pre-paper.bbl
26.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
% $ biblatex auxiliary file $
% $ biblatex bbl format version 3.2 $
% Do not modify the above lines!
%
% This is an auxiliary file used by the 'biblatex' package.
% This file may safely be deleted. It will be recreated by
% biber as required.
%
\begingroup
\makeatletter
\@ifundefined{ver@biblatex.sty}
{\@latex@error
{Missing 'biblatex' package}
{The bibliography requires the 'biblatex' package.}
\aftergroup\endinput}
{}
\endgroup
\refsection{0}
\datalist[entry]{nty/global//global/global}
\entry{alberti2017cplint}{article}{}
\name{author}{5}{}{%
{{hash=420ee49754fe95c6d208688e7247258e}{%
family={Alberti},
familyi={A\bibinitperiod},
given={Marco},
giveni={M\bibinitperiod}}}%
{{hash=570b8db51137612de4b521d111b0a6db}{%
family={Bellodi},
familyi={B\bibinitperiod},
given={Elena},
giveni={E\bibinitperiod}}}%
{{hash=a665bb73651fa0ccb4219c71c149c9a8}{%
family={Cota},
familyi={C\bibinitperiod},
given={Giuseppe},
giveni={G\bibinitperiod}}}%
{{hash=c9fda578750553b567123a1a98d033e1}{%
family={Riguzzi},
familyi={R\bibinitperiod},
given={Fabrizio},
giveni={F\bibinitperiod}}}%
{{hash=9388261b045f4464361f4e968dfea5ff}{%
family={Zese},
familyi={Z\bibinitperiod},
given={Riccardo},
giveni={R\bibinitperiod}}}%
}
\list{publisher}{1}{%
{IOS Press}%
}
\strng{namehash}{74186015c534a57a69aa112a80ae3302}
\strng{fullhash}{4ba680a569a783a4dde15ecca9ca96e6}
\strng{bibnamehash}{74186015c534a57a69aa112a80ae3302}
\strng{authorbibnamehash}{74186015c534a57a69aa112a80ae3302}
\strng{authornamehash}{74186015c534a57a69aa112a80ae3302}
\strng{authorfullhash}{4ba680a569a783a4dde15ecca9ca96e6}
\field{sortinit}{A}
\field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Intelligenza Artificiale}
\field{number}{1}
\field{title}{cplint on SWISH: Probabilistic logical inference with a web browser}
\field{volume}{11}
\field{year}{2017}
\field{pages}{47\bibrangedash 64}
\range{pages}{18}
\endentry
\entry{baral2009probabilistic}{article}{}
\name{author}{3}{}{%
{{hash=121708a74e1528d506fc79a1638d9e8f}{%
family={Baral},
familyi={B\bibinitperiod},
given={Chitta},
giveni={C\bibinitperiod}}}%
{{hash=9ddf8a4d782a7a6f34c25fbc4ca822b1}{%
family={Gelfond},
familyi={G\bibinitperiod},
given={Michael},
giveni={M\bibinitperiod}}}%
{{hash=226d456b40a5f6c60de5e19d2193b47e}{%
family={Rushton},
familyi={R\bibinitperiod},
given={Nelson},
giveni={N\bibinitperiod}}}%
}
\list{publisher}{1}{%
{Cambridge University Press}%
}
\strng{namehash}{c73d1fd137b81e7fc22dd2904e1c016a}
\strng{fullhash}{c73d1fd137b81e7fc22dd2904e1c016a}
\strng{bibnamehash}{c73d1fd137b81e7fc22dd2904e1c016a}
\strng{authorbibnamehash}{c73d1fd137b81e7fc22dd2904e1c016a}
\strng{authornamehash}{c73d1fd137b81e7fc22dd2904e1c016a}
\strng{authorfullhash}{c73d1fd137b81e7fc22dd2904e1c016a}
\field{sortinit}{B}
\field{sortinithash}{d7095fff47cda75ca2589920aae98399}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Theory and Practice of Logic Programming}
\field{number}{1}
\field{title}{Probabilistic reasoning with {A}nswer {S}ets}
\field{volume}{9}
\field{year}{2009}
\field{pages}{57\bibrangedash 144}
\range{pages}{88}
\endentry
\entry{bezanson2017julia}{article}{}
\name{author}{4}{}{%
{{hash=17e68031e06f57a7e83caeb4e0aed827}{%
family={Bezanson},
familyi={B\bibinitperiod},
given={Jeff},
giveni={J\bibinitperiod}}}%
{{hash=01a6ca61fcd12a3a071ec49304df57f8}{%
family={Edelman},
familyi={E\bibinitperiod},
given={Alan},
giveni={A\bibinitperiod}}}%
{{hash=bca7c93f55e669f71c4ff95e68ac9538}{%
family={Karpinski},
familyi={K\bibinitperiod},
given={Stefan},
giveni={S\bibinitperiod}}}%
{{hash=de802ff42d9c902868c57a332dbac5e0}{%
family={Shah},
familyi={S\bibinitperiod},
given={Viral\bibnamedelima B.},
giveni={V\bibinitperiod\bibinitdelim B\bibinitperiod}}}%
}
\strng{namehash}{07e3452af3652a626dc1d02355fda942}
\strng{fullhash}{651af5e2dc744eabe31cd448eb05d640}
\strng{bibnamehash}{07e3452af3652a626dc1d02355fda942}
\strng{authorbibnamehash}{07e3452af3652a626dc1d02355fda942}
\strng{authornamehash}{07e3452af3652a626dc1d02355fda942}
\strng{authorfullhash}{651af5e2dc744eabe31cd448eb05d640}
\field{sortinit}{B}
\field{sortinithash}{d7095fff47cda75ca2589920aae98399}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{abstract}{Bridging cultures that have often been distant, Julia combines expertise from the diverse fields of computer science and computational science to create a new approach to numerical computing. Julia is designed to be easy and fast and questions notions generally held to be “laws of nature" by practitioners of numerical computing: \beginlist \item High-level dynamic programs have to be slow. \item One must prototype in one language and then rewrite in another language for speed or deployment. \item There are parts of a system appropriate for the programmer, and other parts that are best left untouched as they have been built by the experts. \endlist We introduce the Julia programming language and its design---a dance between specialization and abstraction. Specialization allows for custom treatment. Multiple dispatch, a technique from computer science, picks the right algorithm for the right circumstance. Abstraction, which is what good computation is really about, recognizes what remains the same after differences are stripped away. Abstractions in mathematics are captured as code through another technique from computer science, generic programming. Julia shows that one can achieve machine performance without sacrificing human convenience.}
\field{journaltitle}{SIAM Review}
\field{number}{1}
\field{title}{Julia: A Fresh Approach to Numerical Computing}
\field{volume}{59}
\field{year}{2017}
\field{pages}{65\bibrangedash 98}
\range{pages}{34}
\verb{doi}
\verb 10.1137/141000671
\endverb
\endentry
\entry{bouchetvalat2023dataframes}{article}{}
\name{author}{2}{}{%
{{hash=c4947969ce23c177797e76bb6254d0cc}{%
family={Bouchet-Valat},
familyi={B\bibinithyphendelim V\bibinitperiod},
given={Milan},
giveni={M\bibinitperiod}}}%
{{hash=a14f03f43b21a678bf3252a26361a727}{%
family={Kamiński},
familyi={K\bibinitperiod},
given={Bogumił},
giveni={B\bibinitperiod}}}%
}
\strng{namehash}{389ec9da7a157914a7835574b062afef}
\strng{fullhash}{389ec9da7a157914a7835574b062afef}
\strng{bibnamehash}{389ec9da7a157914a7835574b062afef}
\strng{authorbibnamehash}{389ec9da7a157914a7835574b062afef}
\strng{authornamehash}{389ec9da7a157914a7835574b062afef}
\strng{authorfullhash}{389ec9da7a157914a7835574b062afef}
\field{sortinit}{B}
\field{sortinithash}{d7095fff47cda75ca2589920aae98399}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{abstract}{DataFrames.jl is a package written for and in the Julia language offering flexible and efficient handling of tabular data sets in memory. Thanks to Julia’s unique strengths, it provides an appealing set of features: Rich support for standard data processing tasks and excellent flexibility and efficiency for more advanced and non-standard operations. We present the fundamental design of the package and how it compares with implementations of data frames in other languages, its main features, performance, and possible extensions. We conclude with a practical illustration of typical data processing operations.}
\field{journaltitle}{Journal of Statistical Software}
\field{number}{4}
\field{title}{DataFrames.jl: Flexible and Fast Tabular Data in Julia}
\field{volume}{107}
\field{year}{2023}
\field{pages}{1\bibrangedash 32}
\range{pages}{32}
\verb{doi}
\verb 10.18637/jss.v107.i04
\endverb
\endentry
\entry{cozman2020joy}{article}{}
\name{author}{2}{}{%
{{hash=fc6c72d4def6fbfbe5a2c3d671938b46}{%
family={Cozman},
familyi={C\bibinitperiod},
given={Fabio\bibnamedelima Gagliardi},
giveni={F\bibinitperiod\bibinitdelim G\bibinitperiod}}}%
{{hash=14938e120399ce7e11d1146ac161a8d2}{%
family={Mauá},
familyi={M\bibinitperiod},
given={Denis\bibnamedelima Deratani},
giveni={D\bibinitperiod\bibinitdelim D\bibinitperiod}}}%
}
\list{publisher}{1}{%
{Elsevier}%
}
\strng{namehash}{3bdbf804d2f1ae538b29c14ef2776e07}
\strng{fullhash}{3bdbf804d2f1ae538b29c14ef2776e07}
\strng{bibnamehash}{3bdbf804d2f1ae538b29c14ef2776e07}
\strng{authorbibnamehash}{3bdbf804d2f1ae538b29c14ef2776e07}
\strng{authornamehash}{3bdbf804d2f1ae538b29c14ef2776e07}
\strng{authorfullhash}{3bdbf804d2f1ae538b29c14ef2776e07}
\field{sortinit}{C}
\field{sortinithash}{4d103a86280481745c9c897c925753c0}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{International Journal of Approximate Reasoning}
\field{title}{The joy of probabilistic answer set programming: semantics, complexity, expressivity, inference}
\field{volume}{125}
\field{year}{2020}
\field{pages}{218\bibrangedash 239}
\range{pages}{22}
\endentry
\entry{de2007problog}{inproceedings}{}
\name{author}{4}{}{%
{{hash=d71ef24842e2fd1df4b1989ff0d24ff9}{%
family={De\bibnamedelima Raedt},
familyi={D\bibinitperiod\bibinitdelim R\bibinitperiod},
given={Luc},
giveni={L\bibinitperiod}}}%
{{hash=001a3d77c753e9bd2c2f5e6c5635b572}{%
family={Kimmig},
familyi={K\bibinitperiod},
given={Angelika},
giveni={A\bibinitperiod}}}%
{{hash=6f6200005b70c14db424245927d50f09}{%
family={Toivonen},
familyi={T\bibinitperiod},
given={Hannu},
giveni={H\bibinitperiod}}}%
{{hash=b0058ea388891753a0ac1307a4b6baae}{%
family={Veloso},
familyi={V\bibinitperiod},
given={M},
giveni={M\bibinitperiod}}}%
}
\list{organization}{1}{%
{IJCAI-INT JOINT CONF ARTIF INTELL}%
}
\strng{namehash}{fd4c47a1998c1936a4514e2ca25667cd}
\strng{fullhash}{c1c68d717878eedbdbab818dd8e22ffe}
\strng{bibnamehash}{fd4c47a1998c1936a4514e2ca25667cd}
\strng{authorbibnamehash}{fd4c47a1998c1936a4514e2ca25667cd}
\strng{authornamehash}{fd4c47a1998c1936a4514e2ca25667cd}
\strng{authorfullhash}{c1c68d717878eedbdbab818dd8e22ffe}
\field{sortinit}{D}
\field{sortinithash}{6f385f66841fb5e82009dc833c761848}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{booktitle}{IJCAI 2007, Proceedings of the 20th international joint conference on artificial intelligence}
\field{title}{ProbLog: A probabilistic {P}rolog and its application in link discovery}
\field{year}{2007}
\field{pages}{2462\bibrangedash 2467}
\range{pages}{6}
\endentry
\entry{geman84}{article}{}
\name{author}{2}{}{%
{{hash=559187c6e8cad5a03e2e2c57be738be0}{%
family={Geman},
familyi={G\bibinitperiod},
given={Stuart},
giveni={S\bibinitperiod}}}%
{{hash=89e4edfb9032a01b35790030deb29681}{%
family={Geman},
familyi={G\bibinitperiod},
given={Donald},
giveni={D\bibinitperiod}}}%
}
\strng{namehash}{0bb8b7eb2aae2428a08d94af9285141d}
\strng{fullhash}{0bb8b7eb2aae2428a08d94af9285141d}
\strng{bibnamehash}{0bb8b7eb2aae2428a08d94af9285141d}
\strng{authorbibnamehash}{0bb8b7eb2aae2428a08d94af9285141d}
\strng{authornamehash}{0bb8b7eb2aae2428a08d94af9285141d}
\strng{authorfullhash}{0bb8b7eb2aae2428a08d94af9285141d}
\field{sortinit}{G}
\field{sortinithash}{32d67eca0634bf53703493fb1090a2e8}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{IEEE Transactions on Pattern Analysis and Machine Intelligence}
\field{number}{6}
\field{title}{Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images}
\field{volume}{PAMI-6}
\field{year}{1984}
\field{pages}{721\bibrangedash 741}
\range{pages}{21}
\verb{doi}
\verb 10.1109/TPAMI.1984.4767596
\endverb
\endentry
\entry{gowda2021high}{article}{}
\name{author}{7}{}{%
{{hash=741b18d2576ad0cdd23998a5cf6d05e5}{%
family={Gowda},
familyi={G\bibinitperiod},
given={Shashi},
giveni={S\bibinitperiod}}}%
{{hash=20505ba2d4ff3726270435a325081550}{%
family={Ma},
familyi={M\bibinitperiod},
given={Yingbo},
giveni={Y\bibinitperiod}}}%
{{hash=61098ee435f5a99220266c3fdf173fcc}{%
family={Cheli},
familyi={C\bibinitperiod},
given={Alessandro},
giveni={A\bibinitperiod}}}%
{{hash=c8cd67bdc3b6cca3233dbde53bf34ea3}{%
family={Gwozdz},
familyi={G\bibinitperiod},
given={Maja},
giveni={M\bibinitperiod}}}%
{{hash=de802ff42d9c902868c57a332dbac5e0}{%
family={Shah},
familyi={S\bibinitperiod},
given={Viral\bibnamedelima B},
giveni={V\bibinitperiod\bibinitdelim B\bibinitperiod}}}%
{{hash=01a6ca61fcd12a3a071ec49304df57f8}{%
family={Edelman},
familyi={E\bibinitperiod},
given={Alan},
giveni={A\bibinitperiod}}}%
{{hash=c454e867cc51042dbb2c4a284006599f}{%
family={Rackauckas},
familyi={R\bibinitperiod},
given={Christopher},
giveni={C\bibinitperiod}}}%
}
\strng{namehash}{b23ac0f69148f89116e649eaf2519acd}
\strng{fullhash}{27df3e61bf8ca739546ab7156322c8e8}
\strng{bibnamehash}{b23ac0f69148f89116e649eaf2519acd}
\strng{authorbibnamehash}{b23ac0f69148f89116e649eaf2519acd}
\strng{authornamehash}{b23ac0f69148f89116e649eaf2519acd}
\strng{authorfullhash}{27df3e61bf8ca739546ab7156322c8e8}
\field{sortinit}{G}
\field{sortinithash}{32d67eca0634bf53703493fb1090a2e8}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{arXiv preprint arXiv:2105.03949}
\field{title}{High-performance symbolic-numerics via multiple dispatch}
\field{year}{2021}
\endentry
\entry{kindermann80}{book}{}
\name{author}{2}{}{%
{{hash=236638ffd8d29e6e07c3dd1a50a49945}{%
family={Kindermann},
familyi={K\bibinitperiod},
given={Ross},
giveni={R\bibinitperiod}}}%
{{hash=f64ddf8ee9b19fd9b8ea3426d553f892}{%
family={Snell},
familyi={S\bibinitperiod},
given={J.\bibnamedelimi Laurie},
giveni={J\bibinitperiod\bibinitdelim L\bibinitperiod}}}%
}
\list{publisher}{1}{%
{American Mathematical Society, Providence, RI}%
}
\strng{namehash}{4c4f20bebd8ab7d22ac7d784bca069f0}
\strng{fullhash}{4c4f20bebd8ab7d22ac7d784bca069f0}
\strng{bibnamehash}{4c4f20bebd8ab7d22ac7d784bca069f0}
\strng{authorbibnamehash}{4c4f20bebd8ab7d22ac7d784bca069f0}
\strng{authornamehash}{4c4f20bebd8ab7d22ac7d784bca069f0}
\strng{authorfullhash}{4c4f20bebd8ab7d22ac7d784bca069f0}
\field{sortinit}{K}
\field{sortinithash}{c02bf6bff1c488450c352b40f5d853ab}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{isbn}{0-8218-5001-6}
\field{series}{Contemporary Mathematics}
\field{title}{Markov random fields and their applications}
\field{volume}{1}
\field{year}{1980}
\field{pages}{ix+142}
\range{pages}{-1}
\endentry
\entry{lee2016weighted}{inproceedings}{}
\name{author}{2}{}{%
{{hash=61a8c8f9bc9bd96451ef58478d081e18}{%
family={Lee},
familyi={L\bibinitperiod},
given={Joohyung},
giveni={J\bibinitperiod}}}%
{{hash=141a1e7404c5b53546fb09821c56717a}{%
family={Wang},
familyi={W\bibinitperiod},
given={Yi},
giveni={Y\bibinitperiod}}}%
}
\strng{namehash}{297edc207a06c063f4094db6c2e1cafa}
\strng{fullhash}{297edc207a06c063f4094db6c2e1cafa}
\strng{bibnamehash}{297edc207a06c063f4094db6c2e1cafa}
\strng{authorbibnamehash}{297edc207a06c063f4094db6c2e1cafa}
\strng{authornamehash}{297edc207a06c063f4094db6c2e1cafa}
\strng{authorfullhash}{297edc207a06c063f4094db6c2e1cafa}
\field{sortinit}{L}
\field{sortinithash}{7c47d417cecb1f4bd38d1825c427a61a}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{booktitle}{Fifteenth international conference on the principles of knowledge representation and reasoning}
\field{title}{Weighted rules under the stable model semantics}
\field{year}{2016}
\endentry
\entry{lifschitz2002answer}{article}{}
\name{author}{1}{}{%
{{hash=3f9f7c9937297077325233d345cf9c91}{%
family={Lifschitz},
familyi={L\bibinitperiod},
given={Vladimir},
giveni={V\bibinitperiod}}}%
}
\strng{namehash}{3f9f7c9937297077325233d345cf9c91}
\strng{fullhash}{3f9f7c9937297077325233d345cf9c91}
\strng{bibnamehash}{3f9f7c9937297077325233d345cf9c91}
\strng{authorbibnamehash}{3f9f7c9937297077325233d345cf9c91}
\strng{authornamehash}{3f9f7c9937297077325233d345cf9c91}
\strng{authorfullhash}{3f9f7c9937297077325233d345cf9c91}
\field{sortinit}{L}
\field{sortinithash}{7c47d417cecb1f4bd38d1825c427a61a}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{abstract}{The idea of answer set programming is to represent a given computational problem by a logic program whose answer sets correspond to solutions, and then use an answer set solver, such as smodels or dlv, to find an answer set for this program. Applications of this method to planning are related to the line of research on the frame problem that started with the invention of formal nonmonotonic reasoning in 1980.}
\field{issn}{0004-3702}
\field{journaltitle}{Artificial Intelligence}
\field{number}{1}
\field{title}{Answer set programming and plan generation}
\field{volume}{138}
\field{year}{2002}
\field{pages}{39\bibrangedash 54}
\range{pages}{16}
\verb{doi}
\verb https://doi.org/10.1016/S0004-3702(02)00186-8
\endverb
\keyw{Answer sets,Default logic,Frame problem,Logic programming,Planning}
\endentry
\entry{pajunen2021solution}{article}{}
\name{author}{2}{}{%
{{hash=b9dbf77bca7bb2316094f219c5fab948}{%
family={Pajunen},
familyi={P\bibinitperiod},
given={Jukka},
giveni={J\bibinitperiod}}}%
{{hash=ed6a24604d923493e91425fbb35ac736}{%
family={Janhunen},
familyi={J\bibinitperiod},
given={Tomi},
giveni={T\bibinitperiod}}}%
}
\list{publisher}{1}{%
{Cambridge University Press}%
}
\strng{namehash}{05d4322df8419b717402d541a38709eb}
\strng{fullhash}{05d4322df8419b717402d541a38709eb}
\strng{bibnamehash}{05d4322df8419b717402d541a38709eb}
\strng{authorbibnamehash}{05d4322df8419b717402d541a38709eb}
\strng{authornamehash}{05d4322df8419b717402d541a38709eb}
\strng{authorfullhash}{05d4322df8419b717402d541a38709eb}
\field{sortinit}{P}
\field{sortinithash}{ff3bcf24f47321b42cb156c2cc8a8422}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Theory and Practice of Logic Programming}
\field{number}{6}
\field{title}{Solution enumeration by optimality in {A}nswer {S}et {P}rogramming}
\field{volume}{21}
\field{year}{2021}
\field{pages}{750\bibrangedash 767}
\range{pages}{18}
\endentry
\entry{Judea88}{book}{}
\name{author}{1}{}{%
{{hash=809f695b398afbb54b544c49e8d1bbbb}{%
family={Pearl},
familyi={P\bibinitperiod},
given={Judea},
giveni={J\bibinitperiod}}}%
}
\list{publisher}{1}{%
{Morgan Kaufmann, San Mateo, CA}%
}
\strng{namehash}{809f695b398afbb54b544c49e8d1bbbb}
\strng{fullhash}{809f695b398afbb54b544c49e8d1bbbb}
\strng{bibnamehash}{809f695b398afbb54b544c49e8d1bbbb}
\strng{authorbibnamehash}{809f695b398afbb54b544c49e8d1bbbb}
\strng{authornamehash}{809f695b398afbb54b544c49e8d1bbbb}
\strng{authorfullhash}{809f695b398afbb54b544c49e8d1bbbb}
\field{sortinit}{P}
\field{sortinithash}{ff3bcf24f47321b42cb156c2cc8a8422}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{isbn}{0-934613-73-7}
\field{series}{The Morgan Kaufmann Series in Representation and Reasoning}
\field{title}{Probabilistic reasoning in intelligent systems: networks of plausible inference}
\field{year}{1988}
\field{pages}{xx+552}
\range{pages}{-1}
\endentry
\entry{riguzzi2022foundations}{book}{}
\name{author}{1}{}{%
{{hash=c9fda578750553b567123a1a98d033e1}{%
family={Riguzzi},
familyi={R\bibinitperiod},
given={Fabrizio},
giveni={F\bibinitperiod}}}%
}
\list{language}{1}{%
{en}%
}
\list{location}{1}{%
{New York}%
}
\list{publisher}{1}{%
{River Publishers}%
}
\strng{namehash}{c9fda578750553b567123a1a98d033e1}
\strng{fullhash}{c9fda578750553b567123a1a98d033e1}
\strng{bibnamehash}{c9fda578750553b567123a1a98d033e1}
\strng{authorbibnamehash}{c9fda578750553b567123a1a98d033e1}
\strng{authornamehash}{c9fda578750553b567123a1a98d033e1}
\strng{authorfullhash}{c9fda578750553b567123a1a98d033e1}
\field{sortinit}{R}
\field{sortinithash}{5e1c39a9d46ffb6bebd8f801023a9486}
\field{labelnamesource}{author}
\field{labeltitlesource}{shorttitle}
\field{edition}{1}
\field{isbn}{978-1-00-333819-2}
\field{month}{9}
\field{shorttitle}{Foundations of {Probabilistic} {Logic} {Programming}}
\field{title}{Foundations of {Probabilistic} {Logic} {Programming}: {Languages}, {Semantics}, {Inference} and {Learning}}
\field{urlday}{1}
\field{urlmonth}{3}
\field{urlyear}{2023}
\field{year}{2022}
\field{urldateera}{ce}
\verb{doi}
\verb 10.1201/9781003338192
\endverb
\endentry
\entry{sato1995statistical}{inproceedings}{}
\name{author}{1}{}{%
{{hash=1a99e9f5aaf14b0a1e707546a6a0763b}{%
family={Sato},
familyi={S\bibinitperiod},
given={Taisuke},
giveni={T\bibinitperiod}}}%
}
\strng{namehash}{1a99e9f5aaf14b0a1e707546a6a0763b}
\strng{fullhash}{1a99e9f5aaf14b0a1e707546a6a0763b}
\strng{bibnamehash}{1a99e9f5aaf14b0a1e707546a6a0763b}
\strng{authorbibnamehash}{1a99e9f5aaf14b0a1e707546a6a0763b}
\strng{authornamehash}{1a99e9f5aaf14b0a1e707546a6a0763b}
\strng{authorfullhash}{1a99e9f5aaf14b0a1e707546a6a0763b}
\field{sortinit}{S}
\field{sortinithash}{b164b07b29984b41daf1e85279fbc5ab}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{booktitle}{International Conference on Logic Programming}
\field{title}{A Statistical Learning Method for Logic Programs with Distribution Semantics}
\field{year}{1995}
\endentry
\entry{verreet2022inference}{inproceedings}{}
\name{author}{4}{}{%
{{hash=8c3cb156a38a05a0db007c3f70046969}{%
family={Verreet},
familyi={V\bibinitperiod},
given={Victor},
giveni={V\bibinitperiod}}}%
{{hash=2d3a05a3112c435b10b713e93f6f4d98}{%
family={Derkinderen},
familyi={D\bibinitperiod},
given={Vincent},
giveni={V\bibinitperiod}}}%
{{hash=4cae65aea3ad7a008ab76f69287bc6fe}{%
family={Dos\bibnamedelima Martires},
familyi={D\bibinitperiod\bibinitdelim M\bibinitperiod},
given={Pedro\bibnamedelima Zuidberg},
giveni={P\bibinitperiod\bibinitdelim Z\bibinitperiod}}}%
{{hash=d71ef24842e2fd1df4b1989ff0d24ff9}{%
family={De\bibnamedelima Raedt},
familyi={D\bibinitperiod\bibinitdelim R\bibinitperiod},
given={Luc},
giveni={L\bibinitperiod}}}%
}
\strng{namehash}{c8e5be2a89a704b979234d53774a7b44}
\strng{fullhash}{9599a2aa920192263bed75189f93da65}
\strng{bibnamehash}{c8e5be2a89a704b979234d53774a7b44}
\strng{authorbibnamehash}{c8e5be2a89a704b979234d53774a7b44}
\strng{authornamehash}{c8e5be2a89a704b979234d53774a7b44}
\strng{authorfullhash}{9599a2aa920192263bed75189f93da65}
\field{sortinit}{V}
\field{sortinithash}{afb52128e5b4dc4b843768c0113d673b}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{booktitle}{Proceedings of the AAAI Conference on Artificial Intelligence}
\field{number}{9}
\field{title}{Inference and learning with model uncertainty in probabilistic logic programs}
\field{volume}{36}
\field{year}{2022}
\field{pages}{10060\bibrangedash 10069}
\range{pages}{10}
\endentry
\enddatalist
\endrefsection
\endinput