Commit 0ca7041569dd6f83cc1ee12d062950e7ed5475bb

Authored by Francisco Coelho
1 parent 8751b392
Exists in master

sync

text/paper_01/pre-paper.pdf
No preview for this file type
text/paper_01/pre-paper.tex
@@ -129,10 +129,10 @@ citecolor=blue, @@ -129,10 +129,10 @@ citecolor=blue,
129 \Acf{ASP} is a logic programming paradigm based on the \ac{SM} semantics of \acp{NP} that can be implemented using the latest advances in SAT solving technology. Unlike ProLog, \ac{ASP} is a truly declarative language that supports language constructs such as disjunction in the head of a clause, choice rules, and hard and weak constraints. 129 \Acf{ASP} is a logic programming paradigm based on the \ac{SM} semantics of \acp{NP} that can be implemented using the latest advances in SAT solving technology. Unlike ProLog, \ac{ASP} is a truly declarative language that supports language constructs such as disjunction in the head of a clause, choice rules, and hard and weak constraints.
130 130
131 \todo{references} 131 \todo{references}
132 -The \ac{DS} is a key approach to extend logical representations with probabilistic reasoning. \Acp{PF} are the most basic \ac{DS} stochastic primitives and take the form of logical facts, $a$, labelled with probabilities, $p$, such as $\probfact{p}{a}$; Each \ac{PF} represents a boolean random variable that is true with probability $p$ and false with probability $\co{p} = 1 - p$. A (consistent) combination of the \acp{PF} defines a \acf{TC} $c = \set{\probfact{p}{a}, \ldots}$ such that 132 +The \ac{DS} is a key approach to extend logical representations with probabilistic reasoning. \Acp{PF} are the most basic \ac{DS} stochastic primitives and take the form of logical facts, $a$, labelled with probabilities, $p$, such as $\probfact{p}{a}$; Each \ac{PF} represents a boolean random variable that is true with probability $p$ and false with probability $\co{p} = 1 - p$. A (consistent) combination of the \acp{PF} defines a \acf{TC} $t = \set{\probfact{p}{a}, \ldots}$ such that \franc{changed \acl{TC} $c$ to $t$ everywhere.}
133 133
134 \begin{equation} 134 \begin{equation}
135 - \pr{C = c} = \prod_{a\in c} p \prod_{a \not\in c} \co{p}. 135 + \pr{T = t} = \prod_{a\in t} p \prod_{a \not\in t} \co{p}.
136 \label{eq:prob.total.choice} 136 \label{eq:prob.total.choice}
137 \end{equation} 137 \end{equation}
138 138
@@ -379,7 +379,7 @@ The diagram in \cref{fig:running.example} illustrates the problem of extending p @@ -379,7 +379,7 @@ The diagram in \cref{fig:running.example} illustrates the problem of extending p
379 379
380 Given an ASP specification, 380 Given an ASP specification,
381 \remark{{\bruno Introduce also the sets mentioned below}}{how?} 381 \remark{{\bruno Introduce also the sets mentioned below}}{how?}
382 - we consider the \emph{atoms} $a \in \fml{A}$ and \emph{literals}, $z \in \fml{L}$, \emph{events} $e \in \fml{E} \iff e \subseteq \fml{L}$ and \emph{worlds} $w \in \fml{W}$ (consistent events), \emph{\aclp{TC} } $c \in \fml{C} \iff c = a \vee \neg a$ and \emph{\aclp{SM} } $s \in \fml{S}\subset\fml{W}$. 382 + we consider the \emph{atoms} $a \in \fml{A}$ and \emph{literals}, $z \in \fml{L}$, \emph{events} $e \in \fml{E} \iff e \subseteq \fml{L}$ and \emph{worlds} $w \in \fml{W}$ (consistent events), \emph{\aclp{TC} } $t \in \fml{T} \iff t = a \vee \neg a$ and \emph{\aclp{SM} } $s \in \fml{S}\subset\fml{W}$.
383 383
384 Our path starts with a perspective of \aclp{SM} as playing a role similar to \emph{prime} factors. The \aclp{SM} of a specification are the irreducible events entailed from that specification and any event must be \replace{interpreted}{considered} under its relation with the \aclp{SM}. 384 Our path starts with a perspective of \aclp{SM} as playing a role similar to \emph{prime} factors. The \aclp{SM} of a specification are the irreducible events entailed from that specification and any event must be \replace{interpreted}{considered} under its relation with the \aclp{SM}.
385 385
@@ -515,48 +515,48 @@ where $\indepclass$ denotes both the class of \emph{independent} events $e$ such @@ -515,48 +515,48 @@ where $\indepclass$ denotes both the class of \emph{independent} events $e$ such
515 \item Normalization of the weights. 515 \item Normalization of the weights.
516 \end{enumerate} 516 \end{enumerate}
517 517
518 -The ``extension'' phase, traced by equations (\ref{eq:prob.total.choice}) and (\ref{eq:weight.tchoice} --- \ref{eq:weight.events}), starts with the weight (probability) of \aclp{TC}, $\pw{c} = \pr{C = c}$, expands it to \aclp{SM}, $\pw{s}$, and then, within the equivalence relation from \cref{eq:equiv.rel}, to (general) events, $\pw{e}$, including (consistent) worlds. 518 +The ``extension'' phase, traced by equations (\ref{eq:prob.total.choice}) and (\ref{eq:weight.tchoice} --- \ref{eq:weight.events}), starts with the weight (probability) of \aclp{TC}, $\pw{t} = \pr{T = t}$, expands it to \aclp{SM}, $\pw{s}$, and then, within the equivalence relation from \cref{eq:equiv.rel}, to (general) events, $\pw{e}$, including (consistent) worlds.
519 519
520 \begin{description} 520 \begin{description}
521 % 521 %
522 \item[Total Choices.] Using \eqref{eq:prob.total.choice}, this case is given by 522 \item[Total Choices.] Using \eqref{eq:prob.total.choice}, this case is given by
523 \begin{equation} 523 \begin{equation}
524 - \pw{c} := \pr{C = c}= \prod_{a\in c} p \prod_{a \not\in c} \co{p} 524 + \pw{t} := \pr{T = t}= \prod_{a\in t} p \prod_{a \not\in t} \co{p}
525 \label{eq:weight.tchoice} 525 \label{eq:weight.tchoice}
526 \end{equation} 526 \end{equation}
527 % 527 %
528 - \item[Stable Models.] Each \acl{TC} $c$, together with the rules and the other facts of a specification, defines a set of \aclp{SM} associated with that choice, that \remark{we denote by $\tcgen{c}$}{put this in the introduction, where core concepts are presented}. 528 + \item[Stable Models.] Each \acl{TC} $t$, together with the rules and the other facts of a specification, defines a set of \aclp{SM} associated with that choice, that \remark{we denote by $\tcgen{t}$}{put this in the introduction, where core concepts are presented}.
529 529
530 - Given a \acl{SM} $s \in \fml{S}$, a \acl{TC} $c$, and variables/values $\theta_{s,c} \in \intcc{0, 1}$, 530 + Given a \acl{SM} $s \in \fml{S}$, a \acl{TC} $t$, and variables/values $\theta_{s,t} \in \intcc{0, 1}$,
531 \begin{equation} 531 \begin{equation}
532 - \pw{s, c} := \begin{cases}  
533 - \theta_{s,c} & \text{if~} s \in \tcgen{c}\cr 532 + \pw{s, t} := \begin{cases}
  533 + \theta_{s,t} & \text{if~} s \in \tcgen{t}\cr
534 0&\text{otherwise} 534 0&\text{otherwise}
535 \end{cases} 535 \end{cases}
536 \label{eq:weight.stablemodel} 536 \label{eq:weight.stablemodel}
537 \end{equation} 537 \end{equation}
538 - such that $\sum_{s\in \tcgen{c}} \theta_{s,c} = 1$. 538 + such that $\sum_{s\in \tcgen{t}} \theta_{s,t} = 1$.
539 % 539 %
540 \item[Classes.] \label{item:class.cases} Each class is either the inconsistent class, $\inconsistent$, or is represented by some set of \aclp{SM}. 540 \item[Classes.] \label{item:class.cases} Each class is either the inconsistent class, $\inconsistent$, or is represented by some set of \aclp{SM}.
541 \begin{description} 541 \begin{description}
542 \item[Inconsistent Class.] The inconsistent class contains events that are logically inconsistent, thus should never be observed: 542 \item[Inconsistent Class.] The inconsistent class contains events that are logically inconsistent, thus should never be observed:
543 \begin{equation} 543 \begin{equation}
544 - \pw{\inconsistent, c} := 0. 544 + \pw{\inconsistent, t} := 0.
545 \label{eq:weight.class.inconsistent} 545 \label{eq:weight.class.inconsistent}
546 \end{equation} 546 \end{equation}
547 \item[Independent Class.] A world that neither contains nor is contained in a \acl{SM} describes a case that, according to the specification, shouldn't exist. So the respective weight is set to zero: 547 \item[Independent Class.] A world that neither contains nor is contained in a \acl{SM} describes a case that, according to the specification, shouldn't exist. So the respective weight is set to zero:
548 \begin{equation} 548 \begin{equation}
549 - \pw{\indepclass, c} := 0. 549 + \pw{\indepclass, t} := 0.
550 \label{eq:weight.class.independent} 550 \label{eq:weight.class.independent}
551 \end{equation} 551 \end{equation}
552 \item[Other Classes.] The extension must be constant within a class, its value should result from the elements in the \acl{SC}, and respect the assumption \ref{assumption:smodels.independence} (\aclp{SM} independence): 552 \item[Other Classes.] The extension must be constant within a class, its value should result from the elements in the \acl{SC}, and respect the assumption \ref{assumption:smodels.independence} (\aclp{SM} independence):
553 \begin{equation} 553 \begin{equation}
554 - \pw{\class{e}, c} := \sum_{k=1}^{n}\pw{s_k, c},~\text{if}~\stablecore{e} = \set{s_1, \ldots, s_n}. 554 + \pw{\class{e}, t} := \sum_{k=1}^{n}\pw{s_k, t},~\text{if}~\stablecore{e} = \set{s_1, \ldots, s_n}.
555 \label{eq:weight.class.other} 555 \label{eq:weight.class.other}
556 \end{equation} 556 \end{equation}
557 and 557 and
558 \begin{equation} 558 \begin{equation}
559 - \pw{\class{e}} := \sum_{c \in \fml{C}} \pw{\class{e}, c}\pw{c}. 559 + \pw{\class{e}} := \sum_{t \in \fml{T}} \pw{\class{e}, t}\pw{t}.
560 \label{eq:weight.class.unconditional} 560 \label{eq:weight.class.unconditional}
561 \end{equation} 561 \end{equation}
562 \remark{}{Changed from $\prod$ to $\sum$ to represent ``either'' instead of ``both'' since the later is not consistent with the ``only one stable model at a time'' assumption.} 562 \remark{}{Changed from $\prod$ to $\sum$ to represent ``either'' instead of ``both'' since the later is not consistent with the ``only one stable model at a time'' assumption.}
@@ -564,17 +564,17 @@ The ``extension'' phase, traced by equations (\ref{eq:prob.total.choice}) and (\ @@ -564,17 +564,17 @@ The ``extension'' phase, traced by equations (\ref{eq:prob.total.choice}) and (\
564 % 564 %
565 \item[Events.] \label{item:event.cases} Each (general) event $e$ is in the class defined by its \acl{SC}, $\stablecore{e}$. So, we set: 565 \item[Events.] \label{item:event.cases} Each (general) event $e$ is in the class defined by its \acl{SC}, $\stablecore{e}$. So, we set:
566 \begin{equation} 566 \begin{equation}
567 - \pw{e, c} := \frac{\pw{\class{e}, c}}{\# \class{e}} . 567 + \pw{e, t} := \frac{\pw{\class{e}, t}}{\# \class{e}} .
568 \label{eq:weight.events} 568 \label{eq:weight.events}
569 \end{equation} 569 \end{equation}
570 and 570 and
571 \begin{equation} 571 \begin{equation}
572 - \pw{e} := \sum_{c\in\fml{C}} \pw{e, c} \pw{c}. 572 + \pw{e} := \sum_{t\in\fml{T}} \pw{e, t} \pw{t}.
573 \label{eq:weight.events.unconditional} 573 \label{eq:weight.events.unconditional}
574 \end{equation} 574 \end{equation}
575 - % \remark{instead of that equation}{if we set $\pw{s,c} := \theta_{s,c}$ in equation \eqref{eq:weight.stablemodel} here we do: 575 + % \remark{instead of that equation}{if we set $\pw{s,t} := \theta_{s,t}$ in equation \eqref{eq:weight.stablemodel} here we do:
576 % $$ 576 % $$
577 - % \pw{e} := \sum_{c\in\fml{C}} \pw{e, c}\pw{c}. 577 + % \pw{e} := \sum_{t\in\fml{T}} \pw{e, t}\pw{t}.
578 % $$ 578 % $$
579 % By the way, this is the \emph{marginalization + bayes theorem} in statistics: 579 % By the way, this is the \emph{marginalization + bayes theorem} in statistics:
580 % $$ 580 % $$
@@ -585,13 +585,13 @@ The ``extension'' phase, traced by equations (\ref{eq:prob.total.choice}) and (\ @@ -585,13 +585,13 @@ The ``extension'' phase, traced by equations (\ref{eq:prob.total.choice}) and (\
585 585
586 % PARAMETERS FOR UNCERTAINTY 586 % PARAMETERS FOR UNCERTAINTY
587 \begin{itemize} 587 \begin{itemize}
588 - \item \todo{Remark that $\pw{\inconsistent, c} = 0$ is independent of the \acl{TC}.} 588 + \item \todo{Remark that $\pw{\inconsistent, t} = 0$ is independent of the \acl{TC}.}
589 \item Consider the event $bc$. Since $\class{bc} = \indepclass$, from \cref{eq:weight.class.independent} we get $\mu\at{bc} = 0$. 589 \item Consider the event $bc$. Since $\class{bc} = \indepclass$, from \cref{eq:weight.class.independent} we get $\mu\at{bc} = 0$.
590 \item \todo{Remark that equation \eqref{eq:weight.events.unconditional}, together with observations, can be used to learn about the \emph{initial} probabilities of the atoms, in the specification.} 590 \item \todo{Remark that equation \eqref{eq:weight.events.unconditional}, together with observations, can be used to learn about the \emph{initial} probabilities of the atoms, in the specification.}
591 \end{itemize} 591 \end{itemize}
592 592
593 593
594 -The $\theta_{s,c}$ parameters in equation \eqref{eq:weight.stablemodel} express the \emph{specification's} lack of knowledge about the weight assignment, when a single \acl{TC} entails more than one \acl{SM}. In that case, how to distribute the respective weights? Our proposal to address this problem consists in assigning an unknown weight, $\theta_{s,c}$, conditional on the \acl{TC}, $c$, to each \acl{SM} $s$. This approach allows the expression of an unknown quantity and future estimation, given observed data. 594 +The $\theta_{s,t}$ parameters in equation \eqref{eq:weight.stablemodel} express the \emph{specification's} lack of knowledge about the weight assignment, when a single \acl{TC} entails more than one \acl{SM}. In that case, how to distribute the respective weights? Our proposal to address this problem consists in assigning an unknown weight, $\theta_{s,t}$, conditional on the \acl{TC}, $t$, to each \acl{SM} $s$. This approach allows the expression of an unknown quantity and future estimation, given observed data.
595 595
596 % SUPERSET 596 % SUPERSET
597 Equation \eqref{eq:weight.class.other} results from conditional independence of \aclp{SM}. 597 Equation \eqref{eq:weight.class.other} results from conditional independence of \aclp{SM}.
@@ -608,14 +608,14 @@ We continue with the specification from Equation \eqref{eq:example.1}. @@ -608,14 +608,14 @@ We continue with the specification from Equation \eqref{eq:example.1}.
608 \item[\Aclp{TC}.] The \aclp{TC}, and respective \aclp{SM}, are 608 \item[\Aclp{TC}.] The \aclp{TC}, and respective \aclp{SM}, are
609 \begin{center} 609 \begin{center}
610 \begin{tabular}{ll|r} 610 \begin{tabular}{ll|r}
611 - \textbf{\Acl{TC}} & \textbf{\Aclp{SM}} & \textbf{$\pw{c}$}\ 611 + \textbf{\Acl{TC}} & \textbf{\Aclp{SM}} & \textbf{$\pw{t}$}\
612 \hline 612 \hline
613 $a$ & $ab, ac$ & $0.3$\\ 613 $a$ & $ab, ac$ & $0.3$\\
614 $\co{a} = \neg a$ & $\co{a}$ & $\co{0.3} = 0.7$ 614 $\co{a} = \neg a$ & $\co{a}$ & $\co{0.3} = 0.7$
615 \end{tabular} 615 \end{tabular}
616 \end{center} 616 \end{center}
617 % 617 %
618 - \item[\Aclp{SM}.] The $\theta_{s,c}$ parameters in this example are 618 + \item[\Aclp{SM}.] The $\theta_{s,t}$ parameters in this example are
619 $$ 619 $$
620 \theta_{ab,\co{a}} = \theta_{ac,\co{a}} = \theta_{\co{a}, a} = 0 620 \theta_{ab,\co{a}} = \theta_{ac,\co{a}} = \theta_{\co{a}, a} = 0
621 $$ 621 $$
@@ -628,9 +628,9 @@ We continue with the specification from Equation \eqref{eq:example.1}. @@ -628,9 +628,9 @@ We continue with the specification from Equation \eqref{eq:example.1}.
628 \begin{equation*} 628 \begin{equation*}
629 \begin{array}{l|ll|r} 629 \begin{array}{l|ll|r}
630 \stablecore{e} 630 \stablecore{e}
631 - & \pw{s_k, c= \co{a}}  
632 - & \pw{s_k, c= a}  
633 - & \pw{\class{e}}=\sum_{c}\pw{\class{e},c}\pw{c} 631 + & \pw{s_k, t= \co{a}}
  632 + & \pw{s_k, t= a}
  633 + & \pw{\class{e}}=\sum_{t}\pw{\class{e},t}\pw{t}
634 \\ 634 \\
635 \hline 635 \hline
636 \co{a} 636 \co{a}
@@ -675,16 +675,19 @@ We continue with the specification from Equation \eqref{eq:example.1}. @@ -675,16 +675,19 @@ We continue with the specification from Equation \eqref{eq:example.1}.
675 & 1 675 & 1
676 \end{array} 676 \end{array}
677 \end{equation*} 677 \end{equation*}
678 - \item[Normalization.] To get a weight that sums up to one, we compute the \emph{normalization factor}. Since $\pw{\cdot}$ is constant on classes we have 678 + \item[Normalization.] To get a weight that sums up to one, we compute the \emph{normalization factor}. Since $\pw{\cdot}$ is constant on classes,
679 \begin{equation*} 679 \begin{equation*}
680 Z := \sum_{e\in\fml{E}} \pw{e} 680 Z := \sum_{e\in\fml{E}} \pw{e}
681 - = \sum_{\class{e} \in\fml{E}/\sim} \frac{\pw{\class{e}}}{\#\class{e}}, 681 + = \sum_{\class{e} \in\class{\fml{E}}} \frac{\pw{\class{e}}}{\#\class{e}},
682 \end{equation*} 682 \end{equation*}
683 - that divides the weight function into a normalized weight: 683 + that divides the weight function into a normalized weight
684 \begin{equation*} 684 \begin{equation*}
685 \pr{e} := \frac{\pw{e}}{Z}. 685 \pr{e} := \frac{\pw{e}}{Z}.
686 \end{equation*} 686 \end{equation*}
687 - 687 + such that
  688 + $$
  689 + \sum_{e \in \fml{E}} \pr{e} = 1.
  690 + $$
688 For the SBF example, 691 For the SBF example,
689 \begin{equation*} 692 \begin{equation*}
690 \begin{array}{lr|r|rr} 693 \begin{array}{lr|r|rr}
@@ -969,7 +972,7 @@ Considering the probabilities given in \cref{Figure_Alarm} we obtain the followi @@ -969,7 +972,7 @@ Considering the probabilities given in \cref{Figure_Alarm} we obtain the followi
969 \item The physical system might have \emph{latent} variables, possibly also represented in the specification. These variables are never observed, so observations should be concentrated \emph{somewhere else}. 972 \item The physical system might have \emph{latent} variables, possibly also represented in the specification. These variables are never observed, so observations should be concentrated \emph{somewhere else}.
970 \item Comment on the possibility of extending equation \eqref{eq:weight.events.unconditional} with parameters expressing further uncertainties, enabling a tuning of the model's \aclp{TC}, given observations. 973 \item Comment on the possibility of extending equation \eqref{eq:weight.events.unconditional} with parameters expressing further uncertainties, enabling a tuning of the model's \aclp{TC}, given observations.
971 \begin{equation*} 974 \begin{equation*}
972 - \pw{e} := \sum_{c\in\fml{C}} \pw{e, c}\theta_c. 975 + \pw{e} := \sum_{c\in\fml{T}} \pw{e, c}\theta_c.
973 \end{equation*} 976 \end{equation*}
974 \end{itemize} 977 \end{itemize}
975 978