml 0 → 100644
@@ -0,0 +1,172 @@ @@ -0,0 +1,172 @@
  1 +MIME-Version: 1.0
  2 +Date: Mon, 13 Mar 2023 10:09:44 +0000
  3 +References: <CAFF0sxjxHC95MvqNO1f6XF4DvOWHSvW1miPGCYguBXf3_jY8-w@mail.gmail.com>
  4 + <CAECEPPr3C_+gqUbRfRgevS8GVGMJG03UO5hC65OifiE5KXsvdg@mail.gmail.com>
  5 +In-Reply-To: <CAECEPPr3C_+gqUbRfRgevS8GVGMJG03UO5hC65OifiE5KXsvdg@mail.gmail.com>
  6 +Message-ID: <CAFF0sxhDnfzsn5+Nrs97+s-sAd9R4tYkpCJw6Gu1qW6hAyQN8A@mail.gmail.com>
  7 +Subject: Re: Tarefa 01
  8 +From: Francisco Coelho <fc@uevora.pt>
  9 +To: ALICE MARTINS <l52768@alunos.uevora.pt>
  10 +Content-Type: multipart/alternative; boundary="00000000000071009e05f6c54f6f"
  11 +
  12 +--00000000000071009e05f6c54f6f
  13 +Content-Type: text/plain; charset="UTF-8"
  14 +Content-Transfer-Encoding: quoted-printable
  15 +
  16 +Tem aqui <https://www.bnlearn.com/bnrepository/> um reposit=C3=B3rio de red=
  17 +es de
  18 +bayes, nesses formatos.
  19 +Pode testar a biblioteca fazendo experi=C3=AAncias com os exemplos do
  20 +reposit=C3=B3rio.
  21 +
  22 +Quest=C3=B5es simples que pode tentar responder com a biblioteca:
  23 +- quantos n=C3=B3s tem a rede?
  24 +- quantos n=C3=B3s s=C3=A3o descendentes? quantos s=C3=A3o ascendentes?
  25 +- qual =C3=A9 o n=C3=BAmero m=C3=A9dio de arestas "in"? e "out"?
  26 +
  27 +Um exerc=C3=ADcio com mais "f=C3=B4lego".
  28 +O dot <https://en.wikipedia.org/wiki/DOT_%28graph_description_language%29>
  29 +=C3=A9 um formato para descrever grafos, suportado em Python pelo pydot
  30 +<https://pypi.org/project/pydot/> e usado pelo graphviz
  31 +<https://www.graphviz.org/> para visualiza=C3=A7=C3=A3o.
  32 +Por outro lado, networkx <https://networkx.org/> =C3=A9 uma biblioteca de
  33 +an=C3=A1lise de grafos e redes.
  34 +
  35 +Passe uma rede lida com o bnlearn para o networkx e visualize-a com o
  36 +graphviz passando pelo pydot.
  37 +
  38 +Entretanto, estamos interessados no Potassco <https://potassco.org/>. Pode
  39 +instalar no seu sistema e consultar o guia respetivo
  40 +<https://github.com/potassco/guide/releases/>.
  41 +
  42 +--
  43 +Francisco Coelho
  44 +Departamento de Inform=C3=A1tica, Universidade de =C3=89vora
  45 +NOVA LINCS
  46 +High Performance Computing Chair
  47 +
  48 +
  49 +ALICE MARTINS <l52768@alunos.uevora.pt> escreveu no dia domingo, 12/03/2023
  50 +=C3=A0(s) 20:18:
  51 +
  52 +> Ol=C3=A1 professor,
  53 +> espero que se encontre bem.
  54 +> Da minha pesquisa sobre este assunto, pude concluir que para realizarmos =
  55 +a
  56 +> leitura de redes Bayesianas de um ficheiro, precisamos de importar a
  57 +> biblioteca bnlearn no python atrav=C3=A9s do comando:
  58 +> *import bnlearn*
  59 +>
  60 +> Atrav=C3=A9s dessa biblioteca, podemos ler ficheiros atrav=C3=A9s dos com=
  61 +andos:
  62 +> *read.bif(), read.dsc(), read.net <http://read.net>()*
  63 +>
  64 +> Para al=C3=A9m de toda esta pesquisa, tamb=C3=A9m aprendi como programar =
  65 +em Python.
  66 +> Por favor, diga-me o que mais posso fazer para terminar esta tarefa.
  67 +>
  68 +> Atenciosamente,
  69 +> Alice Martins
  70 +>
  71 +> Francisco Coelho <fc@uevora.pt> escreveu no dia ter=C3=A7a, 7/03/2023 =C3=
  72 +=A0(s)
  73 +> 11:07:
  74 +>
  75 +>> Ol=C3=A1 Alice,
  76 +>>
  77 +>> Aqui est=C3=A1: "Read a Bayesian Network from a file (`BIF`, `DSC`, `NET=
  78 +`,
  79 +>> `RDA`, `RDS`, ...)" em Python.
  80 +>>
  81 +>> Cumprimentos,
  82 +>> --
  83 +>> Francisco Coelho
  84 +>> Departamento de Inform=C3=A1tica, Universidade de =C3=89vora
  85 +>> NOVA LINCS
  86 +>> High Performance Computing Chair
  87 +>>
  88 +>
  89 +
  90 +--00000000000071009e05f6c54f6f
  91 +Content-Type: text/html; charset="UTF-8"
  92 +Content-Transfer-Encoding: quoted-printable
  93 +
  94 +<div dir=3D"ltr"><div class=3D"gmail_default" style=3D"font-family:monospac=
  95 +e">Tem <a href=3D"https://www.bnlearn.com/bnrepository/">aqui</a> um reposi=
  96 +t=C3=B3rio de redes de bayes, nesses formatos.</div><div class=3D"gmail_def=
  97 +ault" style=3D"font-family:monospace">Pode testar a biblioteca fazendo expe=
  98 +ri=C3=AAncias com os exemplos do reposit=C3=B3rio.<br></div><div class=3D"g=
  99 +mail_default" style=3D"font-family:monospace"><br></div><div class=3D"gmail=
  100 +_default" style=3D"font-family:monospace">Quest=C3=B5es simples que pode te=
  101 +ntar responder com a biblioteca:</div><div class=3D"gmail_default" style=3D=
  102 +"font-family:monospace">- quantos n=C3=B3s tem a rede?</div><div class=3D"g=
  103 +mail_default" style=3D"font-family:monospace">- quantos n=C3=B3s s=C3=A3o d=
  104 +escendentes? quantos s=C3=A3o ascendentes?</div><div class=3D"gmail_default=
  105 +" style=3D"font-family:monospace">- qual =C3=A9 o n=C3=BAmero m=C3=A9dio de=
  106 + arestas &quot;in&quot;? e &quot;out&quot;?</div><div class=3D"gmail_defaul=
  107 +t" style=3D"font-family:monospace"><br></div><div class=3D"gmail_default" s=
  108 +tyle=3D"font-family:monospace">Um exerc=C3=ADcio com mais &quot;f=C3=B4lego=
  109 +&quot;.<br></div><div class=3D"gmail_default" style=3D"font-family:monospac=
  110 +e">O <a href=3D"https://en.wikipedia.org/wiki/DOT_%28graph_description_lang=
  111 +uage%29">dot</a> =C3=A9 um formato para descrever grafos, suportado em Pyth=
  112 +on pelo <a href=3D"https://pypi.org/project/pydot/">pydot</a> e usado pelo =
  113 +<a href=3D"https://www.graphviz.org/">graphviz</a> para visualiza=C3=A7=C3=
  114 +=A3o.</div><div class=3D"gmail_default" style=3D"font-family:monospace">Por=
  115 + outro lado, <a href=3D"https://networkx.org/">networkx</a> =C3=A9 uma bibl=
  116 +ioteca de an=C3=A1lise de grafos e redes.</div><div class=3D"gmail_default"=
  117 + style=3D"font-family:monospace"><br></div><div class=3D"gmail_default" sty=
  118 +le=3D"font-family:monospace">Passe uma rede lida com o bnlearn para o netwo=
  119 +rkx e visualize-a com o graphviz passando pelo pydot.</div><div class=3D"gm=
  120 +ail_default" style=3D"font-family:monospace"><br></div><div class=3D"gmail_=
  121 +default" style=3D"font-family:monospace">Entretanto, estamos interessados n=
  122 +o <a href=3D"https://potassco.org/">Potassco</a>. Pode instalar no seu sist=
  123 +ema e consultar <a href=3D"https://github.com/potassco/guide/releases/">o g=
  124 +uia respetivo</a>.<br></div><div class=3D"gmail_default" style=3D"font-fami=
  125 +ly:monospace"><br clear=3D"all"></div><div><div dir=3D"ltr" class=3D"gmail_=
  126 +signature" data-smartmail=3D"gmail_signature"><div dir=3D"ltr"><div><font f=
  127 +ace=3D"monospace"></font></div><div><font face=3D"monospace">--</font></div=
  128 +><div><font face=3D"monospace">Francisco Coelho</font></div><div><span styl=
  129 +e=3D"font-family:monospace">Departamento de Inform=C3=A1tica,=C2=A0</span><=
  130 +span style=3D"font-family:monospace">Universidade de =C3=89vora</span><span=
  131 + style=3D"font-family:monospace"><br></span><div><span style=3D"font-family=
  132 +:monospace">NOVA LINCS</span></div></div><div><span style=3D"font-family:mo=
  133 +nospace">High Performance Computing Chair</span></div></div></div></div><br=
  134 +></div><br><div class=3D"gmail_quote"><div dir=3D"ltr" class=3D"gmail_attr"=
  135 +>ALICE MARTINS &lt;<a href=3D"mailto:l52768@alunos.uevora.pt">l52768@alunos=
  136 +.uevora.pt</a>&gt; escreveu no dia domingo, 12/03/2023 =C3=A0(s) 20:18:<br>=
  137 +</div><blockquote class=3D"gmail_quote" style=3D"margin:0px 0px 0px 0.8ex;b=
  138 +order-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir=3D"ltr"><d=
  139 +iv>Ol=C3=A1 professor,</div><div>espero que se encontre bem.</div><div>Da m=
  140 +inha pesquisa sobre este assunto, pude concluir que para realizarmos a leit=
  141 +ura de redes Bayesianas de um ficheiro, precisamos de importar a biblioteca=
  142 + bnlearn no python atrav=C3=A9s do comando:</div><div><b>import bnlearn</b>=
  143 +</div><div><br></div><div>Atrav=C3=A9s dessa biblioteca, podemos ler fichei=
  144 +ros atrav=C3=A9s dos comandos:</div><div><b>read.bif(), read.dsc(), <a href=
  145 +=3D"http://read.net" target=3D"_blank">read.net</a>()</b></div><div><br></d=
  146 +iv><div>Para al=C3=A9m de toda esta pesquisa, tamb=C3=A9m aprendi como prog=
  147 +ramar em Python. <br></div><div>Por favor, diga-me o que mais posso fazer p=
  148 +ara terminar esta tarefa.</div><div><br></div><div>Atenciosamente,</div><di=
  149 +v>Alice Martins<b><br></b></div></div><br><div class=3D"gmail_quote"><div d=
  150 +ir=3D"ltr" class=3D"gmail_attr">Francisco Coelho &lt;<a href=3D"mailto:fc@u=
  151 +evora.pt" target=3D"_blank">fc@uevora.pt</a>&gt; escreveu no dia ter=C3=A7a=
  152 +, 7/03/2023 =C3=A0(s) 11:07:<br></div><blockquote class=3D"gmail_quote" sty=
  153 +le=3D"margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);paddi=
  154 +ng-left:1ex"><div dir=3D"ltr"><div class=3D"gmail_default" style=3D"font-fa=
  155 +mily:monospace">Ol=C3=A1 Alice,</div><div class=3D"gmail_default" style=3D"=
  156 +font-family:monospace"><br></div><div class=3D"gmail_default" style=3D"font=
  157 +-family:monospace">Aqui est=C3=A1: &quot;Read a Bayesian Network from a fil=
  158 +e (`BIF`, `DSC`, `NET`, `RDA`, `RDS`, ...)&quot; em Python.</div><div class=
  159 +=3D"gmail_default" style=3D"font-family:monospace"><br></div><div class=3D"=
  160 +gmail_default" style=3D"font-family:monospace">Cumprimentos,<br></div><div>=
  161 +<div dir=3D"ltr"><div dir=3D"ltr"><div><font face=3D"monospace"></font></di=
  162 +v><div><font face=3D"monospace">--</font></div><div><font face=3D"monospace=
  163 +">Francisco Coelho</font></div><div><span style=3D"font-family:monospace">D=
  164 +epartamento de Inform=C3=A1tica,=C2=A0</span><span style=3D"font-family:mon=
  165 +ospace">Universidade de =C3=89vora</span><span style=3D"font-family:monospa=
  166 +ce"><br></span><div><span style=3D"font-family:monospace">NOVA LINCS</span>=
  167 +</div></div><div><span style=3D"font-family:monospace">High Performance Com=
  168 +puting Chair</span></div></div></div></div></div>
  169 +</blockquote></div>
  170 +</blockquote></div>
  171 +
  172 +--00000000000071009e05f6c54f6f--
0 \ No newline at end of file 173 \ No newline at end of file
students/amartins/Tarefa 01-full.eml
@@ -1,172 +0,0 @@ @@ -1,172 +0,0 @@
1 -MIME-Version: 1.0  
2 -Date: Mon, 13 Mar 2023 10:09:44 +0000  
3 -References: <CAFF0sxjxHC95MvqNO1f6XF4DvOWHSvW1miPGCYguBXf3_jY8-w@mail.gmail.com>  
4 - <CAECEPPr3C_+gqUbRfRgevS8GVGMJG03UO5hC65OifiE5KXsvdg@mail.gmail.com>  
5 -In-Reply-To: <CAECEPPr3C_+gqUbRfRgevS8GVGMJG03UO5hC65OifiE5KXsvdg@mail.gmail.com>  
6 -Message-ID: <CAFF0sxhDnfzsn5+Nrs97+s-sAd9R4tYkpCJw6Gu1qW6hAyQN8A@mail.gmail.com>  
7 -Subject: Re: Tarefa 01  
8 -From: Francisco Coelho <fc@uevora.pt>  
9 -To: ALICE MARTINS <l52768@alunos.uevora.pt>  
10 -Content-Type: multipart/alternative; boundary="00000000000071009e05f6c54f6f"  
11 -  
12 ---00000000000071009e05f6c54f6f  
13 -Content-Type: text/plain; charset="UTF-8"  
14 -Content-Transfer-Encoding: quoted-printable  
15 -  
16 -Tem aqui <https://www.bnlearn.com/bnrepository/> um reposit=C3=B3rio de red=  
17 -es de  
18 -bayes, nesses formatos.  
19 -Pode testar a biblioteca fazendo experi=C3=AAncias com os exemplos do  
20 -reposit=C3=B3rio.  
21 -  
22 -Quest=C3=B5es simples que pode tentar responder com a biblioteca:  
23 -- quantos n=C3=B3s tem a rede?  
24 -- quantos n=C3=B3s s=C3=A3o descendentes? quantos s=C3=A3o ascendentes?  
25 -- qual =C3=A9 o n=C3=BAmero m=C3=A9dio de arestas "in"? e "out"?  
26 -  
27 -Um exerc=C3=ADcio com mais "f=C3=B4lego".  
28 -O dot <https://en.wikipedia.org/wiki/DOT_%28graph_description_language%29>  
29 -=C3=A9 um formato para descrever grafos, suportado em Python pelo pydot  
30 -<https://pypi.org/project/pydot/> e usado pelo graphviz  
31 -<https://www.graphviz.org/> para visualiza=C3=A7=C3=A3o.  
32 -Por outro lado, networkx <https://networkx.org/> =C3=A9 uma biblioteca de  
33 -an=C3=A1lise de grafos e redes.  
34 -  
35 -Passe uma rede lida com o bnlearn para o networkx e visualize-a com o  
36 -graphviz passando pelo pydot.  
37 -  
38 -Entretanto, estamos interessados no Potassco <https://potassco.org/>. Pode  
39 -instalar no seu sistema e consultar o guia respetivo  
40 -<https://github.com/potassco/guide/releases/>.  
41 -  
42 ---  
43 -Francisco Coelho  
44 -Departamento de Inform=C3=A1tica, Universidade de =C3=89vora  
45 -NOVA LINCS  
46 -High Performance Computing Chair  
47 -  
48 -  
49 -ALICE MARTINS <l52768@alunos.uevora.pt> escreveu no dia domingo, 12/03/2023  
50 -=C3=A0(s) 20:18:  
51 -  
52 -> Ol=C3=A1 professor,  
53 -> espero que se encontre bem.  
54 -> Da minha pesquisa sobre este assunto, pude concluir que para realizarmos =  
55 -a  
56 -> leitura de redes Bayesianas de um ficheiro, precisamos de importar a  
57 -> biblioteca bnlearn no python atrav=C3=A9s do comando:  
58 -> *import bnlearn*  
59 ->  
60 -> Atrav=C3=A9s dessa biblioteca, podemos ler ficheiros atrav=C3=A9s dos com=  
61 -andos:  
62 -> *read.bif(), read.dsc(), read.net <http://read.net>()*  
63 ->  
64 -> Para al=C3=A9m de toda esta pesquisa, tamb=C3=A9m aprendi como programar =  
65 -em Python.  
66 -> Por favor, diga-me o que mais posso fazer para terminar esta tarefa.  
67 ->  
68 -> Atenciosamente,  
69 -> Alice Martins  
70 ->  
71 -> Francisco Coelho <fc@uevora.pt> escreveu no dia ter=C3=A7a, 7/03/2023 =C3=  
72 -=A0(s)  
73 -> 11:07:  
74 ->  
75 ->> Ol=C3=A1 Alice,  
76 ->>  
77 ->> Aqui est=C3=A1: "Read a Bayesian Network from a file (`BIF`, `DSC`, `NET=  
78 -`,  
79 ->> `RDA`, `RDS`, ...)" em Python.  
80 ->>  
81 ->> Cumprimentos,  
82 ->> --  
83 ->> Francisco Coelho  
84 ->> Departamento de Inform=C3=A1tica, Universidade de =C3=89vora  
85 ->> NOVA LINCS  
86 ->> High Performance Computing Chair  
87 ->>  
88 ->  
89 -  
90 ---00000000000071009e05f6c54f6f  
91 -Content-Type: text/html; charset="UTF-8"  
92 -Content-Transfer-Encoding: quoted-printable  
93 -  
94 -<div dir=3D"ltr"><div class=3D"gmail_default" style=3D"font-family:monospac=  
95 -e">Tem <a href=3D"https://www.bnlearn.com/bnrepository/">aqui</a> um reposi=  
96 -t=C3=B3rio de redes de bayes, nesses formatos.</div><div class=3D"gmail_def=  
97 -ault" style=3D"font-family:monospace">Pode testar a biblioteca fazendo expe=  
98 -ri=C3=AAncias com os exemplos do reposit=C3=B3rio.<br></div><div class=3D"g=  
99 -mail_default" style=3D"font-family:monospace"><br></div><div class=3D"gmail=  
100 -_default" style=3D"font-family:monospace">Quest=C3=B5es simples que pode te=  
101 -ntar responder com a biblioteca:</div><div class=3D"gmail_default" style=3D=  
102 -"font-family:monospace">- quantos n=C3=B3s tem a rede?</div><div class=3D"g=  
103 -mail_default" style=3D"font-family:monospace">- quantos n=C3=B3s s=C3=A3o d=  
104 -escendentes? quantos s=C3=A3o ascendentes?</div><div class=3D"gmail_default=  
105 -" style=3D"font-family:monospace">- qual =C3=A9 o n=C3=BAmero m=C3=A9dio de=  
106 - arestas &quot;in&quot;? e &quot;out&quot;?</div><div class=3D"gmail_defaul=  
107 -t" style=3D"font-family:monospace"><br></div><div class=3D"gmail_default" s=  
108 -tyle=3D"font-family:monospace">Um exerc=C3=ADcio com mais &quot;f=C3=B4lego=  
109 -&quot;.<br></div><div class=3D"gmail_default" style=3D"font-family:monospac=  
110 -e">O <a href=3D"https://en.wikipedia.org/wiki/DOT_%28graph_description_lang=  
111 -uage%29">dot</a> =C3=A9 um formato para descrever grafos, suportado em Pyth=  
112 -on pelo <a href=3D"https://pypi.org/project/pydot/">pydot</a> e usado pelo =  
113 -<a href=3D"https://www.graphviz.org/">graphviz</a> para visualiza=C3=A7=C3=  
114 -=A3o.</div><div class=3D"gmail_default" style=3D"font-family:monospace">Por=  
115 - outro lado, <a href=3D"https://networkx.org/">networkx</a> =C3=A9 uma bibl=  
116 -ioteca de an=C3=A1lise de grafos e redes.</div><div class=3D"gmail_default"=  
117 - style=3D"font-family:monospace"><br></div><div class=3D"gmail_default" sty=  
118 -le=3D"font-family:monospace">Passe uma rede lida com o bnlearn para o netwo=  
119 -rkx e visualize-a com o graphviz passando pelo pydot.</div><div class=3D"gm=  
120 -ail_default" style=3D"font-family:monospace"><br></div><div class=3D"gmail_=  
121 -default" style=3D"font-family:monospace">Entretanto, estamos interessados n=  
122 -o <a href=3D"https://potassco.org/">Potassco</a>. Pode instalar no seu sist=  
123 -ema e consultar <a href=3D"https://github.com/potassco/guide/releases/">o g=  
124 -uia respetivo</a>.<br></div><div class=3D"gmail_default" style=3D"font-fami=  
125 -ly:monospace"><br clear=3D"all"></div><div><div dir=3D"ltr" class=3D"gmail_=  
126 -signature" data-smartmail=3D"gmail_signature"><div dir=3D"ltr"><div><font f=  
127 -ace=3D"monospace"></font></div><div><font face=3D"monospace">--</font></div=  
128 -><div><font face=3D"monospace">Francisco Coelho</font></div><div><span styl=  
129 -e=3D"font-family:monospace">Departamento de Inform=C3=A1tica,=C2=A0</span><=  
130 -span style=3D"font-family:monospace">Universidade de =C3=89vora</span><span=  
131 - style=3D"font-family:monospace"><br></span><div><span style=3D"font-family=  
132 -:monospace">NOVA LINCS</span></div></div><div><span style=3D"font-family:mo=  
133 -nospace">High Performance Computing Chair</span></div></div></div></div><br=  
134 -></div><br><div class=3D"gmail_quote"><div dir=3D"ltr" class=3D"gmail_attr"=  
135 ->ALICE MARTINS &lt;<a href=3D"mailto:l52768@alunos.uevora.pt">l52768@alunos=  
136 -.uevora.pt</a>&gt; escreveu no dia domingo, 12/03/2023 =C3=A0(s) 20:18:<br>=  
137 -</div><blockquote class=3D"gmail_quote" style=3D"margin:0px 0px 0px 0.8ex;b=  
138 -order-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir=3D"ltr"><d=  
139 -iv>Ol=C3=A1 professor,</div><div>espero que se encontre bem.</div><div>Da m=  
140 -inha pesquisa sobre este assunto, pude concluir que para realizarmos a leit=  
141 -ura de redes Bayesianas de um ficheiro, precisamos de importar a biblioteca=  
142 - bnlearn no python atrav=C3=A9s do comando:</div><div><b>import bnlearn</b>=  
143 -</div><div><br></div><div>Atrav=C3=A9s dessa biblioteca, podemos ler fichei=  
144 -ros atrav=C3=A9s dos comandos:</div><div><b>read.bif(), read.dsc(), <a href=  
145 -=3D"http://read.net" target=3D"_blank">read.net</a>()</b></div><div><br></d=  
146 -iv><div>Para al=C3=A9m de toda esta pesquisa, tamb=C3=A9m aprendi como prog=  
147 -ramar em Python. <br></div><div>Por favor, diga-me o que mais posso fazer p=  
148 -ara terminar esta tarefa.</div><div><br></div><div>Atenciosamente,</div><di=  
149 -v>Alice Martins<b><br></b></div></div><br><div class=3D"gmail_quote"><div d=  
150 -ir=3D"ltr" class=3D"gmail_attr">Francisco Coelho &lt;<a href=3D"mailto:fc@u=  
151 -evora.pt" target=3D"_blank">fc@uevora.pt</a>&gt; escreveu no dia ter=C3=A7a=  
152 -, 7/03/2023 =C3=A0(s) 11:07:<br></div><blockquote class=3D"gmail_quote" sty=  
153 -le=3D"margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);paddi=  
154 -ng-left:1ex"><div dir=3D"ltr"><div class=3D"gmail_default" style=3D"font-fa=  
155 -mily:monospace">Ol=C3=A1 Alice,</div><div class=3D"gmail_default" style=3D"=  
156 -font-family:monospace"><br></div><div class=3D"gmail_default" style=3D"font=  
157 --family:monospace">Aqui est=C3=A1: &quot;Read a Bayesian Network from a fil=  
158 -e (`BIF`, `DSC`, `NET`, `RDA`, `RDS`, ...)&quot; em Python.</div><div class=  
159 -=3D"gmail_default" style=3D"font-family:monospace"><br></div><div class=3D"=  
160 -gmail_default" style=3D"font-family:monospace">Cumprimentos,<br></div><div>=  
161 -<div dir=3D"ltr"><div dir=3D"ltr"><div><font face=3D"monospace"></font></di=  
162 -v><div><font face=3D"monospace">--</font></div><div><font face=3D"monospace=  
163 -">Francisco Coelho</font></div><div><span style=3D"font-family:monospace">D=  
164 -epartamento de Inform=C3=A1tica,=C2=A0</span><span style=3D"font-family:mon=  
165 -ospace">Universidade de =C3=89vora</span><span style=3D"font-family:monospa=  
166 -ce"><br></span><div><span style=3D"font-family:monospace">NOVA LINCS</span>=  
167 -</div></div><div><span style=3D"font-family:monospace">High Performance Com=  
168 -puting Chair</span></div></div></div></div></div>  
169 -</blockquote></div>  
170 -</blockquote></div>  
171 -  
172 ---00000000000071009e05f6c54f6f--  
173 \ No newline at end of file 0 \ No newline at end of file
students/amartins/Tarefa 01.eml
@@ -1,46 +0,0 @@ @@ -1,46 +0,0 @@
1 -MIME-Version: 1.0  
2 -Date: Tue, 7 Mar 2023 11:07:08 +0000  
3 -Message-ID: <CAFF0sxjxHC95MvqNO1f6XF4DvOWHSvW1miPGCYguBXf3_jY8-w@mail.gmail.com>  
4 -Subject: Tarefa 01  
5 -From: Francisco Coelho <fc@uevora.pt>  
6 -To: ALICE MARTINS <l52768@alunos.uevora.pt>  
7 -Content-Type: multipart/alternative; boundary="000000000000a2e93b05f64d6939"  
8 -  
9 ---000000000000a2e93b05f64d6939  
10 -Content-Type: text/plain; charset="UTF-8"  
11 -Content-Transfer-Encoding: quoted-printable  
12 -  
13 -Ol=C3=A1 Alice,  
14 -  
15 -Aqui est=C3=A1: "Read a Bayesian Network from a file (`BIF`, `DSC`, `NET`,  
16 -`RDA`, `RDS`, ...)" em Python.  
17 -  
18 -Cumprimentos,  
19 ---  
20 -Francisco Coelho  
21 -Departamento de Inform=C3=A1tica, Universidade de =C3=89vora  
22 -NOVA LINCS  
23 -High Performance Computing Chair  
24 -  
25 ---000000000000a2e93b05f64d6939  
26 -Content-Type: text/html; charset="UTF-8"  
27 -Content-Transfer-Encoding: quoted-printable  
28 -  
29 -<div dir=3D"ltr"><div class=3D"gmail_default" style=3D"font-family:monospac=  
30 -e">Ol=C3=A1 Alice,</div><div class=3D"gmail_default" style=3D"font-family:m=  
31 -onospace"><br></div><div class=3D"gmail_default" style=3D"font-family:monos=  
32 -pace">Aqui est=C3=A1: &quot;Read a Bayesian Network from a file (`BIF`, `DS=  
33 -C`, `NET`, `RDA`, `RDS`, ...)&quot; em Python.</div><div class=3D"gmail_def=  
34 -ault" style=3D"font-family:monospace"><br></div><div class=3D"gmail_default=  
35 -" style=3D"font-family:monospace">Cumprimentos,<br></div><div><div dir=3D"l=  
36 -tr" class=3D"gmail_signature" data-smartmail=3D"gmail_signature"><div dir=  
37 -=3D"ltr"><div><font face=3D"monospace"></font></div><div><font face=3D"mono=  
38 -space">--</font></div><div><font face=3D"monospace">Francisco Coelho</font>=  
39 -</div><div><span style=3D"font-family:monospace">Departamento de Inform=C3=  
40 -=A1tica,=C2=A0</span><span style=3D"font-family:monospace">Universidade de =  
41 -=C3=89vora</span><span style=3D"font-family:monospace"><br></span><div><spa=  
42 -n style=3D"font-family:monospace">NOVA LINCS</span></div></div><div><span s=  
43 -tyle=3D"font-family:monospace">High Performance Computing Chair</span></div=  
44 -></div></div></div></div>  
45 -  
46 ---000000000000a2e93b05f64d6939--  
47 \ No newline at end of file 0 \ No newline at end of file
text/paper_01/pre-paper.pdf
No preview for this file type
text/paper_01/pre-paper.tex
@@ -5,7 +5,6 @@ @@ -5,7 +5,6 @@
5 citestyle=numeric 5 citestyle=numeric
6 ]{biblatex} %Imports biblatex package 6 ]{biblatex} %Imports biblatex package
7 \addbibresource{zugzwang.bib} %Import the bibliography file 7 \addbibresource{zugzwang.bib} %Import the bibliography file
8 -  
9 \usepackage[x11colors]{xcolor} 8 \usepackage[x11colors]{xcolor}
10 % 9 %
11 \usepackage{tikz} 10 \usepackage{tikz}
@@ -31,8 +30,15 @@ @@ -31,8 +30,15 @@
31 \usepackage{amsthm} 30 \usepackage{amsthm}
32 \newtheorem{assumption}{Assumption} 31 \newtheorem{assumption}{Assumption}
33 \newtheorem{definition}{Definition} 32 \newtheorem{definition}{Definition}
  33 +\newtheorem{proposition}{Proposition}
  34 +\newtheorem{example}{Example}
  35 +\newtheorem{theorem}{Theorem}
34 \usepackage{amssymb} 36 \usepackage{amssymb}
  37 +\usepackage[normalem]{ulem}
35 \usepackage[nice]{nicefrac} 38 \usepackage[nice]{nicefrac}
  39 +\usepackage{stmaryrd}
  40 +\usepackage{acronym}
  41 +\usepackage{cleveref}
36 % 42 %
37 % Local commands 43 % Local commands
38 % 44 %
@@ -47,22 +53,49 @@ @@ -47,22 +53,49 @@
47 \newcommand{\ent}{\ensuremath{\lhd}} 53 \newcommand{\ent}{\ensuremath{\lhd}}
48 \newcommand{\cset}[2]{\ensuremath{\set{#1,~#2}}} 54 \newcommand{\cset}[2]{\ensuremath{\set{#1,~#2}}}
49 \newcommand{\langof}[1]{\ensuremath{\fml{L}\at{#1}}} 55 \newcommand{\langof}[1]{\ensuremath{\fml{L}\at{#1}}}
50 -\newcommand{\uset}[1]{\ensuremath{\left<{#1}\right|}}  
51 -\newcommand{\lset}[1]{\ensuremath{\left|{#1}\right>}} 56 +\newcommand{\uset}[1]{\ensuremath{#1^{\ast}}}
  57 +\newcommand{\lset}[1]{\ensuremath{#1_{\ast}}}
  58 +\newcommand{\yset}[1]{\ensuremath{\left\langle #1 \right\rangle}}
  59 +\newcommand{\stablecore}[1]{\ensuremath{\left\llbracket #1 \right\rrbracket}}
  60 +\newcommand{\uclass}[1]{\ensuremath{\intco{#1}}}
  61 +\newcommand{\lclass}[1]{\ensuremath{\intoc{#1}}}
  62 +\newcommand{\smclass}[1]{\ensuremath{\intcc{#1}}}
52 \newcommand{\pr}[1]{\ensuremath{\mathrm{P}\at{#1}}} 63 \newcommand{\pr}[1]{\ensuremath{\mathrm{P}\at{#1}}}
53 -\newcommand{\class}[1]{\ensuremath{{#1}/_{\!\sim}}} 64 +\newcommand{\pw}[1]{\ensuremath{\mu\at{#1}}}
  65 +\newcommand{\class}[1]{\ensuremath{[{#1}]_{\sim}}}
54 \newcommand{\urep}[1]{\ensuremath{\rep{#1}{}}} 66 \newcommand{\urep}[1]{\ensuremath{\rep{#1}{}}}
55 \newcommand{\lrep}[1]{\ensuremath{\rep{}{#1}}} 67 \newcommand{\lrep}[1]{\ensuremath{\rep{}{#1}}}
56 \newcommand{\rep}[2]{\left\langle #1 \middle| #2 \right\rangle} 68 \newcommand{\rep}[2]{\left\langle #1 \middle| #2 \right\rangle}
57 -\newcommand{\inconsistent}{\otimes} 69 +\newcommand{\inconsistent}{\bot}
58 \newcommand{\given}{\ensuremath{~\middle|~}} 70 \newcommand{\given}{\ensuremath{~\middle|~}}
59 -\newcommand{\todo}[1]{\textbf{\color{orange}~(~#1~)~}} 71 +\newcommand{\todo}[1]{{\color{red!50!black}(\emph{#1})}}
  72 +\newcommand{\remark}[2]{\dashuline{#1}~{\color{green!40!black}\emph{#2}}}
  73 +\newcommand{\replace}[2]{\sout{#1}/{\color{green!20!black}#2}}
60 74
61 -\title{Zugzwang\\\textit{Logic and Artificial Intelligence}} 75 +\newcommand{\bruno}{\color{red!60!blue}}
  76 +%
  77 +% ACRONYMS
  78 +%
  79 +\acrodef{BK}[BK]{background knowledge}
  80 +\acrodef{ASP}[ASP]{answer set program}
  81 +\acrodef{NP}[NP]{normal (logic) program}
  82 +\acrodef{DS}[DS]{distribution semantics}
  83 +\acrodef{PF}[PF]{probabilistic fact}
  84 +\acrodef{TC}[TC]{total choice}
  85 +\acrodef{SM}[SM]{stable model}
  86 +\acrodef{SC}[SC]{stable core}
  87 +%
  88 +%
  89 +%
  90 +\title{Zugzwang\\\emph{Logic and Artificial Intelligence}\\{\bruno Why this title?}}
62 \author{ 91 \author{
63 \begin{tabular}{cc} 92 \begin{tabular}{cc}
64 Francisco Coelho & Bruno Dinis\\ 93 Francisco Coelho & Bruno Dinis\\
65 - \texttt{fc@uevora.pt} & \texttt{bruno.dinis@uevora.pt} 94 + \texttt{fc@uevora.pt} & \texttt{bruno.dinis@uevora.pt}\\
  95 + \begin{minipage}{0.5\textwidth}\centering
  96 + Universidade de Évora and NOVA\textbf{LINCS}
  97 + \end{minipage}
  98 + & Universidade de Évora
66 \end{tabular} 99 \end{tabular}
67 } 100 }
68 101
@@ -74,29 +107,54 @@ @@ -74,29 +107,54 @@
74 107
75 \begin{abstract} 108 \begin{abstract}
76 \todo{rewrite} 109 \todo{rewrite}
77 - A major limitation of logical representations is the implicit assumption that the Background Knowledge (BK) is perfect. This assumption is problematic if data is noisy, which is often the case. Here we aim to explore how ASP specifications with probabilistic facts can lead to characterizations of probability functions on the specification's domain. 110 + A major limitation of logical representations in real world applications is the implicit assumption that the \acl{BK} is perfect. This assumption is problematic if data is noisy, which is often the case. Here we aim to explore how \acl{ASP} specifications with probabilistic facts can lead to \remark{characterizations of probability functions}{Why is this important? Is this what `others in sota' are trying do to?} on the specification's domain.
78 \end{abstract} 111 \end{abstract}
79 112
80 \section{Introduction and Motivation} 113 \section{Introduction and Motivation}
81 114
82 -\todo{rewrite}  
83 -Answer Set Programming (ASP) is a logic programming paradigm based on the Stable Model semantics of Normal Logic Programs (NP) that can be implemented using the latest advances in SAT solving technology. ASP is a truly declarative language that supports language constructs such as disjunction in the head of a clause, choice rules, and hard and weak constraints.  
84 115
85 -The Distribution Semantics (DS) is a key approach to extend logical representations with probabilistic reasoning. Probabilistic Facts (PF) are the most basic stochastic DS primitive and they take the form of logical facts, $a$, labelled with a probability, such as $p::a$; Each probabilistic fact represents a boolean random variable that is true with probability $p$ and false with probability $1 - p$. A (consistent) combination of the PFs defines a \textit{total choice} $c = \set{p::a, \ldots}$ such that 116 +\todo{Define and/or give references to all necessary concepts used in the paper}
  117 +
  118 +\todo{state of the art; references}
  119 +\Acf{ASP} is a logic programming paradigm based on the \ac{SM} semantics of \ac{NP} that can be implemented using the latest advances in SAT solving technology. Unlike ProLog, \ac{ASP} is a truly declarative language that supports language constructs such as disjunction in the head of a clause, choice rules, and hard and weak constraints.
  120 +
  121 +\todo{references}
  122 +The \ac{DS} is a key approach to extend logical representations with probabilistic reasoning. \Acp{PF} are the most basic stochastic \ac{DS} primitive and they take the form of logical facts, $a$, labelled with a probability, $p$, such as $p::a$; Each \ac{PF} represents a boolean random variable that is true with probability $p$ and false with probability $\co{p} = 1 - p$. A (consistent) combination of the \acp{PF} defines a \acf{TC} $c = \set{p::a, \ldots}$ such that
86 123
87 \begin{equation} 124 \begin{equation}
88 - \pr{C = x} = \prod_{a\in c} p \prod_{a \not\in c} (1- p). 125 + \pr{C = c} = \prod_{a\in c} p \prod_{a \not\in c} \co{p}.
89 \label{eq:prob.total.choice} 126 \label{eq:prob.total.choice}
90 \end{equation} 127 \end{equation}
91 128
92 -Our goal is to extend this probability, from total choices, to cover the specification domain. We can foresee two key applications of this extended probability: 129 +% \todo{Insert simple example?}
  130 +
  131 +
  132 +Our goal is to extend this probability, from \acp{TC}, to cover the \emph{specification} domain. We use the term ``specification'' as set of rules and facts, plain and probabilistic, to decouple it from any computational semantics, implied, at least implicitly, by the term ``program''. We can foresee at least two key applications of this extended probability:
93 133
94 \begin{enumerate} 134 \begin{enumerate}
95 - \item Support any probabilistic reasoning/task on the specification domain.  
96 - \item Also, given a dataset and a divergence measure, now the specification can be scored (by the divergence w.r.t.\ the \emph{empiric} distribution of the dataset), and sorted amongst other specifications. This is a key ingredient in algorithms searching, for example, an optimal specification of the dataset. 135 + \item Support probabilistic reasoning/tasks on the specification domain.
  136 + \item Also, given a dataset and a divergence measure, the specification can be scored (by the divergence w.r.t.\ the \emph{empiric} distribution of the dataset), and weighted or sorted amongst other specifications. These are key ingredients in algorithms searching, for example, optimal specifications of a dataset.
97 \end{enumerate} 137 \end{enumerate}
98 138
99 -This goal faces a critical problem concerning situations where multiple standard models result from a given total choice, illustrated by the following example. The specification 139 +%
  140 +%\todo{Outline/Explain our idea, further developed in \cref{sec:extending.probalilities}}
  141 +%
  142 +Our idea to extend probabilities starts with the stance that a specification describes an \emph{observable system} and that observed events must be related with the \acp{SM} of that specification. From here, probabilities must be extended from \aclp{TC} to \acp{SM} and then from \acp{SM} to any event.
  143 +
  144 +Extending probability from \acp{TC} to \acp{SM} faces a critical problem, illustrated by the example in \cref{sec:example.1}, concerning situations where multiple \acp{SM}, $ab$ and $ac$, result from a given \ac{TC}, $a$, but there is not enough information to assign a single probability to each \ac{SM}. We propose to address this issue by using algebraic variables to describe that lack of information and then estimate the value of those variables from empirical data.
  145 +
  146 +In a related work, \cite{verreet2022inference}, epistemic uncertainty (or model uncertainty) is considered as a lack of knowledge about the underlying model. This lack of knowledge can be mitigated via further observations. This seems to presuppose a Bayesian approach to imperfect knowledge in the sense that having further observations allows to improve/correct the model. Indeed, the approach in the paper uses Beta distributions in order to be able to learn the full distribution. This approach seems to be specially fitted to being able to tell when some probability lies beneath some given value. \todo{Our approach seems to be similar in spirit. If so, we should mention this in the introduction.}
  147 +
  148 +\todo{Discuss the least informed strategy and the corolary that \aclp{SM} should be conditionally independent on the \acl{TC}.}
  149 +
  150 +\todo{Give an outline of the paper.}
  151 +
  152 +\section{A simple but fruitful example}\label{sec:example.1}
  153 +
  154 +\todo{Write an introduction to the section}
  155 +
  156 +\begin{example}\label{running.example}
  157 +Consider the following specification
100 \begin{equation} 158 \begin{equation}
101 \begin{aligned} 159 \begin{aligned}
102 0.3::a&,\cr 160 0.3::a&,\cr
@@ -104,34 +162,47 @@ This goal faces a critical problem concerning situations where multiple standard @@ -104,34 +162,47 @@ This goal faces a critical problem concerning situations where multiple standard
104 \end{aligned} 162 \end{aligned}
105 \label{eq:example.1} 163 \label{eq:example.1}
106 \end{equation} 164 \end{equation}
107 -has three stable models, $\co{a}, ab$ and $ac$. While it is straightforward to set $P(\co{a})=0.7$, there is \textit{no further information} to assign values to $P(ab)$ and $P(ac)$. At best, we can use a parameter $x$ such that 165 +This specification has three stable models, $\co{a}, ab$ and $ac$ (see Figure~\ref{F:stableexample}). While it is straightforward to set $P(\co{a})=0.7$, there is \emph{no further information} to assign values to $P(ab)$ and $P(ac)$. Assuming that the \acf{SM} are (probabilistically) independent, we can use a parameter \replace{$\lambda$}{$\theta$} such that
108 $$ 166 $$
109 \begin{aligned} 167 \begin{aligned}
110 -P(ab) &= 0.3 x,\cr  
111 -P(ac) &= 0.3 (1 - x). 168 +P(ab) &= 0.3 \theta,\cr
  169 +P(ac) &= 0.3 (1 - \theta).
112 \end{aligned} 170 \end{aligned}
113 $$ 171 $$
  172 +\end{example}
114 173
115 -This uncertainty in inherent to the specification, but can be mitigated with the help of a dataset: the parameter $x$ can be estimated from the empirical distribution. 174 +While uncertainty is inherent to the specification it can be mitigated with the help of a dataset: the parameter $\theta$ can be estimated from a empirical distribution \todo{or we can have a distribution of $\theta$}.
116 175
117 -In summary, if an ASP specification is intended to describe some observable system then: 176 +In summary, if an \ac{ASP} specification is intended to describe some observable system then:
118 177
119 \begin{enumerate} 178 \begin{enumerate}
120 - \item The observations can be used to estimate the value of the parameters (such as $x$ above and others entailed from further clauses).  
121 - \item With a probability set for the stable models, we want to extend it to all the events of the specification.  
122 - \item This extended probability can then be related to the \textit{empirical distribution}, using a probability divergence, such as Kullback-Leibler; and the divergence value used as a \textit{performance} measure of the specification with respect to the observations.  
123 - \item If that specification is only but one of many possible candidates then that performance measure can be used, \textit{e.g.} as fitness, by algorithms searching (optimal) specifications of a dataset of observations. 179 + \item Observations can be used to estimate the value of the parameters (such as $\theta$ above and others entailed from further clauses).
  180 + \item \todo{What about the case where we already know a distribution of $\theta$?}
  181 + \item With a probability set for the stable models, we want to extend it to all the events of the \replace{specification}{domain}.
  182 + \item This extended probability can then be related to the \emph{empirical distribution}, using a probability divergence, such as Kullback-Leibler; and the divergence value used as a \emph{performance} measure of the specification with respect to the observations.
  183 + \item If that specification is only but one of many possible candidates then that performance measure can be used, \emph{e.g.} as fitness, by algorithms searching (optimal) specifications of a dataset of observations.
124 \end{enumerate} 184 \end{enumerate}
125 185
126 -Currently, we are on the step two above: Extending a probability function (with parameters such as $x$), defined on the stable sets of a specification, to all the events of the specification. This  
127 - must, of course, respect the axioms of probability so that probabilistic reasoning is consistent with the ASP specification. 186 +\begin{quote}
  187 + \todo{Expand this:} If observations are not consistent with the models of the specification, then the specification is wrong and must be changed.
  188 +\end{quote}
  189 +
  190 +Currently, we are addressing the problem of extending a probability function (possibly using parameters such as $\theta$), defined on the \acp{SM} of a specification, to all the events of that specification. Of course, this extension must satisfy the Kolmogorov axioms of probability so that probabilistic reasoning is consistent with the \ac{ASP} specification.
  191 +
  192 +Conditional independence of stable worlds asserts a least informed strategy that we discussed in the introduction and make explicit here:
  193 +
  194 +\begin{assumption}\label{assumption:smodels.independence}
  195 + Stable models are conditionally independent, given their total choices.
  196 +\end{assumption}
  197 +
  198 +The stable models $ab, ac$ from \cref{running.example} result from the clause $b \vee c \leftarrow a$ and the total choice $a$. These formulas alone impose no relation between $b$ and $c$ (given $a$), so none should be assumed. Dependence relations are further discussed in \cref{subsec:dependence}.
128 199
129 -\section{Extending Probabilities} 200 +\section{Extending Probabilities}\label{sec:extending.probalilities}
130 201
131 \begin{figure}[t] 202 \begin{figure}[t]
132 \begin{center} 203 \begin{center}
133 \begin{tikzpicture} 204 \begin{tikzpicture}
134 - \node[event] (E) {$\bot$}; 205 + \node[event] (E) {$\set{}$};
135 \node[tchoice, above left = of E] (a) {$a$}; 206 \node[tchoice, above left = of E] (a) {$a$};
136 \node[smodel, above left = of a] (ab) {$ab$}; 207 \node[smodel, above left = of a] (ab) {$ab$};
137 \node[smodel, above right = of a] (ac) {$ac$}; 208 \node[smodel, above right = of a] (ac) {$ac$};
@@ -143,204 +214,297 @@ Currently, we are on the step two above: Extending a probability function (with @@ -143,204 +214,297 @@ Currently, we are on the step two above: Extending a probability function (with
143 \node[event, above = of A] (Ac) {$\co{a}c$}; 214 \node[event, above = of A] (Ac) {$\co{a}c$};
144 \node[event, above right = of Ac] (Abc) {$\co{a}bc$}; 215 \node[event, above right = of Ac] (Abc) {$\co{a}bc$};
145 % ---- 216 % ----
146 - \draw[proptc] (a) to[bend left] (ab);  
147 - \draw[proptc] (a) to[bend right] (ac); 217 + \draw[doubt] (a) to[bend left] (ab);
  218 + \draw[doubt] (a) to[bend right] (ac);
148 219
149 - \draw[propsm] (ab) to[bend left] (abc);  
150 - \draw[propsm] (ac) to[bend right] (abc); 220 + \draw[doubt] (ab) to[bend left] (abc);
  221 + \draw[doubt] (ac) to[bend right] (abc);
151 222
152 - \draw[propsm] (A) to (Ac);  
153 - \draw[propsm] (A) to (Abc); 223 + \draw[doubt] (A) to (Ac);
  224 + \draw[doubt] (A) to (Abc);
154 225
155 \draw[doubt] (ab) to[bend right] (E); 226 \draw[doubt] (ab) to[bend right] (E);
156 \draw[doubt] (ac) to[bend right] (E); 227 \draw[doubt] (ac) to[bend right] (E);
157 \draw[doubt] (A) to[bend left] (E); 228 \draw[doubt] (A) to[bend left] (E);
158 229
159 - \draw[doubt] (ab) to[bend right] (b);  
160 - \draw[doubt] (ac) to[bend left] (c);  
161 - \draw[doubt] (ab) to[bend left] (a);  
162 - \draw[doubt] (ac) to[bend right] (a); 230 + \draw[doubt] (ab) to (b);
  231 + \draw[doubt] (ac) to (c);
  232 + % \draw[doubt] (ab) to[bend left] (a);
  233 + % \draw[doubt] (ac) to[bend right] (a);
163 \draw[doubt] (c) to[bend right] (bc); 234 \draw[doubt] (c) to[bend right] (bc);
164 \draw[doubt] (abc) to[bend left] (bc); 235 \draw[doubt] (abc) to[bend left] (bc);
165 \draw[doubt] (Abc) to (bc); 236 \draw[doubt] (Abc) to (bc);
166 \draw[doubt] (c) to[bend right] (Ac); 237 \draw[doubt] (c) to[bend right] (Ac);
167 \end{tikzpicture} 238 \end{tikzpicture}
168 \end{center} 239 \end{center}
169 - \caption{Extending values, \textit{e.g.} probabilities, from total choice nodes to stable models and then to general events in a node-wise process quickly leads to coherence problems concerning probability, with no clear systematic approach.} 240 + \caption{Events related to the stable models of \cref{running.example}. The circle nodes are the \acp{TC} and the shaded nodes are the \acp{SM}.}
  241 + % \caption{Extending probabilities from total choice nodes to stable models and then to general events in a \emph{node-wise} process quickly leads to coherence problems concerning probability, with no clear systematic approach --- Instead, weight extension can be based in \emph{the relation an event has with the stable models}.{\bruno Why is this comment on the caption?}}
  242 + \label{F:stableexample}
170 \end{figure} 243 \end{figure}
171 244
172 -Given an ASP specification, we consider the \textit{atoms} $a \in \fml{A}$ and \textit{literals}, $z \in \fml{L}$, \textit{events} $e \in \fml{E} \iff e \subseteq \fml{L}$ and \textit{worlds} $w \in \fml{W}$ (consistent events), \textit{total choices} $c \in \fml{C} \iff c = a \vee \neg a$ and \textit{stable models} $s \in \fml{S}$. 245 +\todo{Somewhere, we need to shift the language from extending \emph{probabilities} to extending \emph{measures}}
173 246
174 -% In a statistical setting, the outcomes are the literals $x$, $\neg x$ for each atom $x$, the events express a set of possible outcomes (including $\emptyset$, $\set{a, b}$, $\set{a, \neg a, b}$, \textit{etc.}), and worlds are events with no contradictions. 247 +The diagram in \cref{F:stableexample} illustrates the problem of extending probabilities from total choice nodes to stable models and then to general events in a \emph{node-wise} process. This quickly leads to coherence problems concerning probability, with no clear systematic approach --- Instead, weight extension can be based in the relation an event has with the stable models.
175 248
176 -Out path starts with a perspective of stable models as playing a role similar to \textit{prime} factors. The stable models of specification are the irreducible events entailed from that specification and any event must be interpreted under its relation with the stable models. This stance leads to definition \ref{def:rel.events}: 249 +Given an ASP specification
  250 +% DONE: {\bruno This should be defined somewhere (maybe in the introduction).}
  251 +\remark{{\bruno Introduce also the sets mentioned below}}{how?}
  252 +, we consider the \emph{atoms} $a \in \fml{A}$ and \emph{literals}, $z \in \fml{L}$, \emph{events} $e \in \fml{E} \iff e \subseteq \fml{L}$ and \emph{worlds} $w \in \fml{W}$ (consistent events), \emph{total choices} $c \in \fml{C} \iff c = a \vee \neg a$ and \emph{stable models} $s \in \fml{S}\subset\fml{W}$.
177 253
178 -\begin{definition}\label{def:rel.events}  
179 - Let $e, u, v \in \fml{E}$, and $\fml{S}, \fml{W}$ the set of stable models, resp. consistent events, of some specification. Define 254 +% In a statistical setting, the outcomes are the literals $x$, $\neg x$ for each atom $x$, the events express a set of possible outcomes (including $\emptyset$, $\set{a, b}$, $\set{a, \neg a, b}$, \emph{etc.}), and worlds are events with no contradictions.
180 255
  256 +
  257 +Our path starts with a perspective of stable models as playing a role similar to \emph{prime} factors.
  258 +The stable models of a specification are the irreducible events entailed from that specification and any event must be \replace{interpreted}{considered} under its relation with the stable models.
  259 +
  260 +\remark{\todo{Introduce a structure with worlds, events, and stable models}}{seems irrelevant}
  261 +This focus on the \acp{SM} leads to the following definition:
  262 +
  263 +\begin{definition}\label{def:stable.structure}
  264 + A \emph{stable structure} is a pair $\del{A, S}$ where $A$ is a \remark{set of atoms}{can be extracted from $S$.} and $S$ is a set of consistent events over $A$.
  265 +\end{definition}
  266 +
  267 +
  268 +\todo{expand this text to explain how the stable models form the basis of the equivalence relation}. %This \replace{stance}{} leads to definition \ref{def:rel.events}:
  269 +
  270 +\begin{definition}\label{def:rel.events}
  271 + The \emph{\ac{SC}} of the event $e\in \fml{E}$ is
  272 +
  273 + % \begin{equation}
  274 + % \uset{e} = \set{s \in \fml{S} \given e \subseteq s},\label{eq:uset}
  275 + % \end{equation}
  276 + % \begin{equation}
  277 + % \lset{e} = \set{s \in \fml{S} \given e \supseteq s}, \label{eq:lset}
  278 + % \end{equation}
  279 + % \begin{equation}
  280 + % \stablecore{e} = \uset{e} \cup \lset{e} \label{eq:xset}
  281 + % \end{equation}
181 \begin{equation} 282 \begin{equation}
182 - \uset{e} = \set{s \in \fml{S} \given e \subseteq s},  
183 - \end{equation}  
184 - \begin{equation}  
185 - \lset{e} = \set{s \in \fml{S} \given s \subseteq e} 283 + \stablecore{e} := \set{s \in \fml{S} \given e \subseteq s \vee s \subseteq e} \label{eq:xset}
186 \end{equation} 284 \end{equation}
187 -and 285 +
  286 + \end{definition}
  287 +
  288 +We now define an equivalence relation, $\sim$, so that two events are related if they are either both inconsistent or both consistent with the same stable core.
  289 +
  290 +\begin{definition}\label{D:equiv.rel}
  291 +For a given specification, let $u, v \in \fml{E}$. The equivalence relation $\sim$ is defined by
188 \begin{equation} 292 \begin{equation}
189 - u \sim v \iff u,v \not\in\fml{W} \vee (\uset{u} = \uset{v} \wedge \lset{u} = \lset{v}).\label{eq:rel.events} 293 + u \sim v :\iff u,v \not\in\fml{W} \vee \del{u,v \in \fml{W} \wedge \stablecore{u} = \stablecore{v}}.\label{eq:rel.events}
190 \end{equation} 294 \end{equation}
191 \end{definition} 295 \end{definition}
192 296
193 -This equivalence relation defines a partition of the events space, where each class holds a unique relation with the stable models. In particular, we can denote each class by 297 +Observe that the minimality of stable models implies that, in \cref{eq:xset}, either $e$ is a stable model or one of $e \subseteq s, s \subseteq e$ is never true.
  298 +%
  299 +% \begin{definition}\label{def:smodel.events}
  300 +% For $\set{s_1, \ldots, s_n} \subseteq \fml{S}$ define
  301 +% \begin{equation}
  302 +% \lclass{s_1, \ldots, s_n} = \set{e\in \fml{E}\setminus \fml{S} \given \uset{e} = \set{s_1, \ldots, s_n}},
  303 +% \label{eq:smodel.lclass}
  304 +% \end{equation}
  305 +% \begin{equation}
  306 +% \uclass{s_1, \ldots, s_n} = \set{e\in \fml{E}\setminus \fml{S} \given \lset{e} = \set{s_1, \ldots, s_n}}
  307 +% \label{eq:smodel.uclass}
  308 +% \end{equation}
  309 +% and
  310 +% \begin{equation}
  311 +% \smclass{s_1, \ldots, s_n} = \set{s_1, \ldots, s_n}
  312 +% \label{eq:smodel.smclass}
  313 +% \end{equation}
  314 +% \end{definition}
  315 +%
  316 +This relation defines a partition of the events space, where each class holds a unique relation with the stable models. In particular, we denote each class by:
194 \begin{equation} 317 \begin{equation}
195 \class{e} = 318 \class{e} =
196 \begin{cases} 319 \begin{cases}
197 - \inconsistent &\text{if~} e \in \fml{E} \setminus \fml{W}, \\  
198 - \rep{e}{e} &\text{otherwise}. 320 + \inconsistent := \fml{E} \setminus \fml{W} &\text{if~} e \not\in \fml{E} \setminus \fml{W}, \\
  321 + \set{u \in \fml{W} \given \stablecore{u} = \stablecore{e}} &\text{if~} e \in \fml{W}, \\
  322 + % \lclass{\uset{e}} &\text{if~} \uset{e} \not= \emptyset, \\
  323 + % \uclass{\lset{e}} &\text{otherwise}.
199 \end{cases} 324 \end{cases}
200 \end{equation} 325 \end{equation}
201 326
202 -Consider the example from \ref{eq:example.1}. The stable models are $\fml{S} = \co{a}, ab, ac$ so the quotient set of this relation is 327 +The stable core defines a \emph{canonical} representative of each class:
  328 +\begin{theorem}
  329 + Let $e\in\fml{E}$ and $\stablecore{e} = \set{s_1, \ldots, s_n} \subseteq \fml{S}$. Then
  330 + \begin{equation}
  331 + \class{e} = \class{s_1 \cup \cdots \cup s_n}.
  332 + \end{equation}
  333 + We simplify the notation with $\class{s_1, \ldots, s_n} := \class{s_1 \cup \cdots \cup s_n}$.
  334 + \todo{This only works for consistent $s_1, \ldots, s_n$: $\set{\set{}} = \class{\co{a}, ab, ac} \not= \class{a\co{a}bc} = \inconsistent$.}
  335 +\end{theorem}
  336 +\begin{proof}
  337 +\todo{tbd}
  338 +\end{proof}
  339 +
  340 +The subsets of the stable models, together with $\inconsistent$, form a set of representatives. Consider again Example~\ref{running.example}. As previously mentioned, the stable models are $\fml{S} = \co{a}, ab, ac$ so the quotient set of this relation is $\class{\fml{E}}:$
203 \begin{equation} 341 \begin{equation}
204 -\begin{aligned}  
205 - &\inconsistent, \rep{}{}, \\  
206 - &\rep{\co{a}}{\co{a}} = \set{\co{a}}, \rep{ab}{ab} = \set{ab}, \rep{ac}{ac} = \set{ac}\\  
207 - &\urep{\co{a}}, \urep{ab}, \urep{ac}, \lrep{\co{a}}, \lrep{ab}, \lrep{ac}, \\  
208 - &\urep{\co{a}, ab}, \urep{\co{a}, ac}, \urep{ab, ac},  
209 - \lrep{\co{a}, ab}, \lrep{\co{a}, ac}, \lrep{ab, ac},\\  
210 - &\urep{\co{a}, ab, ac}, \lrep{\co{a}, ab, ac}.  
211 -\end{aligned} 342 + \set{
  343 + \inconsistent,
  344 + \emptyset,
  345 + \class{\co{a}},
  346 + \class{ab},
  347 + \class{ac},
  348 + \class{\co{a}, ab},
  349 + \class{\co{a}, ac},
  350 + \class{ab, ac},
  351 + \class{\co{a}, ab, ac}
  352 + }
  353 +% \begin{aligned}
  354 +% & \inconsistent, \emptyset, \\
  355 +% & \stablecore{\co{a}}, \stablecore{ab}, \stablecore{ac}, \\
  356 +% & \stablecore{\co{a}, ab}, \stablecore{\co{a}, ac}, \stablecore{ab, ac}, \\
  357 +% & \stablecore{\co{a}, ab, ac}.
  358 +% \end{aligned}
212 \end{equation} 359 \end{equation}
213 360
214 -For example, $\class{a} = \urep{ab, ac}$, $\class{abc} = \lrep{ab, ac}$ and $\class{bc} = \rep{}{}$. 361 +For example,
  362 +\begin{equation*}
  363 + \begin{aligned}
  364 + \class{\set{}} &= \class{\co{a}, ab, ac},
  365 + & \class{a} &= \class{ab, ac},
  366 + & \class{b} &= \class{ab},
  367 + & \class{\co{b}} &= \emptyset,
  368 + \\ \class{a\co{c}} &= \emptyset,
  369 + & \class{ab} &= \emptyset,
  370 + & \class{b\co{b}} &= \inconsistent,
  371 + & \class{\co{a}b} &=\class{\co{a}},
  372 + \\ \class{\co{bc}} &=\emptyset,
  373 + & \class{abc} &= \class{ab, ac},
  374 + & \class{a\co{b}c} &= \class{ac},
  375 + & \class{\co{a}bc} &= \class{\co{a}},
  376 + % & \class{\co{a}} &= \class{\co{a}},
  377 + % & \class{\set{}} &= \class{\co{a}, ac, ab}
  378 + \end{aligned}
  379 +\end{equation*}
215 380
216 381
217 \begin{itemize} 382 \begin{itemize}
218 - \item Since all events within a equivalence class have the same relation with the stable models, probability assignment should be constant for the elements of that class.  
219 - \item So, instead of dealing with $2^6$ events, we need only to handle $19$ classes, well defined in terms of combinations of the stable models.  
220 - \item The extended probability \textit{events} are the \textit{classes}.  
221 - \item The physical system might have \textit{latent} variables, possibly also represented in the specification. These variables are never observed, so observations should be concentrated in the $\nicefrac{\uset{e}}{\varnothing}$ classes. 383 + \item Since all events within an equivalence class are in relation with a specific set of stable models, \emph{weights, including probability, should be constant within classes}:
  384 + \[
  385 + \forall u\in \class{e} \left(\pr{u} = \pr{e} \right).
  386 + \]
  387 + \item So, instead of dealing with $64 = 2^6$ events, we need only to handle $9 = 2^3 + 1$ classes, well defined in terms of combinations of the stable models.
  388 + % \item The extended probability \emph{events} are the \emph{classes}.
222 \end{itemize} 389 \end{itemize}
223 390
224 -\todo{must adapt} Our path, traced by equations (\ref{eq:prob.total.choice}) and (\ref{eq:prob.stablemodel} --- \ref{eq:prob.events}), starts with the probability of total choices, $\pr{C = c}$, expands it to stable models, $\pr{S = s}$, and then to worlds $\pr{W = w}$ and events $\pr{E = e}$. 391 +\todo{Check adaptation} Our path to set a probability measure on $\fml{E}$ has two phases:
  392 +\begin{itemize}
  393 + \item Extending the probabilities, \emph{as weights}, of the total choices to events.
  394 + \item Normalization of the weights.
  395 +\end{itemize}
225 396
226 -\begin{enumerate}  
227 - \item \textbf{Total Choices.} This case is given by $\pr{C = c}$, from equation \ref{eq:prob.total.choice}. Each total choice $C = c$ (together with the facts and rules) entails some stable models, $s \in S_c$, and each stable model $S = s$ contains a single total choice $c_s \subseteq s$.  
228 - \item \textbf{Stable Models.} Given a stable model $s \in \fml{S}$, and variables/values $x_{s,c} \in \intcc{0, 1}$, 397 +The ``extension'' phase, traced by equations (\ref{eq:prob.total.choice}) and (\ref{eq:weight.tchoice} --- \ref{eq:weight.events}), starts with the weight (probability) of total choices, $\pw{c} = \pr{C = c}$, expands it to stable models, $\pw{s}$, and then, within the equivalence relation from Equation \eqref{eq:rel.events}, to (general) events, $\pw{e}$, including (consistent) worlds.
  398 +
  399 +\begin{description}
  400 + %
  401 + \item[Total Choices.] Using \eqref{eq:prob.total.choice}, this case is given by
229 \begin{equation} 402 \begin{equation}
230 - \pr{S = s \given C = c} = \begin{cases}  
231 - x_{s,c} & \text{if~} s \in S_c,\cr 403 + \pw{c} = \pr{C = c}= \prod_{a\in c} p \prod_{a \not\in c} \co{p}
  404 + \label{eq:weight.tchoice}
  405 + \end{equation}
  406 + %
  407 + \item[Stable Models.] Each total choice $c$, together with the rules and the other facts of a specification, defines a set of stable models associated with that choice, that we denote by $S_c$.
  408 +
  409 + Given a stable model $s \in \fml{S}$, a total choice $c$, and variables/values $\theta_{s,c} \in \intcc{0, 1}$,
  410 + \begin{equation}
  411 + \pw{s, c} := \begin{cases}
  412 + \theta_{s,c} & \text{if~} s \in S_c\cr
232 0&\text{otherwise} 413 0&\text{otherwise}
233 \end{cases} 414 \end{cases}
234 - \label{eq:prob.stablemodel} 415 + \label{eq:weight.stablemodel}
235 \end{equation} 416 \end{equation}
236 - such that $\sum_{s \in S_c} x_{s,c} = 1$.  
237 - \item\label{item:world.cases} \textbf{Worlds.} Each world $W = w$ either:  
238 - \begin{enumerate}  
239 - \item Is a \textit{stable model}. Then 417 + such that $\sum_{s\in S_c} \theta_{s,c} = 1$.
  418 + %
  419 + \item[Classes.] \label{item:class.cases} Each class is either the inconsistent class, $\inconsistent$, or is represented by some set of stable models.
  420 + \begin{itemize}
  421 + \item \textbf{Inconsistent Class.} The inconsistent class contains events that are logically inconsistent. Since these events should never be observed:
240 \begin{equation} 422 \begin{equation}
241 - \pr{W = w \given C = c} = \pr{S = s \given C = c}.  
242 - \label{eq:world.fold.stablemodel} 423 + \pw{\inconsistent, c} := 0.
  424 + \label{eq:weight.class.inconsistent}
243 \end{equation} 425 \end{equation}
244 - \item \textit{Contains} some stable models. Then 426 + \item \textbf{Independent Class.} A world that neither contains nor is contained in a stable model describes a case that, according to the specification, should never be observed. So the respective weight is set to zero:
245 \begin{equation} 427 \begin{equation}
246 - \pr{W = w \given C = c} = \prod_{s \subset w}\pr{S = s \given C = c}.  
247 - \label{eq:world.fold.superset} 428 + \pw{\emptyset, c} := 0.
  429 + \label{eq:weight.class.independent}
248 \end{equation} 430 \end{equation}
249 - \item \textit{Is contained} in some stable models. Then 431 + \item \textbf{Other Classes.} The extension must be constant within a class, its value should result from the elements in the stable core, and respect the assumption \ref{assumption:smodels.independence}:
250 \begin{equation} 432 \begin{equation}
251 - \pr{W = w \given C = c} = \sum_{s \supset w}\pr{S = s \given C = c}.  
252 - \label{eq:world.fold.subset} 433 + \pw{\stablecore{s_1, \ldots, s_n}, c} := \prod_{k}\pw{s_k, c}.
  434 + \label{eq:weight.class.upper}
253 \end{equation} 435 \end{equation}
254 - \item Neither contains nor is contained by a stable model. Then  
255 - \begin{equation}  
256 - \pr{W = w} = 0.  
257 - \label{eq:world.fold.independent}  
258 - \end{equation}  
259 - \end{enumerate}  
260 - \item \textbf{Events.} For each event $E = e$, 436 + \end{itemize}
  437 + %
  438 + \item[Events.] \label{item:event.cases} Each (general) event $e$ is in the class defined by its stable core, $\stablecore{e}$. So, we set:
261 \begin{equation} 439 \begin{equation}
262 - \pr{E = e \given C = c} = \begin{cases}  
263 - \pr{W = e \given C = c} & e \in \fml{W}, \cr  
264 - 0 & \text{otherwise}.  
265 - \end{cases}  
266 - \label{eq:prob.events} 440 + \pw{e, c} := \pw{\stablecore{e}, c}.
  441 + \label{eq:weight.events}
267 \end{equation} 442 \end{equation}
268 -\end{enumerate}  
269 -  
270 -Since stable model are minimal, there is no proper chain $s_1 \subset w \subset s_2$ so each world folds into exactly one ot the four cases of point \ref{item:world.cases} above. 443 +\end{description}
271 444
272 % PARAMETERS FOR UNCERTAINTY 445 % PARAMETERS FOR UNCERTAINTY
273 446
274 -Equation (\ref{eq:prob.stablemodel}) expresses the lack of knowledge about the probability assignment when a single total choice entails more than one stable model. In this case, how to distribute the respective probability? Our answer to this problem consists in assigning an unknown probability, $x_{s,c}$, conditional on the total choice, $c$, to each stable model $s$. This approach allow the expression of an unknown quantity and future estimation, given observed data.  
275 -  
276 -% STABLE MODEL  
277 -The stable model case, in equation (\ref{eq:world.fold.stablemodel}), identifies the probability of a stable model \textit{as a world} with its probability as defined previously in equation (\ref{eq:prob.stablemodel}), as a stable model. 447 +Equation \eqref{eq:weight.stablemodel} expresses the \emph{specification's} lack of knowledge about the weight assignment, when a single total choice entails more than one stable model. In this case, how to distribute the respective weights? Our \replace{answer}{proposal} to \replace{}{address} this problem consists in assigning an unknown weight, $\theta_{s,c}$, conditional {\bruno depending???} on the total choice, $c$, to each stable model $s$. This approach allows the expression of an unknown quantity and future estimation, given observed data.
278 448
279 % SUPERSET 449 % SUPERSET
280 -Equation \ref{eq:world.fold.superset} results from conditional independence of the stable models $s \subset w$. Conditional independence of stable worlds asserts a least informed strategy that we make explicit:  
281 -  
282 -\begin{assumption}  
283 - Stable models are conditionally independent, given their total choices.  
284 -\end{assumption}  
285 -  
286 -Consider the stable models $ab, ac$ from the example above. They result from the clause $b \vee c \leftarrow a$ and the total choice $a$. These formulas alone impose no relation between $b$ and $c$ (given $a$), so none should be assumed. Dependence relations are further discussed in Subsection (\ref{subsec:dependence}).  
287 -  
288 -% SUBSET  
289 -\hrule  
290 -  
291 -\bigskip  
292 -I'm not sure about what to say here.\marginpar{todo}  
293 -  
294 -My first guess was  
295 -\begin{equation*}  
296 - \pr{W = w \given C = c} = \sum_{s \supset w}\pr{S = s \given C = c}.  
297 -\end{equation*}  
298 -  
299 -$\pr{W = w \given C = c}$ already separates $\pr{W}$ into \textbf{disjoint} events!  
300 -  
301 -Also, I am assuming that stable models are independent.  
302 -  
303 -This would entail $p(w) = p(s_1) + p(s_2) - p(s_1)p(s_2)$ \textit{if I'm bound to set inclusion}. But I'm not. I'm defining a relation  
304 -  
305 -Also, if I set $p(w) = p(s_1) + p(s_2)$ and respect the laws of probability, this entails $p(s_1)p(s_2) = 0$. 450 +Equation \eqref{eq:weight.class.upper} results from conditional independence of stable models.
306 451
307 -So, maybe what I want is (1) to define the cover $\hat{w} = \cup_{s \supset w} s$  
308 -  
309 -\begin{equation*}  
310 - \pr{W = w \given C = c} = \sum_{s \supset w}\pr{S = s \given C = c} - \pr{W = \hat{w} \given C = c}.  
311 -\end{equation*}  
312 -  
313 -But this doesn't works, because we'd get $\pr{W = a \given C = a} < 1$. 452 +% % SUBSET
  453 +% \hrule
314 % 454 %
315 - 455 +% \bigskip
  456 +% I'm not sure about what to say here.\marginpar{todo}
  457 +%
  458 +% My first guess was
  459 +% \begin{equation*}
  460 +% \pr{W = w \given C = c} = \sum_{s \supset w}\pr{S = s \given C = c}.
  461 +% \end{equation*}
  462 +%
  463 +% $\pr{W = w \given C = c}$ already separates $\pr{W}$ into \textbf{disjoint} events!
  464 +%
  465 +% Also, I am assuming that stable models are independent.
  466 +%
  467 +% This would entail $p(w) = p(s_1) + p(s_2) - p(s_1)p(s_2)$ \emph{if I'm bound to set inclusion}. But I'm not. I'm defining a relation
  468 +%
  469 +% Also, if I set $p(w) = p(s_1) + p(s_2)$ and respect the laws of probability, this entails $p(s_1)p(s_2) = 0$.
  470 +%
  471 +% So, maybe what I want is (1) to define the cover $\hat{w} = \cup_{s \supset w} s$
  472 +%
  473 +% \begin{equation*}
  474 +% \pr{W = w \given C = c} = \sum_{s \supset w}\pr{S = s \given C = c} - \pr{W = \hat{w} \given C = c}.
  475 +% \end{equation*}
  476 +%
  477 +% But this doesn't works, because we'd get $\pr{W = a \given C = a} < 1$.
  478 +% %
  479 +%
  480 +% %
  481 +% \bigskip
  482 +% \hrule
316 % 483 %
317 -\bigskip  
318 -\hrule  
319 -  
320 % INDEPENDENCE 484 % INDEPENDENCE
321 -  
322 -A world that neither contains nor is contained in a stable model describes a case that, according to the specification, should never be observed. So the respective probability is set to zero, per equation (\ref{eq:world.fold.independent}). 485 +%
  486 +%, per equation (\ref{eq:weight.class.independent}).
323 % 487 %
324 % ================================================================ 488 % ================================================================
325 % 489 %
326 \subsection{Dependence} 490 \subsection{Dependence}
327 \label{subsec:dependence} 491 \label{subsec:dependence}
328 492
329 -Dependence relations in the underlying system can be explicitly expressed in the specification. 493 +Our basic assertion about dependence relations between atoms of the underlying system is that they can be \emph{explicitly expressed in the specification}. And, in that case, they should be.
330 494
331 -For example, $b \leftarrow c \wedge d$, where $d$ is an atomic choice, explicitly expressing this dependence between $b$ and $c$. One would get, for example, the specification 495 +For example, a dependence relation between $b$ and $c$ can be expressed by $b \leftarrow c \wedge d$, where $d$ is an atomic choice that explicitly expresses the dependence between $b$ and $c$. One would get, for example, a specification such as
332 $$ 496 $$
333 0.3::a, b \vee c \leftarrow a, 0.2::d, b \leftarrow c \wedge d. 497 0.3::a, b \vee c \leftarrow a, 0.2::d, b \leftarrow c \wedge d.
334 $$ 498 $$
335 -with the stable models 499 +with stable models
336 $ 500 $
337 \co{ad}, \co{a}d, a\co{d}b, a\co{d}c, adb 501 \co{ad}, \co{a}d, a\co{d}b, a\co{d}c, adb
338 $. 502 $.
339 503
340 504
341 -The interesting case is the subtree of the total choice $ad$. Notice that no stable model $s$ contains $adc$ because (1) $adb$ is a stable model and (2) if $adc \subset s$ then $b \in s$ so $adb \subset s$. 505 +The interesting case is the subtree of the total choice $ad$. Notice that no stable model $s$ contains $adc$ because $(i)$ $adb$ is a stable model and $(ii)$ if $adc \subset s$ then $b \in s$ so $adb \subset s$.
342 506
343 -Following equations (\ref{eq:world.fold.stablemodel}) and (\ref{eq:world.fold.independent}) this sets 507 +Following equations \eqref{eq:world.fold.stablemodel} and \eqref{eq:world.fold.independent} {\bruno What are these equations?} this entails
344 \begin{equation*} 508 \begin{equation*}
345 \begin{cases} 509 \begin{cases}
346 \pr{W = adc \given C = ad} = 0,\cr 510 \pr{W = adc \given C = ad} = 0,\cr
@@ -349,7 +513,7 @@ Following equations (\ref{eq:world.fold.stablemodel}) and (\ref{eq:world.fold.in @@ -349,7 +513,7 @@ Following equations (\ref{eq:world.fold.stablemodel}) and (\ref{eq:world.fold.in
349 \end{equation*} 513 \end{equation*}
350 which concentrates all probability mass from the total choice $ad$ in the $adb$ branch, including the node $W = adbc$. This leads to the following cases: 514 which concentrates all probability mass from the total choice $ad$ in the $adb$ branch, including the node $W = adbc$. This leads to the following cases:
351 $$ 515 $$
352 -\begin{array}{l|r} 516 +\begin{array}{l|c}
353 x & \pr{W = x \given C = ad}\\ 517 x & \pr{W = x \given C = ad}\\
354 \hline 518 \hline
355 ad & 1 \\ 519 ad & 1 \\
@@ -367,8 +531,9 @@ $$ @@ -367,8 +531,9 @@ $$
367 &\not= \pr{W = b}\pr{W = c} 531 &\not= \pr{W = b}\pr{W = c}
368 \end{aligned} 532 \end{aligned}
369 $$ 533 $$
370 -\textit{i.e.} the events $W = b$ and $W = c$ are dependent and that dependence results directly from the segment $0.2::d, b \leftarrow c \wedge d$ in the specification. 534 +\emph{i.e.} the events $W = b$ and $W = c$ are dependent and that dependence results directly from the segment $0.2::d, b \leftarrow c \wedge d$ in the specification.
371 535
  536 +{\bruno Why does this not contradict Assumption 1?}
372 537
373 % 538 %
374 539
@@ -381,7 +546,7 @@ $$ @@ -381,7 +546,7 @@ $$
381 546
382 \section{Developed Example} 547 \section{Developed Example}
383 548
384 -We continue with the specification from equation \ref{eq:example.1}. 549 +We continue with the specification from Equation \eqref{eq:example.1}.
385 550
386 \textbf{Step 1: Total Choices.} The total choices, and respective stable models, are 551 \textbf{Step 1: Total Choices.} The total choices, and respective stable models, are
387 \begin{center} 552 \begin{center}
@@ -428,7 +593,18 @@ We continue with the specification from equation \ref{eq:example.1}. @@ -428,7 +593,18 @@ We continue with the specification from equation \ref{eq:example.1}.
428 \end{tabular} 593 \end{tabular}
429 \end{center} 594 \end{center}
430 595
431 -\section*{References} 596 +\section{Final Remarks}
  597 +
  598 +\todo{develop this section.}
  599 +
  600 +\begin{itemize}
  601 + \item The measure of the inconsistent events doesn't need to be set to $0$ and, maybe, in some cases, it shouldn't.
  602 + \item The physical system might have \emph{latent} variables, possibly also represented in the specification. These variables are never observed, so observations should be concentrated \emph{somewhere else}.
  603 +\end{itemize}
  604 +
  605 +\section*{Acknowledgements}
  606 +
  607 +This work is supported by NOVA\textbf{LINCS} (UIDB/04516/2020) with the financial support of FCT.IP.
432 608
433 \printbibliography 609 \printbibliography
434 610