pre-paper.tex 44 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
\documentclass[a4paper, 12pt]{article}

\usepackage[
bibstyle=numeric,
citestyle=numeric
]{biblatex} %Imports biblatex package
\addbibresource{zugzwang.bib} %Import the bibliography file
\usepackage[x11colors]{xcolor}

\usepackage{tikz}
\tikzset{
event/.style={},
smodel/.style={fill=gray!25},
tchoice/.style={draw, circle},
indep/.style={draw, dashed},
proptc/.style = {-latex, dashed},
propsm/.style = {-latex, thick},
doubt/.style = {gray}
}
\usetikzlibrary{calc, positioning, patterns}

\usepackage{hyperref}
\hypersetup{
colorlinks=true,
linkcolor=blue,
citecolor=blue,
}

\usepackage{commath}
\usepackage{amsthm}
\newtheorem{assumption}{Assumption}
\newtheorem{definition}{Definition}
\newtheorem{proposition}{Proposition}
\newtheorem{example}{Example}
\newtheorem{theorem}{Theorem}
\usepackage{amssymb}
\usepackage[normalem]{ulem}
\usepackage[nice]{nicefrac}
\usepackage{stmaryrd}
\usepackage{acronym}
\usepackage{multicol}
\usepackage{cleveref}
%
% Local commands
%
\newcommand{\note}[1]{\marginpar{\scriptsize #1}}
\newcommand{\naf}{\ensuremath{\sim\!}}
\newcommand{\larr}{\ensuremath{\leftarrow}}
\newcommand{\at}[1]{\ensuremath{\!\del{#1}}}
\newcommand{\co}[1]{\ensuremath{\overline{#1}}}
\newcommand{\fml}[1]{\ensuremath{{\cal #1}}}
\newcommand{\deft}[1]{\textbf{#1}}
\newcommand{\pset}[1]{\ensuremath{\mathbb{P}\at{#1}}}
\newcommand{\ent}{\ensuremath{\lhd}}
\newcommand{\cset}[2]{\ensuremath{\set{#1,~#2}}}
\newcommand{\langof}[1]{\ensuremath{\fml{L}\at{#1}}}
\newcommand{\uset}[1]{\ensuremath{#1^{\ast}}}
\newcommand{\lset}[1]{\ensuremath{#1_{\ast}}}
\newcommand{\yset}[1]{\ensuremath{\left\langle #1 \right\rangle}}
\newcommand{\stablecore}[1]{\ensuremath{\left\llbracket #1 \right\rrbracket}}
\newcommand{\uclass}[1]{\ensuremath{\intco{#1}}}
\newcommand{\lclass}[1]{\ensuremath{\intoc{#1}}}
\newcommand{\smclass}[1]{\ensuremath{\intcc{#1}}}
\newcommand{\pr}[1]{\ensuremath{\mathrm{P}\at{#1}}}
\newcommand{\pw}[1]{\ensuremath{\mu\at{#1}}}
\newcommand{\class}[1]{\ensuremath{[{#1}]_{\sim}}}
\newcommand{\urep}[1]{\ensuremath{\rep{#1}{}}}
\newcommand{\lrep}[1]{\ensuremath{\rep{}{#1}}}
\newcommand{\rep}[2]{\ensuremath{\left\langle #1 \middle| #2 \right\rangle}}
\newcommand{\inconsistent}{\bot}
\newcommand{\given}{\ensuremath{~\middle|~}}
\newcommand{\emptyevent}{\ensuremath{\vartriangle}}
\newcommand{\indepclass}{\ensuremath{\Diamond}}
\newcommand{\probfact}[2]{\ensuremath{#1\!::\!#2}}
\newcommand{\tcgen}[1]{\ensuremath{\widehat{#1}}}
\newcommand{\lfrac}[2]{\ensuremath{{#1}/{#2}}}
\newcommand{\condsymb}[2]{\ensuremath{p{#1}\_{#2}}}

\newcommand{\todo}[1]{{\color{red!50!black}(\emph{#1})}}
\newcommand{\remark}[2]{\uwave{#1}~{\color{green!40!black}(\emph{#2})}}
\newcommand{\replace}[2]{\sout{#1}/{\color{green!20!black}#2}}
\newcommand{\franc}[1]{{\color{orange!60!black}#1}}
\newcommand{\bruno}{\color{red!60!blue}}
%
%   Acronyms
%
\acrodef{BK}[BK]{background knowledge}
\acrodef{ASP}[ASP]{answer set program}
\acrodef{NP}[NP]{normal program}
\acrodef{DS}[DS]{distribution semantics}
\acrodef{PF}[PF]{probabilistic fact}
\acrodef{TC}[TC]{total choice}
\acrodef{SM}[SM]{stable model}
\acrodef{SC}[SC]{stable core}
\acrodef{KL}[KL]{Kullback-Leibler}

\title{An Algebraic Approach to Stochastic ASP
    %Zugzwang\\\emph{Logic and Artificial Intelligence}\\{\bruno Why this title?}
    }

\author{
\begin{tabular}{ccc}
    Francisco Coelho
    \footnote{Universidade de Évora, NOVALINCS, High Performance Computing Chair}
    & Bruno Dinis
    \footnote{Universidade de Évora, CIMA, CMAFcIO}
    & Salvador Abreu
    \footnote{Universidade de Évora, NOVALINCS}
    \\
    \texttt{fc@uevora.pt}
    & \texttt{bruno.dinis@uevora.pt}
    & \texttt{spa@uevora.pt}
\end{tabular}    
}

\begin{document}

\maketitle

\nocite{*}

\begin{abstract}
    \todo{rewrite}
    A major limitation of logical representations in real world applications is the implicit assumption that the \acl{BK} is perfect. This assumption is problematic if data is noisy, which is often the case. Here we aim to explore how \acl{ASP} specifications with probabilistic facts can lead to \remark{characterizations of probability functions}{Why is this important? Is this what `others in sota' are trying do to?} on the specification's domain.
\end{abstract}

\section{Introduction and Motivation}

\todo{Define and/or give references to all necessary concepts used in the paper}
\todo{state of the art; references}

\Acf{ASP} is a logic programming paradigm based on the \ac{SM} semantics of \acp{NP} that can be implemented using the latest advances in SAT solving technology. Unlike ProLog, \ac{ASP} is a truly declarative language that supports language constructs such as disjunction in the head of a clause, choice rules, and hard and weak constraints.

\todo{references}
The \ac{DS} is a key approach to extend logical representations with probabilistic reasoning. \Acp{PF} are the most basic \ac{DS} stochastic primitives and take the form of logical facts, $a$, labelled with probabilities, $p$, such as $\probfact{p}{a}$; Each \ac{PF} represents a boolean random variable that is true with probability $p$ and false with probability $\co{p} = 1 - p$. A (consistent) combination of the \acp{PF} defines a \acf{TC} $t = \set{\probfact{p}{a}, \ldots}$ such that \franc{changed \acl{TC} $c$ to $t$ everywhere.}

\begin{equation}
    \pr{T = t} = \prod_{a\in t} p \prod_{a \not\in t} \co{p}.
    \label{eq:prob.total.choice}
\end{equation}

Our goal is to extend this probability, from \acp{TC}, to cover the \emph{specification} domain. We use the term ``specification'' as set of rules and facts, plain and probabilistic, to decouple it from any computational semantics, implied, at least implicitly, by the term ``program''. We can foresee at least two key applications of this extended probability:

\begin{enumerate}
    \item Support probabilistic reasoning/tasks on the specification domain.
    \item Also, given a dataset and a divergence measure, the specification can be scored (by the divergence w.r.t.\ the \emph{empiric} distribution of the dataset), and weighted or sorted amongst other specifications. These are key ingredients in algorithms searching, for example, optimal specifications of a dataset.
\end{enumerate}

Our idea to extend probabilities starts with the stance that a specification describes an \emph{observable system} and that observed events must be related with the \acp{SM} of that specification. From here, probabilities must be extended from \aclp{TC} to \acp{SM} and then from \acp{SM} to any event.

Extending probability from \acp{TC} to \acp{SM} faces a critical problem, illustrated by the  example in \cref{sec:example.1}, concerning situations where multiple \acp{SM}, $ab$ and $ac$, result from a single \ac{TC}, $a$, but there is not enough information (in the specification) to assign a single probability to each \ac{SM}. We propose to address this issue by using algebraic variables to describe that lack of information and then estimate the value of those variables from empirical data.

In a related work, \cite{verreet2022inference}, epistemic uncertainty (or model uncertainty) is considered as a lack of knowledge about the underlying model, that may be mitigated via further observations. This seems to presuppose a Bayesian approach to imperfect knowledge in the sense that having further observations allows to improve/correct the model. Indeed, the approach in that work uses Beta distributions in order to be able to learn the full distribution. This approach seems to be specially fitted to being able to tell when some probability lies beneath some given value. \todo{Our approach seems to be similar in spirit. If so, we should mention this in the introduction.}
\todo{Also remark that our apporach remains algebraic in the way that we address the problems concerning the extension of probabilities.}

\todo{cite \citetitle{sympy} \franc{--- why here? but cite \citetitle{cozman2020joy} and relate with our work.}}

\todo{Discuss the least informed strategy and the corolary that \aclp{SM} should be conditionally independent on the \acl{TC}.}

\todo{Give an outline of the paper.}

\section{A simple but fruitful example}\label{sec:example.1}

\todo{Write an introduction to the section}

\begin{example}\label{running.example}
    Consider the following specification

    \begin{equation}
        \begin{aligned}
            \probfact{0.3}{a} & ,\cr
            b \vee c          & \leftarrow a.
        \end{aligned}
        \label{eq:example.1}
    \end{equation}

    This specification has three \aclp{SM}, $\co{a}, ab$ and $ac$ (see \cref{fig:running.example}). While it is straightforward to set $P(\co{a})=0.7$, there is no further information to assign values to $P(ab)$ and $P(ac)$. Assuming that the \acfp{SM} are (probabilistically) independent, we can use a parameter $\theta$ such that

    $$
        \begin{aligned}
            P(ab) & = 0.3 \theta,\cr
            P(ac) & = 0.3 (1 - \theta).
        \end{aligned}
    $$
\end{example}

While uncertainty is inherent to the specification it can be mitigated with the help of a dataset: the parameter $\theta$ can be estimated from a empirical distribution \todo{or we can have a distribution of $\theta$}. \todo{point to examples of this in following sections.}

In summary, if an \ac{ASP} specification is intended to describe some observable system then:

\begin{enumerate}

    \item Observations can be used to estimate the value of the parameters (such as $\theta$ above and others entailed from further clauses).

    \item \todo{What about the case where we already know a distribution of $\theta$?}

    \item With a probability set for the \aclp{SM}, we want to extend it to all the events of the specification domain.

    \item This extended probability can then be related to the \emph{empirical distribution}, using a probability divergence, such as \ac{KL}; and the divergence value used as a \emph{performance} measure of the specification with respect to the observations.

    \item If that specification is only but one of many possible candidates then that performance measure can be used, \emph{e.g.} as fitness, by algorithms searching (optimal) specifications of a dataset of observations.

\end{enumerate}

\begin{quote}
    \todo{Expand this:} If observations are not consistent with the models of the specification, then the specification is wrong and must be changed.
\end{quote}

Currently, we are addressing the problem of extending a probability function (possibly using parameters such as $\theta$), defined on the \acp{SM} of a specification, to all the events of that specification. Of course, this extension must satisfy the Kolmogorov axioms of probability so that probabilistic reasoning is consistent with the \ac{ASP} specification.

The conditional independence of stable worlds asserts the \remark{least informed strategy}{references?} that we discussed in the introduction and make explicit here:

\begin{assumption}\label{assumption:smodels.independence}
    \Acl{SM} are conditionally independent, given their \aclp{TC} .
\end{assumption}

The \aclp{SM}  $ab, ac$ from \cref{running.example} result from the clause $b \vee c \leftarrow a$ and the \acl{TC} $a$. These formulas alone imposes no relation between $b$ and $c$ (given $a$), so none should be assumed. Dependence relations are further discussed in \cref{subsec:dependence}.

\section{Extending Probabilities}\label{sec:extending.probalilities}

\begin{figure}[t]
    \begin{center}
        \begin{tikzpicture}
            \node[event] (E) {$\emptyevent$};
            \node[tchoice, above left = of E] (a) {$a$};
            \node[smodel, above left = of a] (ab) {$ab$};
            \node[smodel, above right = of a] (ac) {$ac$};
            \node[event, below = of ab] (b) {$b$};
            \node[event, below = of ac] (c) {$c$};
            \node[event, above right = of ab] (abc) {$abc$};
            \node[event, above left = of ab] (abC) {$ab\co{c}$};
            \node[event, above right = of ac] (aBc) {$a\co{b}c$};
            \node[indep, right = of ac] (bc) {$bc$};
            \node[tchoice, smodel, below right = of bc] (A) {$\co{a}$};
            \node[event, above = of A] (Ac) {$\co{a}c$};
            \node[event, above right = of Ac] (Abc) {$\co{a}bc$};
            % ----
            \draw[doubt] (a) to[bend left] (ab);
            \draw[doubt] (a) to[bend right] (ac);

            \draw[doubt] (ab) to[bend left] (abc);
            \draw[doubt] (ab) to[bend right] (abC);

            \draw[doubt] (ac) to[bend right] (abc);
            \draw[doubt] (ac) to[bend left] (aBc);

            \draw[doubt, dash dot] (Ac) to (Abc);

            \draw[doubt] (A) to (Ac);
            \draw[doubt] (A) to (Abc);

            \draw[doubt] (ab) to[bend right] (E);
            \draw[doubt] (ac) to[bend right] (E);
            \draw[doubt] (A) to[bend left] (E);

            \draw[doubt] (ab) to (b);
            \draw[doubt] (ac) to (c);
            % \draw[doubt] (ab) to[bend left] (a);
            % \draw[doubt] (ac) to[bend right] (a);
            \draw[doubt, dash dot] (c) to[bend right] (bc);
            \draw[doubt, dash dot] (abc) to[bend left] (bc);
            \draw[doubt, dash dot] (bc) to (Abc);
            \draw[doubt, dash dot] (c) to[bend right] (Ac);
        \end{tikzpicture}
    \end{center}

    \caption{Events related to the \aclp{SM}  of \cref{running.example}. The circle nodes are \aclp{TC} and shaded nodes are \aclp{SM}. The \emph{empty event}, with no literals, is denoted by $\emptyevent$. Notice that the event $bc$ is not related with any \acl{SM}.}
    \label{fig:running.example}
\end{figure}

\todo{Somewhere, we need to shift the language from extending \emph{probabilities} to extending \emph{measures}}

\note{$\emptyevent$ notation introduced in \cref{fig:running.example}.}

The diagram in \cref{fig:running.example} illustrates the problem of extending probabilities from \acp{TC} nodes to \acp{SM} and then to general events in a \emph{node-wise} process. This quickly leads to \remark{coherence problems}{for example?} concerning probability, with no clear systematic approach --- Instead, weight extension can be based in the relation an event has with the \aclp{SM}.

\subsection{An Equivalence Relation}\label{subsec:equivalence.relation}

\begin{figure}[t]
    \begin{center}
        \begin{tikzpicture}
            \node[event] (E) {$\emptyevent$};
            \node[tchoice, above left = of E] (a) {$a$};
            \node[smodel, above left = of a] (ab) {$ab$};
            \node[smodel, above right = of a] (ac) {$ac$};
            \node[event, below = of ab] (b) {$b$};
            \node[event, below = of ac] (c) {$c$};
            \node[event, above right = of ab] (abc) {$abc$};
            \node[event, above left = of ab] (abC) {$ab\co{c}$};
            \node[event, above right = of ac] (aBc) {$a\co{b}c$};
            \node[indep, right = of ac] (bc) {$bc$};
            \node[tchoice, smodel, below right = of bc] (A) {$\co{a}$};
            \node[event, above = of A] (Ac) {$\co{a}c$};
            \node[event, above right = of Ac] (Abc) {$\co{a}bc$};
            % ----
            \path[draw, rounded corners, pattern=north west lines, opacity=0.2]
            (ab.west) --
            (ab.north west) --
            %
            (abC.south west) --
            (abC.north west) --
            (abC.north) --
            %
            (abc.north east) --
            (abc.east) --
            (abc.south east) --
            %
            (ab.north east) --
            (ab.east) --
            (ab.south east) --
            %
            (a.north east) --
            %
            (E.north east) --
            (E.east) --
            (E.south east) --
            (E.south) --
            (E.south west) --
            %
            (b.south west) --
            %
            (ab.west)
            ;
            % ----
            \path[draw, rounded corners, pattern=north east lines, opacity=0.2]
            (ac.south west) --
            (ac.west) --
            (ac.north west) --
            %
            (abc.south west) --
            (abc.west) --
            (abc.north west) --
            %
            (aBc.north east) --
            (aBc.east) --
            (aBc.south east) --
            %
            (ac.north east) --
            %
            (c.east) --
            %
            (E.east) --
            (E.south east) --
            (E.south) --
            (E.south west) --
            %
            (a.south west) --
            (a.west) --
            (a.north west) --
            (a.north) --
            %
            (ac.south west)
            ;
            % ----
            \path[draw, rounded corners, pattern=horizontal lines, opacity=0.2]
            % (A.north west) --
            %
            (Ac.north west) --
            %
            (Abc.north west) --
            (Abc.north) --
            (Abc.north east) --
            (Abc.south east) --
            %
            % (Ac.north east) --
            % (Ac.east) --
            %
            % (A.east) --
            (A.south east) --
            %
            (E.south east) --
            (E.south) --
            (E.south west) --
            (E.west) --
            (E.north west) --
            %
            (Ac.north west)
            ;
        \end{tikzpicture}
    \end{center}

    \caption{Classes (of consistent events) related to the \aclp{SM} of \cref{running.example} are defined through intersections and inclusions. \todo{write the caption}}
    \label{fig:running.example.classes}
\end{figure}

Given an ASP specification,
\remark{{\bruno Introduce also the sets mentioned below}}{how?}
we consider the \emph{atoms} $a \in \fml{A}$ and \emph{literals}, $z \in \fml{L}$, \emph{events} $e \in \fml{E} \iff e \subseteq \fml{L}$ and \emph{worlds} $w \in \fml{W}$ (consistent events), \emph{\aclp{TC} } $t \in \fml{T} \iff t = a \vee \neg a$ and \emph{\aclp{SM} } $s \in \fml{S}\subset\fml{W}$.

Our path starts with a perspective of \aclp{SM}  as playing a role similar to \emph{prime} factors.  The \aclp{SM}  of a specification are the irreducible events entailed from that specification and any event must be \replace{interpreted}{considered} under its relation with the \aclp{SM}.

%\remark{\todo{Introduce a structure with worlds, events, and \aclp{SM} }}{seems irrelevant}
This focus on the \acp{SM} leads to the following definition:

\begin{definition}\label{def:stable.structure}
    A \emph{stable structure} is a pair $\del{A, S}$ where $A$ is a \remark{set of atoms}{can be extracted from $S$.} and $S$ is a set of consistent events over $A$.
\end{definition}


\todo{expand this text to explain how the \aclp{SM}  form the basis of the equivalence relation}. %This \replace{stance}{} leads to definition \ref{def:rel.events}:

\begin{definition}\label{def:stable.core}
    The \emph{\ac{SC}} of the event $e\in \fml{E}$ is
    \begin{equation}
        \stablecore{e} := \set{s \in \fml{S} \given s \subseteq e \vee e \subseteq s} \label{eq:stable.core}
    \end{equation}

\end{definition}

We now define an equivalence relation, $\sim$, so that two events are related if either both are inconsistent or both are consistent with the same \acl{SC}.

\begin{definition}\label{def:equiv.rel}
    For a given specification, let $u, v \in \fml{E}$. The equivalence relation $\sim$ is defined by
    \begin{equation}
        u \sim v :\!\iff u,v \not\in\fml{W} \vee \del{u,v \in \fml{W} \wedge \stablecore{u} = \stablecore{v}}.\label{eq:equiv.rel}
    \end{equation}
\end{definition}

Observe that the minimality of \aclp{SM}  implies that, in \cref{def:stable.core}, either $e$ is a \acl{SM} or one of $s \subseteq e, e \subseteq s$ is never true. This relation defines a partition of the events space, where each class holds a unique relation with the \aclp{SM}. In particular, we denote each class by:
\begin{equation}
    \class{e} =
    \begin{cases}
        \inconsistent := \fml{E} \setminus \fml{W}
         & \text{if~} e \in \fml{E} \setminus \fml{W}, \\
        \set{u \in \fml{W} \given \stablecore{u} = \stablecore{e}}
         & \text{if~} e \in \fml{W},
    \end{cases}\label{eq:event.class}
\end{equation}

The subsets of the \aclp{SM}, together with $\inconsistent$, form a set of representatives. Consider again Example~\ref{running.example}. As previously mentioned, the \aclp{SM}  are $\fml{S} = \co{a}, ab, ac$ so the quotient set of this relation is:
\begin{equation}
    \class{\fml{E}} = \set{
        \inconsistent,
        \indepclass,
        \class{\co{a}},
        \class{ab},
        \class{ac},
        \class{\co{a}, ab},
        \class{\co{a}, ac},
        \class{ab, ac},
        \class{\co{a}, ab, ac}
    }
\end{equation}
where $\indepclass$ denotes both the class of \emph{independent} events $e$ such that $\stablecore{e} = \emptyset$ and its core (which is the emptyset). We have:
\begin{equation*}
    \begin{array}{l|lr}
        \text{\textbf{Core}}, \stablecore{e}
         & \text{\textbf{Class}}, \class{e}
         & \text{\textbf{Size}}, \# \class{e}                                                                               \\
        \hline
        %
        \inconsistent
         & a\co{a}, \ldots
         & 37
        \\
        %
        \indepclass
         & \co{b}, \co{c}, bc, \co{b}a, \co{b}c, \co{b}\co{c}, \co{c}a, \co{c}b, \co{b}\co{c}a
         & 9
        \\
        %
        \co{a}
         & \co{a}, \co{a}b, \co{a}c, \co{a}\co{b}, \co{a}\co{c}, \co{a}bc, \co{a}b\co{c}, \co{a}\co{b}c, \co{a}\co{b}\co{c}
         & 9
        \\
        %
        ab
         & b, ab, ab\co{c}
         & 3
        \\
        %
        ac
         & c, ac, a\co{b}c
         & 3
        \\
        %
        \co{a}, ab
         & \emptyset
         & 0
        \\
        %
        \co{a}, ac
         & \emptyset
         & 0
        %
        \\
        %
        ab, ac
         & a, abc
         & 2
        \\
        %
        \co{a}, ab, ac
         & \emptyevent
         & 1
        \\
        %
        \hline
        \Omega
         & \text{all events}
         & 64
    \end{array}
\end{equation*}

\begin{itemize}
    \item Since all events within an equivalence class are in relation with a specific set of \aclp{SM}, \emph{weights, including probability, should be constant within classes}:
          \[
              \forall u\in \class{e} \left(\mu\at{u} = \mu\at{e} \right).
          \]
    \item So, instead of dealing with $64 = 2^6$ events, we consider the $9 = 2^3 + 1$ classes, well defined in terms of combinations of the \aclp{SM}. In general, we have \emph{much more} \aclp{SM} than literals. Nevertheless, the equivalence classes allow us to propagate probabilities from \aclp{TC}  to events, as explained in the next subsection.
          % \item The extended probability \emph{events} are the \emph{classes}.
\end{itemize}



\subsection{From Total Choices to Events}\label{subsec:from.tchoices.to.events}

\todo{Check adaptation} Our path to set a probability measure on $\fml{E}$ has two phases:
\begin{enumerate}
    \item Extending the probabilities, \emph{as weights}, from the \aclp{TC} to events.
    \item Normalization of the weights.
\end{enumerate}

The ``extension'' phase, traced by equations (\ref{eq:prob.total.choice}) and (\ref{eq:weight.tchoice} --- \ref{eq:weight.events}), starts with the weight (probability) of \aclp{TC}, $\pw{t} = \pr{T = t}$, expands it to \aclp{SM}, $\pw{s}$, and then, within the equivalence relation from \cref{eq:equiv.rel}, to (general) events, $\pw{e}$, including  (consistent) worlds.

\begin{description}
    %
    \item[Total Choices.] Using \eqref{eq:prob.total.choice}, this case is given by
        \begin{equation}
            \pw{t} := \pr{T = t}= \prod_{a\in t} p \prod_{a \not\in t} \co{p}
            \label{eq:weight.tchoice}
        \end{equation}
        %
    \item[Stable Models.] Each \acl{TC} $t$, together with the rules and the other facts of a specification, defines a set of \aclp{SM}  associated with that choice, that \remark{we denote by $\tcgen{t}$}{put this in the introduction, where core concepts are presented}.

        Given a \acl{SM} $s \in \fml{S}$, a \acl{TC} $t$, and variables/values $\theta_{s,t} \in \intcc{0, 1}$,
        \begin{equation}
            \pw{s, t} := \begin{cases}
                \theta_{s,t} & \text{if~} s \in \tcgen{t}\cr
                0            & \text{otherwise}
            \end{cases}
            \label{eq:weight.stablemodel}
        \end{equation}
        such that $\sum_{s\in \tcgen{t}} \theta_{s,t} = 1$.
        %
    \item[Classes.] \label{item:class.cases} Each class is either the inconsistent class, $\inconsistent$, or is represented by some set of \aclp{SM}.
        \begin{description}
            \item[Inconsistent Class.] The inconsistent class contains events that are logically inconsistent, thus should never be observed:
                \begin{equation}
                    \pw{\inconsistent, t} := 0.
                    \label{eq:weight.class.inconsistent}
                \end{equation}
            \item[Independent Class.] A world that neither contains nor is contained in a \acl{SM} describes a case that, according to the specification, shouldn't exist. So the respective weight is set to zero:
                \begin{equation}
                    \pw{\indepclass, t} := 0.
                    \label{eq:weight.class.independent}
                \end{equation}
            \item[Other Classes.] The extension must be constant within a class, its value should result from the elements in the \acl{SC}, and respect the assumption \ref{assumption:smodels.independence} (\aclp{SM}  independence):
                \begin{equation}
                    \pw{\class{e}, t} := \sum_{k=1}^{n}\pw{s_k, t},~\text{if}~\stablecore{e} = \set{s_1, \ldots, s_n}.
                    \label{eq:weight.class.other}
                \end{equation}
                and
                \begin{equation}
                    \pw{\class{e}} := \sum_{t \in \fml{T}} \pw{\class{e}, t}\pw{t}.
                    \label{eq:weight.class.unconditional}
                \end{equation}

        \end{description}
        %
    \item[Events.] \label{item:event.cases} Each (general) event $e$ is in the class defined by its \acl{SC}, $\stablecore{e}$. So, we set:
        \begin{equation}
            \pw{e, t} := \frac{\pw{\class{e}, t}}{\# \class{e}} .
            \label{eq:weight.events}
        \end{equation}
        and
        \begin{equation}
            \pw{e} := \sum_{t\in\fml{T}} \pw{e, t} \pw{t}.
            \label{eq:weight.events.unconditional}
        \end{equation}
        % \remark{instead of that equation}{if we set $\pw{s,t} := \theta_{s,t}$ in equation \eqref{eq:weight.stablemodel} here we do: 
        %     $$
        %     \pw{e} := \sum_{t\in\fml{T}} \pw{e, t}\pw{t}.
        %     $$
        % By the way, this is the \emph{marginalization + bayes theorem} in statistics:
        % $$
        % P(A) = \sum_b P(A | B=b)P(B=b) 
        % $$
        % }
\end{description}

% PARAMETERS FOR UNCERTAINTY
\begin{itemize}
    \item \todo{Remark that $\pw{\inconsistent, t} = 0$ is independent of the \acl{TC}.}
    \item Consider the event $bc$. Since $\class{bc} = \indepclass$, from \cref{eq:weight.class.independent} we get $\mu\at{bc} = 0$.
    \item \todo{Remark that equation \eqref{eq:weight.events.unconditional}, together with observations, can be used to learn about the \emph{initial} probabilities of the atoms, in the specification.}
\end{itemize}


The $\theta_{s,t}$ parameters in equation \eqref{eq:weight.stablemodel} express the \emph{specification's} lack of knowledge about the weight assignment, when a single \acl{TC} entails more than one \acl{SM}. In that case, how to distribute the respective weights? Our proposal to address this problem consists in assigning an unknown weight, $\theta_{s,t}$, conditional on the \acl{TC}, $t$, to each \acl{SM} $s$. This approach allows the expression of an unknown quantity and future estimation, given observed data.

% SUPERSET
Equation \eqref{eq:weight.class.other} results from conditional independence of \aclp{SM}.


\section{Developed Examples}

\subsection{The SBF Example}

We continue with the specification from Equation \eqref{eq:example.1}.

\begin{description}
    %
    \item[\Aclp{TC}.] The \aclp{TC}, and respective \aclp{SM}, are
        \begin{center}
            \begin{tabular}{ll|r}
                \textbf{\Acl{TC}} & \textbf{\Aclp{SM}} & \textbf{$\pw{t}$} \\
                \hline
                $a$               & $ab, ac$           & $0.3$             \\
                $\co{a} = \neg a$ & $\co{a}$           & $\co{0.3} = 0.7$
            \end{tabular}
        \end{center}
        %
    \item[\Aclp{SM}.] The $\theta_{s,t}$ parameters in this example are
        $$
            \theta_{ab,\co{a}} = \theta_{ac,\co{a}} = \theta_{\co{a}, a} = 0
            %
            \text{~and~}
            %
            \theta_{\co{a}, \co{a}} = 1, \theta_{ab, a} = \theta, \theta_{ac, a} = \co{\theta}
        $$
        with $\theta \in \intcc{0, 1}$.
    \item[Classes.] Following the definitions in \cref{eq:stable.core,eq:equiv.rel,eq:event.class} and in \cref{eq:weight.class.inconsistent,eq:weight.class.independent,eq:weight.class.other} we get the following quotient set (ignoring $\inconsistent$ and $\indepclass$), and weights:
        \begin{equation*}
            \begin{array}{l|ll|r}
                \stablecore{e}
                 & \pw{s_k, t= \co{a}}
                 & \pw{s_k, t= a}
                 & \pw{\class{e}}=\sum_{t}\pw{\class{e},t}\pw{t}
                \\
                \hline
                \co{a}
                 & 1
                 &
                 & 0.7
                \\
                %
                ab
                 &
                 & \theta
                 & 0.3\theta
                \\
                %
                ac
                 &
                 & \co{\theta}
                 & 0.3\co{\theta}
                \\
                %
                \co{a}, ab
                 & 1, 0
                 & 0, \theta
                 & 0.7 + 0.3\theta
                \\
                %
                \co{a}, ac
                 & 1, 0
                 & 0, \co{\theta}
                 & 0.7 + 0.3\co{\theta}
                \\
                %
                ab, ac
                 &
                 & \theta, \co{\theta}
                 & 0.3
                \\
                %
                \co{a}, ab, ac
                 & 1, 0, 0
                 & 0, \theta, \co{\theta}
                 & 1
            \end{array}
        \end{equation*}
    \item[Normalization.] To get a weight that sums up to one, we compute the \emph{normalization factor}. Since $\pw{\cdot}$ is constant on classes,\todo{prove that we get a probability.}
        \begin{equation*}
            Z := \sum_{e\in\fml{E}} \pw{e}
            = \sum_{\class{e} \in\class{\fml{E}}} \frac{\pw{\class{e}}}{\#\class{e}},
        \end{equation*}
        that divides the weight function into a normalized weight
        \begin{equation*}
            \pr{e} := \frac{\pw{e}}{Z}.
        \end{equation*}
        such that
        $$
            \sum_{e \in \fml{E}} \pr{e} = 1.
        $$
        For the SBF example,
        \begin{equation*}
            \begin{array}{lr|r|rr}
                \stablecore{e}
                 & \# \class{e}
                 & \pw{\class{e}}
                 & \pw{e}
                 & \pr{e}
                \\
                \hline
                %
                \inconsistent
                 & 37
                 & 0
                 & 0
                 & 0
                \\[4pt]
                %
                \indepclass
                 & 9
                 & 0
                 & 0
                 & 0
                \\[4pt]
                %
                \co{a}
                 & 9
                 & \frac{7}{10}
                 & \frac{7}{90}
                 & \frac{7}{792}
                \\[4pt]
                %
                ab
                 & 3
                 & \frac{3\theta}{10}
                 & \frac{\theta}{10}
                 & \frac{\theta}{88}
                \\[4pt]
                %
                ac
                 & 3
                 & \frac{3\co{\theta}}{10}
                 & \frac{\co{\theta}}{10}
                 & \frac{\co{\theta}}{88}
                \\[4pt]
                %
                \co{a}, ab
                 & 0
                 & \frac{7 + 3\theta}{10}
                 & 0
                 & 0
                \\[4pt]
                %
                \co{a}, ac
                 & 0
                 & \frac{7 + 3\co{\theta}}{10}
                 & 0
                 & 0
                %
                \\[4pt]
                %
                ab, ac
                 & 2
                 & \frac{3}{10}
                 & \frac{3}{20}
                 & \frac{3}{176}
                \\[4pt]
                %
                \co{a}, ab, ac
                 & 1
                 & 1
                 & 1
                 & \frac{5}{176}
                \\[4pt]
                %
                \hline
                 &
                 & Z = \frac{44}{5}
            \end{array}
        \end{equation*}
\end{description}

\todo{Continue this example with a set of observations to estimate $\theta$ and try to show some more. For example, that the resulting distribution is not very good when $t = \co{a}$. Also gather a sample following the specification.}
%
%
%
\subsection{An example involving Bayesian networks}

\franc{Comentários:}
\begin{itemize}
    \item Há uma macro, $\backslash\text{pr}\{A\}$, para denotar a função de probabilidade, $\pr{A}$ em vez de $P(A)$. Já agora, para a condicional também há um comando, $\backslash\text{given}$: $\pr{A \given B}$.
    \item E, claro, para factos+probabilidades: $\probfact{p}{a}$.
    \item A designação dos `pesos' não está consistente: $pj\_a$ e $a\_be$. Fiz uma macro (\emph{hehe}) para sistematizar isto: \condsymb{a}{bnc}.
    \item Nos programas, alinhei pelos factos. Isto é, $\probfact{0.3}{a}$ e $a \leftarrow b$ alinham pelo (fim do) $a$.
\end{itemize}


As it turns out, our framework is suitable to deal with more sophisticated cases, \replace{for example}{in particular} cases involving Bayesian networks. In order to illustrate this, in this section we see how the classical example of the Burglary, Earthquake, Alarm \cite{Judea88} works in our setting. This example is a commonly used example in Bayesian networks because it illustrates reasoning under uncertainty.  The gist of example is given in \cref{Figure_Alarm}. It involves a simple network of events and conditional probabilities.

The events are: Burglary ($B$), Earthquake ($E$), Alarm ($A$), Mary calls ($M$) and John calls ($J$). The initial events $B$ and $E$ are assumed to be independent events that occur with probabilities $P(B)$ and $P(E)$, respectively. There is an alarm system that can be triggered by either of the initial events $B$ and $E$. The probability of the alarm going off is a conditional probability given that $B$ and $E$ have occurred. One denotes these probabilities, as per usual,  by $P(A|B)$, and $P(A|E)$. There are two neighbours, Mary and John who have agreed to call if they hear the alarm. The probability that they do actually call is also a conditional probability denoted by $P(M|A)$ and $P(J|A)$, respectively.



\begin{figure}
    \begin{center}
        \begin{tikzpicture}[node distance=2.5cm]

            % Nodes
            \node[smodel, circle] (A) {A};
            \node[tchoice, above right of=A] (B) {B};
            \node[tchoice, above left of=A] (E) {E};
            \node[tchoice, below left of=A] (M) {M};
            \node[tchoice, below right of=A] (J) {J};

            % Edges
            \draw[->] (B) to[bend left] (A) node[right,xshift=1.1cm,yshift=0.8cm] {\footnotesize{$P(B)=0.001$}} ;
            \draw[->] (E) to[bend right] (A) node[left, xshift=-1.4cm,yshift=0.8cm] {\footnotesize{$P(E)=0.002$}} ;
            \draw[->] (A) to[bend right] (M) node[left,xshift=0.2cm,yshift=0.7cm] {\footnotesize{$P(M|A)$}};
            \draw[->] (A) to[bend left] (J) node[right,xshift=-0.2cm,yshift=0.7cm] {\footnotesize{$P(J|A)$}} ;
        \end{tikzpicture}
    \end{center}

    \begin{multicols}{3}

        \footnotesize{
            \begin{equation*}
                \begin{split}
                    &P(M|A)\\
                    &  \begin{array}{c|cc}
                               & m    & \neg m \\
                        \hline
                        a      & 0.9  & 0.1    \\
                        \neg a & 0.05 & 0.95
                    \end{array}
                \end{split}
            \end{equation*}
        }

        \footnotesize{
            \begin{equation*}
                \begin{split}
                    &P(J|A)\\
                    &  \begin{array}{c|cc}
                               & j    & \neg j \\
                        \hline
                        a      & 0.7  & 0.3    \\
                        \neg a & 0.01 & 0.99
                    \end{array}
                \end{split}
            \end{equation*}
        }
        \footnotesize{
            \begin{equation*}
                \begin{split}
                    P(A|B \wedge E)\\
                    \begin{array}{c|c|cc}
                               &        & a     & \neg a \\
                        \hline
                        b      & e      & 0.95  & 0.05   \\
                        b      & \neg e & 0.94  & 0.06   \\
                        \neg b & e      & 0.29  & 0.71   \\
                        \neg b & \neg e & 0.001 & 0.999
                    \end{array}
                \end{split}
            \end{equation*}
        }
    \end{multicols}
    \caption{The Earthquake, Burglary, Alarm model}
    \label{Figure_Alarm}
\end{figure}


Considering the probabilities given in \cref{Figure_Alarm} we obtain the following spe\-ci\-fi\-ca\-tion

\begin{equation*}
    \begin{aligned}
        \probfact{0.001}{b} & ,\cr
        \probfact{0.002}{e} & ,\cr
    \end{aligned}
    \label{eq:not_so_simple_example}
\end{equation*}

For the table giving the probability $P(M|A)$ we obtain the specification:


\begin{equation*}
    \begin{aligned}
        \probfact{0.9}{pm\_a}   & ,\cr
        \probfact{0.05}{pm\_na} & ,\cr
        m                       & \leftarrow a, pm\_a,\cr
        \neg m                  & \leftarrow a, \neg pm\_a.
    \end{aligned}
\end{equation*}

This latter specification can be simplified by writing $\probfact{0.9}{m \leftarrow a}$ and $\probfact{0.05}{m \leftarrow \neg a}$.

Similarly, for the probability $P(J|A)$ we obtain

\begin{equation*}
    \begin{aligned}
        \probfact{0.7}{pj\_a}   & ,\cr
        \probfact{0.01}{pj\_na} & ,\cr
        j                       & \leftarrow a, pj\_a,\cr
        \neg j                  & \leftarrow a, \neg pj\_a.\cr
    \end{aligned}
\end{equation*}

Again, this can be simplified by writing $\probfact{0.7}{j \leftarrow a}$ and $\probfact{0.01}{j \leftarrow \neg a}$.

Finally, for the probability $P(A|B \wedge E)$ we obtain

\begin{equation*}
    \begin{aligned}
        \probfact{0.95}{a\_be}    & ,\cr
        \probfact{0.94}{a\_bne}   & ,\cr
        \probfact{0.29}{a\_nbe}   & ,\cr
        \probfact{0.001}{a\_nbne} & ,\cr
        a                         & \leftarrow b, e, a\_be,\cr
        \neg a                    & \leftarrow b,e, \neg a\_be, \cr
        a                         & \leftarrow b,e, a\_bne,\cr
        \neg a                    & \leftarrow b,e, \neg a\_bne, \cr
        a                         & \leftarrow b,e, a\_nbe,\cr
        \neg a                    & \leftarrow b,e, \neg a\_nbe, \cr
        a                         & \leftarrow b,e, a\_nbne,\cr
        \neg a                    & \leftarrow b,e, \neg a\_nbne. \cr
    \end{aligned}
\end{equation*}

One can then proceed as in the previous subsection and analyse this example. The details of such analysis are not given here since they are analogous, albeit admittedly more cumbersome.


\section{Discussion}

% % SUBSET
% \hrule
%
% \bigskip
% I'm not sure about what to say here.\marginpar{todo}
%
% My first guess was
% \begin{equation*}
%     \pr{W  = w \given C = c} = \sum_{s \supset w}\pr{S = s \given C = c}.
% \end{equation*}
%
% $\pr{W = w \given C = c}$ already separates $\pr{W}$ into \textbf{disjoint} events!
%
% Also, I am assuming that \aclp{SM}  are independent. 
%
% This would entail $p(w) = p(s_1) + p(s_2) - p(s_1)p(s_2)$ \emph{if I'm bound to set inclusion}. But I'm not. I'm defining a relation
%
% Also, if I set $p(w) =  p(s_1) + p(s_2)$ and respect the laws of probability, this entails $p(s_1)p(s_2) = 0$.
%
% So, maybe what I want is (1) to define the cover $\hat{w} = \cup_{s \supset w} s$
%
% \begin{equation*}
%     \pr{W  = w \given C = c} = \sum_{s \supset w}\pr{S = s \given C = c} - \pr{W = \hat{w} \given C = c}.
% \end{equation*}
%
% But this doesn't works, because we'd get $\pr{W = a \given C = a} < 1$.
% %
%
% %
% \bigskip
% \hrule
%
% INDEPENDENCE
%
%, per equation (\ref{eq:weight.class.independent}).
%
%   ================================================================
%
\begin{itemize}
    \item Changed from $\prod$ to $\sum$ to represent ``either'' instead of ``both'' since the later is not consistent with the ``only one stable model at a time'' assumption.
    \item \todo{The `up and down' choice in the equivalence relation and the possibility of describing any probability distribution.}
    \item \todo{Remark that no benchmark was done with other SOTA efforts.}
    \item \todo{The possibility to `import' bayesian theory and tools to this study.}
\end{itemize}


\subsection{Dependence}
\label{subsec:dependence}

Our basic assertion about dependence relations between atoms of the underlying system is that they can be \emph{explicitly expressed in the specification}. And, in that case, they should be.

For example, a dependence relation between $b$ and $c$ can be expressed by $b \leftarrow c \wedge d$, where $d$ is an atomic choice that explicitly expresses the dependence between $b$ and $c$. One would get, for example, a specification such as
$$
    \probfact{0.3}{a}, b \vee c \leftarrow a, \probfact{0.2}{d}, b \leftarrow c \wedge d.
$$
with \aclp{SM}
$
    \co{ad}, \co{a}d, a\co{d}b, a\co{d}c, adb
$.


The interesting case is the subtree of the \acl{TC} $ad$. Notice that no \acl{SM} $s$ contains $adc$ because $(i)$  $adb$ is a \acl{SM} and $(ii)$ if $adc \subset s$ then $b \in s$ so $adb \subset s$.

Following equations \eqref{eq:world.fold.stablemodel} and \eqref{eq:world.fold.independent}  {\bruno What are these equations?} this entails
\begin{equation*}
    \begin{cases}
        \pr{W = adc \given C = ad} = 0,\cr
        \pr{W = adb \given C = ad} = 1
    \end{cases}
\end{equation*}
which concentrates all probability mass from the \acl{TC} $ad$ in the $adb$ branch, including the node $W = adbc$. This leads to the following cases:
$$
    \begin{array}{l|c}
        x    & \pr{W = x \given C = ad} \\
        \hline
        ad   & 1                        \\
        adb  & 1                        \\
        adc  & 0                        \\
        adbc & 1
    \end{array}
$$
so, for $C = ad$,
$$
    \begin{aligned}
        \pr{W = b}  & = \frac{2}{4} \cr
        \pr{W = c}  & = \frac{1}{4} \cr
        \pr{W = bc} & = \frac{1}{4} \cr
                    & \not= \pr{W = b}\pr{W = c}
    \end{aligned}
$$
\emph{i.e.} the events $W = b$ and $W = c$ are dependent and that dependence results directly from the segment $\probfact{0.2}{d}, b \leftarrow c \wedge d$ in the specification.

    {\bruno Why does this not contradict Assumption 1?}

%

%
\hrule
\begin{quotation}\note{Todo}

    Prove the four world cases (done), support the product (done) and sum (tbd) options, with the independence assumptions.
\end{quotation}

\subsection{Future Work}

\todo{develop this section.}

\begin{itemize}
    \item The measure of the inconsistent events doesn't need to be set to $0$ and, maybe, in some cases, it shouldn't.
    \item The physical system might have \emph{latent} variables, possibly also represented in the specification. These variables are never observed, so observations should be concentrated \emph{somewhere else}.
    \item Comment on the possibility of extending equation \eqref{eq:weight.events.unconditional} with parameters expressing further uncertainties, enabling a tuning of the model's \aclp{TC}, given observations.
          \begin{equation*}
              \pw{e} := \sum_{c\in\fml{T}} \pw{e, c}\theta_c.
          \end{equation*}
\end{itemize}


\section*{Acknowledgements}

This work is supported by NOVA\textbf{LINCS} (UIDB/04516/2020) with the financial support of FCT.IP.

\printbibliography

\end{document}