pre-paper.bbl 26.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
% $ biblatex auxiliary file $
% $ biblatex bbl format version 3.2 $
% Do not modify the above lines!
%
% This is an auxiliary file used by the 'biblatex' package.
% This file may safely be deleted. It will be recreated by
% biber as required.
%
\begingroup
\makeatletter
\@ifundefined{ver@biblatex.sty}
  {\@latex@error
     {Missing 'biblatex' package}
     {The bibliography requires the 'biblatex' package.}
      \aftergroup\endinput}
  {}
\endgroup


\refsection{0}
  \datalist[entry]{nty/global//global/global}
    \entry{alberti2017cplint}{article}{}
      \name{author}{5}{}{%
        {{hash=420ee49754fe95c6d208688e7247258e}{%
           family={Alberti},
           familyi={A\bibinitperiod},
           given={Marco},
           giveni={M\bibinitperiod}}}%
        {{hash=570b8db51137612de4b521d111b0a6db}{%
           family={Bellodi},
           familyi={B\bibinitperiod},
           given={Elena},
           giveni={E\bibinitperiod}}}%
        {{hash=a665bb73651fa0ccb4219c71c149c9a8}{%
           family={Cota},
           familyi={C\bibinitperiod},
           given={Giuseppe},
           giveni={G\bibinitperiod}}}%
        {{hash=c9fda578750553b567123a1a98d033e1}{%
           family={Riguzzi},
           familyi={R\bibinitperiod},
           given={Fabrizio},
           giveni={F\bibinitperiod}}}%
        {{hash=9388261b045f4464361f4e968dfea5ff}{%
           family={Zese},
           familyi={Z\bibinitperiod},
           given={Riccardo},
           giveni={R\bibinitperiod}}}%
      }
      \list{publisher}{1}{%
        {IOS Press}%
      }
      \strng{namehash}{74186015c534a57a69aa112a80ae3302}
      \strng{fullhash}{4ba680a569a783a4dde15ecca9ca96e6}
      \strng{bibnamehash}{74186015c534a57a69aa112a80ae3302}
      \strng{authorbibnamehash}{74186015c534a57a69aa112a80ae3302}
      \strng{authornamehash}{74186015c534a57a69aa112a80ae3302}
      \strng{authorfullhash}{4ba680a569a783a4dde15ecca9ca96e6}
      \field{sortinit}{A}
      \field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2}
      \field{labelnamesource}{author}
      \field{labeltitlesource}{title}
      \field{journaltitle}{Intelligenza Artificiale}
      \field{number}{1}
      \field{title}{cplint on SWISH: Probabilistic logical inference with a web browser}
      \field{volume}{11}
      \field{year}{2017}
      \field{pages}{47\bibrangedash 64}
      \range{pages}{18}
    \endentry
    \entry{baral2009probabilistic}{article}{}
      \name{author}{3}{}{%
        {{hash=121708a74e1528d506fc79a1638d9e8f}{%
           family={Baral},
           familyi={B\bibinitperiod},
           given={Chitta},
           giveni={C\bibinitperiod}}}%
        {{hash=9ddf8a4d782a7a6f34c25fbc4ca822b1}{%
           family={Gelfond},
           familyi={G\bibinitperiod},
           given={Michael},
           giveni={M\bibinitperiod}}}%
        {{hash=226d456b40a5f6c60de5e19d2193b47e}{%
           family={Rushton},
           familyi={R\bibinitperiod},
           given={Nelson},
           giveni={N\bibinitperiod}}}%
      }
      \list{publisher}{1}{%
        {Cambridge University Press}%
      }
      \strng{namehash}{c73d1fd137b81e7fc22dd2904e1c016a}
      \strng{fullhash}{c73d1fd137b81e7fc22dd2904e1c016a}
      \strng{bibnamehash}{c73d1fd137b81e7fc22dd2904e1c016a}
      \strng{authorbibnamehash}{c73d1fd137b81e7fc22dd2904e1c016a}
      \strng{authornamehash}{c73d1fd137b81e7fc22dd2904e1c016a}
      \strng{authorfullhash}{c73d1fd137b81e7fc22dd2904e1c016a}
      \field{sortinit}{B}
      \field{sortinithash}{d7095fff47cda75ca2589920aae98399}
      \field{labelnamesource}{author}
      \field{labeltitlesource}{title}
      \field{journaltitle}{Theory and Practice of Logic Programming}
      \field{number}{1}
      \field{title}{Probabilistic reasoning with {A}nswer {S}ets}
      \field{volume}{9}
      \field{year}{2009}
      \field{pages}{57\bibrangedash 144}
      \range{pages}{88}
    \endentry
    \entry{bezanson2017julia}{article}{}
      \name{author}{4}{}{%
        {{hash=17e68031e06f57a7e83caeb4e0aed827}{%
           family={Bezanson},
           familyi={B\bibinitperiod},
           given={Jeff},
           giveni={J\bibinitperiod}}}%
        {{hash=01a6ca61fcd12a3a071ec49304df57f8}{%
           family={Edelman},
           familyi={E\bibinitperiod},
           given={Alan},
           giveni={A\bibinitperiod}}}%
        {{hash=bca7c93f55e669f71c4ff95e68ac9538}{%
           family={Karpinski},
           familyi={K\bibinitperiod},
           given={Stefan},
           giveni={S\bibinitperiod}}}%
        {{hash=de802ff42d9c902868c57a332dbac5e0}{%
           family={Shah},
           familyi={S\bibinitperiod},
           given={Viral\bibnamedelima B.},
           giveni={V\bibinitperiod\bibinitdelim B\bibinitperiod}}}%
      }
      \strng{namehash}{07e3452af3652a626dc1d02355fda942}
      \strng{fullhash}{651af5e2dc744eabe31cd448eb05d640}
      \strng{bibnamehash}{07e3452af3652a626dc1d02355fda942}
      \strng{authorbibnamehash}{07e3452af3652a626dc1d02355fda942}
      \strng{authornamehash}{07e3452af3652a626dc1d02355fda942}
      \strng{authorfullhash}{651af5e2dc744eabe31cd448eb05d640}
      \field{sortinit}{B}
      \field{sortinithash}{d7095fff47cda75ca2589920aae98399}
      \field{labelnamesource}{author}
      \field{labeltitlesource}{title}
      \field{abstract}{Bridging cultures that have often been distant, Julia combines expertise from the diverse fields of computer science and computational science to create a new approach to numerical computing. Julia is designed to be easy and fast and questions notions generally held to be “laws of nature" by practitioners of numerical computing: \beginlist \item High-level dynamic programs have to be slow. \item One must prototype in one language and then rewrite in another language for speed or deployment. \item There are parts of a system appropriate for the programmer, and other parts that are best left untouched as they have been built by the experts. \endlist We introduce the Julia programming language and its design---a dance between specialization and abstraction. Specialization allows for custom treatment. Multiple dispatch, a technique from computer science, picks the right algorithm for the right circumstance. Abstraction, which is what good computation is really about, recognizes what remains the same after differences are stripped away. Abstractions in mathematics are captured as code through another technique from computer science, generic programming. Julia shows that one can achieve machine performance without sacrificing human convenience.}
      \field{journaltitle}{SIAM Review}
      \field{number}{1}
      \field{title}{Julia: A Fresh Approach to Numerical Computing}
      \field{volume}{59}
      \field{year}{2017}
      \field{pages}{65\bibrangedash 98}
      \range{pages}{34}
      \verb{doi}
      \verb 10.1137/141000671
      \endverb
    \endentry
    \entry{bouchetvalat2023dataframes}{article}{}
      \name{author}{2}{}{%
        {{hash=c4947969ce23c177797e76bb6254d0cc}{%
           family={Bouchet-Valat},
           familyi={B\bibinithyphendelim V\bibinitperiod},
           given={Milan},
           giveni={M\bibinitperiod}}}%
        {{hash=a14f03f43b21a678bf3252a26361a727}{%
           family={Kamiński},
           familyi={K\bibinitperiod},
           given={Bogumił},
           giveni={B\bibinitperiod}}}%
      }
      \strng{namehash}{389ec9da7a157914a7835574b062afef}
      \strng{fullhash}{389ec9da7a157914a7835574b062afef}
      \strng{bibnamehash}{389ec9da7a157914a7835574b062afef}
      \strng{authorbibnamehash}{389ec9da7a157914a7835574b062afef}
      \strng{authornamehash}{389ec9da7a157914a7835574b062afef}
      \strng{authorfullhash}{389ec9da7a157914a7835574b062afef}
      \field{sortinit}{B}
      \field{sortinithash}{d7095fff47cda75ca2589920aae98399}
      \field{labelnamesource}{author}
      \field{labeltitlesource}{title}
      \field{abstract}{DataFrames.jl is a package written for and in the Julia language offering flexible and efficient handling of tabular data sets in memory. Thanks to Julia’s unique strengths, it provides an appealing set of features: Rich support for standard data processing tasks and excellent flexibility and efficiency for more advanced and non-standard operations. We present the fundamental design of the package and how it compares with implementations of data frames in other languages, its main features, performance, and possible extensions. We conclude with a practical illustration of typical data processing operations.}
      \field{journaltitle}{Journal of Statistical Software}
      \field{number}{4}
      \field{title}{DataFrames.jl: Flexible and Fast Tabular Data in Julia}
      \field{volume}{107}
      \field{year}{2023}
      \field{pages}{1\bibrangedash 32}
      \range{pages}{32}
      \verb{doi}
      \verb 10.18637/jss.v107.i04
      \endverb
    \endentry
    \entry{cozman2020joy}{article}{}
      \name{author}{2}{}{%
        {{hash=fc6c72d4def6fbfbe5a2c3d671938b46}{%
           family={Cozman},
           familyi={C\bibinitperiod},
           given={Fabio\bibnamedelima Gagliardi},
           giveni={F\bibinitperiod\bibinitdelim G\bibinitperiod}}}%
        {{hash=14938e120399ce7e11d1146ac161a8d2}{%
           family={Mauá},
           familyi={M\bibinitperiod},
           given={Denis\bibnamedelima Deratani},
           giveni={D\bibinitperiod\bibinitdelim D\bibinitperiod}}}%
      }
      \list{publisher}{1}{%
        {Elsevier}%
      }
      \strng{namehash}{3bdbf804d2f1ae538b29c14ef2776e07}
      \strng{fullhash}{3bdbf804d2f1ae538b29c14ef2776e07}
      \strng{bibnamehash}{3bdbf804d2f1ae538b29c14ef2776e07}
      \strng{authorbibnamehash}{3bdbf804d2f1ae538b29c14ef2776e07}
      \strng{authornamehash}{3bdbf804d2f1ae538b29c14ef2776e07}
      \strng{authorfullhash}{3bdbf804d2f1ae538b29c14ef2776e07}
      \field{sortinit}{C}
      \field{sortinithash}{4d103a86280481745c9c897c925753c0}
      \field{labelnamesource}{author}
      \field{labeltitlesource}{title}
      \field{journaltitle}{International Journal of Approximate Reasoning}
      \field{title}{The joy of probabilistic answer set programming: semantics, complexity, expressivity, inference}
      \field{volume}{125}
      \field{year}{2020}
      \field{pages}{218\bibrangedash 239}
      \range{pages}{22}
    \endentry
    \entry{de2007problog}{inproceedings}{}
      \name{author}{4}{}{%
        {{hash=d71ef24842e2fd1df4b1989ff0d24ff9}{%
           family={De\bibnamedelima Raedt},
           familyi={D\bibinitperiod\bibinitdelim R\bibinitperiod},
           given={Luc},
           giveni={L\bibinitperiod}}}%
        {{hash=001a3d77c753e9bd2c2f5e6c5635b572}{%
           family={Kimmig},
           familyi={K\bibinitperiod},
           given={Angelika},
           giveni={A\bibinitperiod}}}%
        {{hash=6f6200005b70c14db424245927d50f09}{%
           family={Toivonen},
           familyi={T\bibinitperiod},
           given={Hannu},
           giveni={H\bibinitperiod}}}%
        {{hash=b0058ea388891753a0ac1307a4b6baae}{%
           family={Veloso},
           familyi={V\bibinitperiod},
           given={M},
           giveni={M\bibinitperiod}}}%
      }
      \list{organization}{1}{%
        {IJCAI-INT JOINT CONF ARTIF INTELL}%
      }
      \strng{namehash}{fd4c47a1998c1936a4514e2ca25667cd}
      \strng{fullhash}{c1c68d717878eedbdbab818dd8e22ffe}
      \strng{bibnamehash}{fd4c47a1998c1936a4514e2ca25667cd}
      \strng{authorbibnamehash}{fd4c47a1998c1936a4514e2ca25667cd}
      \strng{authornamehash}{fd4c47a1998c1936a4514e2ca25667cd}
      \strng{authorfullhash}{c1c68d717878eedbdbab818dd8e22ffe}
      \field{sortinit}{D}
      \field{sortinithash}{6f385f66841fb5e82009dc833c761848}
      \field{labelnamesource}{author}
      \field{labeltitlesource}{title}
      \field{booktitle}{IJCAI 2007, Proceedings of the 20th international joint conference on artificial intelligence}
      \field{title}{ProbLog: A probabilistic {P}rolog and its application in link discovery}
      \field{year}{2007}
      \field{pages}{2462\bibrangedash 2467}
      \range{pages}{6}
    \endentry
    \entry{geman84}{article}{}
      \name{author}{2}{}{%
        {{hash=559187c6e8cad5a03e2e2c57be738be0}{%
           family={Geman},
           familyi={G\bibinitperiod},
           given={Stuart},
           giveni={S\bibinitperiod}}}%
        {{hash=89e4edfb9032a01b35790030deb29681}{%
           family={Geman},
           familyi={G\bibinitperiod},
           given={Donald},
           giveni={D\bibinitperiod}}}%
      }
      \strng{namehash}{0bb8b7eb2aae2428a08d94af9285141d}
      \strng{fullhash}{0bb8b7eb2aae2428a08d94af9285141d}
      \strng{bibnamehash}{0bb8b7eb2aae2428a08d94af9285141d}
      \strng{authorbibnamehash}{0bb8b7eb2aae2428a08d94af9285141d}
      \strng{authornamehash}{0bb8b7eb2aae2428a08d94af9285141d}
      \strng{authorfullhash}{0bb8b7eb2aae2428a08d94af9285141d}
      \field{sortinit}{G}
      \field{sortinithash}{32d67eca0634bf53703493fb1090a2e8}
      \field{labelnamesource}{author}
      \field{labeltitlesource}{title}
      \field{journaltitle}{IEEE Transactions on Pattern Analysis and Machine Intelligence}
      \field{number}{6}
      \field{title}{Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images}
      \field{volume}{PAMI-6}
      \field{year}{1984}
      \field{pages}{721\bibrangedash 741}
      \range{pages}{21}
      \verb{doi}
      \verb 10.1109/TPAMI.1984.4767596
      \endverb
    \endentry
    \entry{gowda2021high}{article}{}
      \name{author}{7}{}{%
        {{hash=741b18d2576ad0cdd23998a5cf6d05e5}{%
           family={Gowda},
           familyi={G\bibinitperiod},
           given={Shashi},
           giveni={S\bibinitperiod}}}%
        {{hash=20505ba2d4ff3726270435a325081550}{%
           family={Ma},
           familyi={M\bibinitperiod},
           given={Yingbo},
           giveni={Y\bibinitperiod}}}%
        {{hash=61098ee435f5a99220266c3fdf173fcc}{%
           family={Cheli},
           familyi={C\bibinitperiod},
           given={Alessandro},
           giveni={A\bibinitperiod}}}%
        {{hash=c8cd67bdc3b6cca3233dbde53bf34ea3}{%
           family={Gwozdz},
           familyi={G\bibinitperiod},
           given={Maja},
           giveni={M\bibinitperiod}}}%
        {{hash=de802ff42d9c902868c57a332dbac5e0}{%
           family={Shah},
           familyi={S\bibinitperiod},
           given={Viral\bibnamedelima B},
           giveni={V\bibinitperiod\bibinitdelim B\bibinitperiod}}}%
        {{hash=01a6ca61fcd12a3a071ec49304df57f8}{%
           family={Edelman},
           familyi={E\bibinitperiod},
           given={Alan},
           giveni={A\bibinitperiod}}}%
        {{hash=c454e867cc51042dbb2c4a284006599f}{%
           family={Rackauckas},
           familyi={R\bibinitperiod},
           given={Christopher},
           giveni={C\bibinitperiod}}}%
      }
      \strng{namehash}{b23ac0f69148f89116e649eaf2519acd}
      \strng{fullhash}{27df3e61bf8ca739546ab7156322c8e8}
      \strng{bibnamehash}{b23ac0f69148f89116e649eaf2519acd}
      \strng{authorbibnamehash}{b23ac0f69148f89116e649eaf2519acd}
      \strng{authornamehash}{b23ac0f69148f89116e649eaf2519acd}
      \strng{authorfullhash}{27df3e61bf8ca739546ab7156322c8e8}
      \field{sortinit}{G}
      \field{sortinithash}{32d67eca0634bf53703493fb1090a2e8}
      \field{labelnamesource}{author}
      \field{labeltitlesource}{title}
      \field{journaltitle}{arXiv preprint arXiv:2105.03949}
      \field{title}{High-performance symbolic-numerics via multiple dispatch}
      \field{year}{2021}
    \endentry
    \entry{kindermann80}{book}{}
      \name{author}{2}{}{%
        {{hash=236638ffd8d29e6e07c3dd1a50a49945}{%
           family={Kindermann},
           familyi={K\bibinitperiod},
           given={Ross},
           giveni={R\bibinitperiod}}}%
        {{hash=f64ddf8ee9b19fd9b8ea3426d553f892}{%
           family={Snell},
           familyi={S\bibinitperiod},
           given={J.\bibnamedelimi Laurie},
           giveni={J\bibinitperiod\bibinitdelim L\bibinitperiod}}}%
      }
      \list{publisher}{1}{%
        {American Mathematical Society, Providence, RI}%
      }
      \strng{namehash}{4c4f20bebd8ab7d22ac7d784bca069f0}
      \strng{fullhash}{4c4f20bebd8ab7d22ac7d784bca069f0}
      \strng{bibnamehash}{4c4f20bebd8ab7d22ac7d784bca069f0}
      \strng{authorbibnamehash}{4c4f20bebd8ab7d22ac7d784bca069f0}
      \strng{authornamehash}{4c4f20bebd8ab7d22ac7d784bca069f0}
      \strng{authorfullhash}{4c4f20bebd8ab7d22ac7d784bca069f0}
      \field{sortinit}{K}
      \field{sortinithash}{c02bf6bff1c488450c352b40f5d853ab}
      \field{labelnamesource}{author}
      \field{labeltitlesource}{title}
      \field{isbn}{0-8218-5001-6}
      \field{series}{Contemporary Mathematics}
      \field{title}{Markov random fields and their applications}
      \field{volume}{1}
      \field{year}{1980}
      \field{pages}{ix+142}
      \range{pages}{-1}
    \endentry
    \entry{lee2016weighted}{inproceedings}{}
      \name{author}{2}{}{%
        {{hash=61a8c8f9bc9bd96451ef58478d081e18}{%
           family={Lee},
           familyi={L\bibinitperiod},
           given={Joohyung},
           giveni={J\bibinitperiod}}}%
        {{hash=141a1e7404c5b53546fb09821c56717a}{%
           family={Wang},
           familyi={W\bibinitperiod},
           given={Yi},
           giveni={Y\bibinitperiod}}}%
      }
      \strng{namehash}{297edc207a06c063f4094db6c2e1cafa}
      \strng{fullhash}{297edc207a06c063f4094db6c2e1cafa}
      \strng{bibnamehash}{297edc207a06c063f4094db6c2e1cafa}
      \strng{authorbibnamehash}{297edc207a06c063f4094db6c2e1cafa}
      \strng{authornamehash}{297edc207a06c063f4094db6c2e1cafa}
      \strng{authorfullhash}{297edc207a06c063f4094db6c2e1cafa}
      \field{sortinit}{L}
      \field{sortinithash}{7c47d417cecb1f4bd38d1825c427a61a}
      \field{labelnamesource}{author}
      \field{labeltitlesource}{title}
      \field{booktitle}{Fifteenth international conference on the principles of knowledge representation and reasoning}
      \field{title}{Weighted rules under the stable model semantics}
      \field{year}{2016}
    \endentry
    \entry{lifschitz2002answer}{article}{}
      \name{author}{1}{}{%
        {{hash=3f9f7c9937297077325233d345cf9c91}{%
           family={Lifschitz},
           familyi={L\bibinitperiod},
           given={Vladimir},
           giveni={V\bibinitperiod}}}%
      }
      \strng{namehash}{3f9f7c9937297077325233d345cf9c91}
      \strng{fullhash}{3f9f7c9937297077325233d345cf9c91}
      \strng{bibnamehash}{3f9f7c9937297077325233d345cf9c91}
      \strng{authorbibnamehash}{3f9f7c9937297077325233d345cf9c91}
      \strng{authornamehash}{3f9f7c9937297077325233d345cf9c91}
      \strng{authorfullhash}{3f9f7c9937297077325233d345cf9c91}
      \field{sortinit}{L}
      \field{sortinithash}{7c47d417cecb1f4bd38d1825c427a61a}
      \field{labelnamesource}{author}
      \field{labeltitlesource}{title}
      \field{abstract}{The idea of answer set programming is to represent a given computational problem by a logic program whose answer sets correspond to solutions, and then use an answer set solver, such as smodels or dlv, to find an answer set for this program. Applications of this method to planning are related to the line of research on the frame problem that started with the invention of formal nonmonotonic reasoning in 1980.}
      \field{issn}{0004-3702}
      \field{journaltitle}{Artificial Intelligence}
      \field{number}{1}
      \field{title}{Answer set programming and plan generation}
      \field{volume}{138}
      \field{year}{2002}
      \field{pages}{39\bibrangedash 54}
      \range{pages}{16}
      \verb{doi}
      \verb https://doi.org/10.1016/S0004-3702(02)00186-8
      \endverb
      \keyw{Answer sets,Default logic,Frame problem,Logic programming,Planning}
    \endentry
    \entry{pajunen2021solution}{article}{}
      \name{author}{2}{}{%
        {{hash=b9dbf77bca7bb2316094f219c5fab948}{%
           family={Pajunen},
           familyi={P\bibinitperiod},
           given={Jukka},
           giveni={J\bibinitperiod}}}%
        {{hash=ed6a24604d923493e91425fbb35ac736}{%
           family={Janhunen},
           familyi={J\bibinitperiod},
           given={Tomi},
           giveni={T\bibinitperiod}}}%
      }
      \list{publisher}{1}{%
        {Cambridge University Press}%
      }
      \strng{namehash}{05d4322df8419b717402d541a38709eb}
      \strng{fullhash}{05d4322df8419b717402d541a38709eb}
      \strng{bibnamehash}{05d4322df8419b717402d541a38709eb}
      \strng{authorbibnamehash}{05d4322df8419b717402d541a38709eb}
      \strng{authornamehash}{05d4322df8419b717402d541a38709eb}
      \strng{authorfullhash}{05d4322df8419b717402d541a38709eb}
      \field{sortinit}{P}
      \field{sortinithash}{ff3bcf24f47321b42cb156c2cc8a8422}
      \field{labelnamesource}{author}
      \field{labeltitlesource}{title}
      \field{journaltitle}{Theory and Practice of Logic Programming}
      \field{number}{6}
      \field{title}{Solution enumeration by optimality in {A}nswer {S}et {P}rogramming}
      \field{volume}{21}
      \field{year}{2021}
      \field{pages}{750\bibrangedash 767}
      \range{pages}{18}
    \endentry
    \entry{Judea88}{book}{}
      \name{author}{1}{}{%
        {{hash=809f695b398afbb54b544c49e8d1bbbb}{%
           family={Pearl},
           familyi={P\bibinitperiod},
           given={Judea},
           giveni={J\bibinitperiod}}}%
      }
      \list{publisher}{1}{%
        {Morgan Kaufmann, San Mateo, CA}%
      }
      \strng{namehash}{809f695b398afbb54b544c49e8d1bbbb}
      \strng{fullhash}{809f695b398afbb54b544c49e8d1bbbb}
      \strng{bibnamehash}{809f695b398afbb54b544c49e8d1bbbb}
      \strng{authorbibnamehash}{809f695b398afbb54b544c49e8d1bbbb}
      \strng{authornamehash}{809f695b398afbb54b544c49e8d1bbbb}
      \strng{authorfullhash}{809f695b398afbb54b544c49e8d1bbbb}
      \field{sortinit}{P}
      \field{sortinithash}{ff3bcf24f47321b42cb156c2cc8a8422}
      \field{labelnamesource}{author}
      \field{labeltitlesource}{title}
      \field{isbn}{0-934613-73-7}
      \field{series}{The Morgan Kaufmann Series in Representation and Reasoning}
      \field{title}{Probabilistic reasoning in intelligent systems: networks of plausible inference}
      \field{year}{1988}
      \field{pages}{xx+552}
      \range{pages}{-1}
    \endentry
    \entry{riguzzi2022foundations}{book}{}
      \name{author}{1}{}{%
        {{hash=c9fda578750553b567123a1a98d033e1}{%
           family={Riguzzi},
           familyi={R\bibinitperiod},
           given={Fabrizio},
           giveni={F\bibinitperiod}}}%
      }
      \list{language}{1}{%
        {en}%
      }
      \list{location}{1}{%
        {New York}%
      }
      \list{publisher}{1}{%
        {River Publishers}%
      }
      \strng{namehash}{c9fda578750553b567123a1a98d033e1}
      \strng{fullhash}{c9fda578750553b567123a1a98d033e1}
      \strng{bibnamehash}{c9fda578750553b567123a1a98d033e1}
      \strng{authorbibnamehash}{c9fda578750553b567123a1a98d033e1}
      \strng{authornamehash}{c9fda578750553b567123a1a98d033e1}
      \strng{authorfullhash}{c9fda578750553b567123a1a98d033e1}
      \field{sortinit}{R}
      \field{sortinithash}{5e1c39a9d46ffb6bebd8f801023a9486}
      \field{labelnamesource}{author}
      \field{labeltitlesource}{shorttitle}
      \field{edition}{1}
      \field{isbn}{978-1-00-333819-2}
      \field{month}{9}
      \field{shorttitle}{Foundations of {Probabilistic} {Logic} {Programming}}
      \field{title}{Foundations of {Probabilistic} {Logic} {Programming}: {Languages}, {Semantics}, {Inference} and {Learning}}
      \field{urlday}{1}
      \field{urlmonth}{3}
      \field{urlyear}{2023}
      \field{year}{2022}
      \field{urldateera}{ce}
      \verb{doi}
      \verb 10.1201/9781003338192
      \endverb
    \endentry
    \entry{sato1995statistical}{inproceedings}{}
      \name{author}{1}{}{%
        {{hash=1a99e9f5aaf14b0a1e707546a6a0763b}{%
           family={Sato},
           familyi={S\bibinitperiod},
           given={Taisuke},
           giveni={T\bibinitperiod}}}%
      }
      \strng{namehash}{1a99e9f5aaf14b0a1e707546a6a0763b}
      \strng{fullhash}{1a99e9f5aaf14b0a1e707546a6a0763b}
      \strng{bibnamehash}{1a99e9f5aaf14b0a1e707546a6a0763b}
      \strng{authorbibnamehash}{1a99e9f5aaf14b0a1e707546a6a0763b}
      \strng{authornamehash}{1a99e9f5aaf14b0a1e707546a6a0763b}
      \strng{authorfullhash}{1a99e9f5aaf14b0a1e707546a6a0763b}
      \field{sortinit}{S}
      \field{sortinithash}{b164b07b29984b41daf1e85279fbc5ab}
      \field{labelnamesource}{author}
      \field{labeltitlesource}{title}
      \field{booktitle}{International Conference on Logic Programming}
      \field{title}{A Statistical Learning Method for Logic Programs with Distribution Semantics}
      \field{year}{1995}
    \endentry
    \entry{verreet2022inference}{inproceedings}{}
      \name{author}{4}{}{%
        {{hash=8c3cb156a38a05a0db007c3f70046969}{%
           family={Verreet},
           familyi={V\bibinitperiod},
           given={Victor},
           giveni={V\bibinitperiod}}}%
        {{hash=2d3a05a3112c435b10b713e93f6f4d98}{%
           family={Derkinderen},
           familyi={D\bibinitperiod},
           given={Vincent},
           giveni={V\bibinitperiod}}}%
        {{hash=4cae65aea3ad7a008ab76f69287bc6fe}{%
           family={Dos\bibnamedelima Martires},
           familyi={D\bibinitperiod\bibinitdelim M\bibinitperiod},
           given={Pedro\bibnamedelima Zuidberg},
           giveni={P\bibinitperiod\bibinitdelim Z\bibinitperiod}}}%
        {{hash=d71ef24842e2fd1df4b1989ff0d24ff9}{%
           family={De\bibnamedelima Raedt},
           familyi={D\bibinitperiod\bibinitdelim R\bibinitperiod},
           given={Luc},
           giveni={L\bibinitperiod}}}%
      }
      \strng{namehash}{c8e5be2a89a704b979234d53774a7b44}
      \strng{fullhash}{9599a2aa920192263bed75189f93da65}
      \strng{bibnamehash}{c8e5be2a89a704b979234d53774a7b44}
      \strng{authorbibnamehash}{c8e5be2a89a704b979234d53774a7b44}
      \strng{authornamehash}{c8e5be2a89a704b979234d53774a7b44}
      \strng{authorfullhash}{9599a2aa920192263bed75189f93da65}
      \field{sortinit}{V}
      \field{sortinithash}{afb52128e5b4dc4b843768c0113d673b}
      \field{labelnamesource}{author}
      \field{labeltitlesource}{title}
      \field{booktitle}{Proceedings of the AAAI Conference on Artificial Intelligence}
      \field{number}{9}
      \field{title}{Inference and learning with model uncertainty in probabilistic logic programs}
      \field{volume}{36}
      \field{year}{2022}
      \field{pages}{10060\bibrangedash 10069}
      \range{pages}{10}
    \endentry
  \enddatalist
\endrefsection
\endinput