00_PASP.tex 44.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
\documentclass{beamer}
%------------------------------------------
\usecolortheme{rose}
%------------------------------------------
\useinnertheme{circles}
%------------------------------------------
\setbeamertemplate{navigation symbols}{}
%------------------------------------------
\AtBeginSection{
    \begin{frame}<beamer>\small
        \tableofcontents[currentsection,subsectionstyle=shaded/shaded/hide]
    \end{frame}
}
%------------------------------------------
\AtBeginSubsection{	
    \begin{frame}<beamer>\small
        \tableofcontents[
            currentsection,sectionstyle=shaded/shaded,
            currentsubsection,subsectionstyle=show/shaded/hide]
    \end{frame}
}
%------------------------------------------
\usepackage[overridenote]{pdfpc}

\usepackage{tikz}
\usetikzlibrary{
    % shapes,
    % arrows,
    % backgrounds,
    positioning,
}
\tikzset{
    sm/.style={
        rectangle,
        rounded corners,
        fill=teal!10,
        align=center,
        minimum height=1.5em,
        },
    sup/.style={
        rectangle,
        rounded corners,
        fill=blue!10,
        align=center,
        minimum height=1.5em,
        },
    sub/.style={
        rectangle,
        rounded corners,
        fill=red!10,
        align=center,
        minimum height=1.5em,
        },
    ind/.style={
        align=center,
        minimum height=1.5em,
        },
}

\usepackage[T1]{fontenc}
\usepackage{hyperref}
\hypersetup{%
  colorlinks=true,
  allcolors=blue,
}
\usepackage{commath}
\usepackage{amssymb}
%
% Local commands
%
\newcommand{\todo}[1]{{\color{orange}TODO #1}}
\newcommand{\naf}{\ensuremath{\sim\!}}
\newcommand{\larr}{\ensuremath{\leftarrow}}
\newcommand{\at}[1]{\ensuremath{\!\del{#1}}}
\newcommand{\co}[1]{\ensuremath{\overline{#1}}}
\newcommand{\fml}[1]{\ensuremath{{\cal #1}}}
\newcommand{\deft}[1]{\textbf{#1}}
\newcommand{\pset}[1]{\ensuremath{\mathbb{P}\at{#1}}}
\newcommand{\ent}{\ensuremath{\lhd}}
\newcommand{\cset}[2]{\ensuremath{\set{#1,~#2}}}
\newcommand{\langof}[1]{\ensuremath{\fml{L}\at{#1}}}
\newcommand{\uset}[1]{\ensuremath{\left|{#1}\right>}}
\newcommand{\lset}[1]{\ensuremath{\left<{#1}\right|}}
\newcommand{\pr}[1]{\ensuremath{\mathrm{p}\at{#1}}}
\newcommand{\given}{\ensuremath{~\middle|~}}
%
%	Identificação deste documento
%
\title{Zugzwang}
\subtitle{Stochastic Adventures in Inductive Logic}
\author{Francisco Coelho}
\institute[\texttt{fc@uevora.pt}]{
  Departamento de Informática, Universidade de Évora\\
  High Performance Computing Chair\\
  NOVA-LINCS
}

\begin{document}
%
\begin{frame}[plain]
\titlepage
\end{frame}

\section{Introduction}


\begin{frame}{Notation and Assumptions}
    % --------------------------------
    \begin{itemize}
        % --------------------------------
        \item $\co{x} = 1 - x$.
        % --------------------------------
        \item \textbf{Probabilistic Atomic Choice (PAC):} $x :: a$ defines $a \lor \neg a$ and probabilities $\pr{a} = x, \pr{\neg a} = \co{x}$. 
        % --------------------------------
        \item $\delta a$ denotes $a \lor \neg a$ and $\delta\! \set{x :: a, a \in \fml{A}} = \set{\delta a, a \in \fml{A}}$ for a set of atoms $\fml{A}$.
        % --------------------------------
        \item \textbf{Closed World Assumption:} $\naf p \models \neg p$.
        % --------------------------------
        % \item Probabilistic choices and sub-goals are independent.
        % --------------------------------
    \end{itemize}
    % --------------------------------
\end{frame}
% ================================================================
\begin{frame}{General Setting}
    % --------------------------------
    \begin{itemize}    
        % --------------------------------
        \item  \textbf{Atoms} $\fml{A}$,
        $\overline{\fml{A}} = \cset{\neg a}{a \in \fml{A}}$, and \textbf{literals} $\fml{L} = \fml{A} \cup \co{\fml{A}}$.
        % --------------------------------
        \item \textbf{Samples} $z \in  \fml{Z} \iff z \subseteq \fml{L}$.
        % --------------------------------
        \item \textbf{Events} or \textit{consistent samples} $\fml{E}$ :
        $$\fml{E} = \cset{z \in \fml{Z} }{ \forall a \in \fml{A}~\envert{\set{a,\neg a} \cap z} \leq 1}.$$
        % --------------------------------
        \item \textit{PASP Problem}  or \textbf{Specification:} $P = C \land F \land R$ where
        % --------------------------------
            \begin{itemize}
                % --------------------------------
                \item $C = C_P = \cset{x_i :: a_i }{ i \in 1:n \land  a_i \in \fml{A}}$ \textit{pacs}.
                % --------------------------------
                \item $F = F_P$ \textit{facts}.
                % --------------------------------
                \item $R = R_P$ \textit{rules}.
                % --------------------------------
                \item $\fml{A}_P, \fml{Z}_P$ and $\fml{E}_P$: \textit{atoms}, \textit{samples} and \textit{events} of $P$.
            \end{itemize}
        % --------------------------------
        \item \textbf{Stable Models} of $P$, $\fml{S} = \fml{S}_P$, are the stable models of $\delta P = \delta C + F + R$.
        % --------------------------------
    \end{itemize}
    % --------------------------------
\end{frame}
% ================================================================
\begin{frame}{Distribution Semantics}
    % --------------------------------
    \begin{itemize}
        % --------------------------------
        \item \textbf{Total Choices:} $\Theta = \Theta_C = \Theta_P$ elements are  $\theta = \cset{t_c}{c \in C}$ where $c=x::a$ and $t_c$ is $a$ or $\neg a$.  
        % --------------------------------
        %\item For $s\in\fml{S}$ let $\theta_s \subseteq s$ (unique \textit{total choice})
        %\item Define $\fml{S}_\theta = \cset{s \in \fml{S}}{\theta \subset s}$.
        % --------------------------------
        
        % --------------------------------
        \item \textbf{Total Choice Probability:}
        \begin{equation}
            \pr{\theta} = \prod_{a \in \theta}x \prod_{\neg a \in \theta}\co{x}.\label{eq:prob.tc}
        \end{equation}
        % --------------------------------
    \end{itemize}
    % --------------------------------
    This is the \emph{distribution semantic} as set by Sato.
\end{frame}
% ================================================================
\begin{frame}
    % --------------------------------    
    \begin{block}{Problem Statement}
        How to \textit{extend} probability from total choices to stable models, events and samples?
    \end{block}
    % --------------------------------
    \begin{quotation}
        There's a problem right at extending to stable models.
    \end{quotation}
    % --------------------------------
\end{frame}
% ================================================================
\begin{frame}{The Disjunction Case}
    % --------------------------------    
    \begin{exampleblock}{Disjuntion Example}
        The specification
        % --------------------------------
        $$
        \begin{aligned}
            0.3 :: a    &,          \cr 
            b \lor c    &\larr a    .
        \end{aligned}
        $$
        % --------------------------------
        has three stable models,
        % --------------------------------
        $$
        \begin{aligned}
            s_1 &= \set{\neg a}, & s_2 &= \set{a, b},  & s_3 &= \set{a, c}.
        \end{aligned}
        $$
    \end{exampleblock}
    % --------------------------------
    \begin{itemize}
        % --------------------------------
        \item\label{prop:unique.ext.tcsm}\textit{Any stable model contains exactly one total choice.~$\blacksquare$}
        % --------------------------------
        \item $\pr{\set{\neg a}} = 0.7$ is straightforward.
        % --------------------------------
        \item But, no \textit{informed} choice for $x\in\intcc{0,1}$ in
        $$
        \begin{aligned}
            \pr{\set{a, b}} &= 0.3 x, \cr
            \pr{\set{a, c}} &= 0.3 \co{x}.
        \end{aligned}
        $$
        % --------------------------------
    \end{itemize}
    % --------------------------------
\end{frame}
% ================================================================
\begin{frame}{Lack of Information \& Parametrization}
    % --------------------------------   
    \begin{itemize}
        % --------------------------------
        \item The specification \textit{lacks information} to set $x\in\intcc{0,1}$ in
        $$
        \begin{aligned}
            \pr{\set{a, b}} &= 0.3 x, \cr
            \pr{\set{a, c}} &= 0.3 \co{x}.
        \end{aligned}
        $$
        \item A \textit{random variable} captures this uncertainty, \alert{assuming} that the stable models are statistically independent:
        $$
        \begin{aligned}
            \pr{\set{\neg a} \given X = x } &= 0.7, \cr
            \pr{\set{a, b} \given X = x } &= 0.3 x, \cr
            \pr{\set{a, c} \given X = x } &= 0.3 \co{x}.
        \end{aligned}
        $$
        \item Other uncertainties may lead to further conditions:
        $$
        \pr{s \given X_1 = x_1, \ldots, X_n = x_n }.
        $$ 
        % --------------------------------
    \end{itemize}
    Reducing \textbf{uncertainty}, \textit{e.g.} setting $X = 0.21$, must result from \textbf{external} sources, since the specification lacks information for further assertions.
    % --------------------------------
\end{frame}
% ================================================================
\begin{frame}{Independence of Stable Models}
    % --------------------------------
    
    \begin{itemize}
        \item[Q:] Why are the stable models assumed statistically independent?
        % --------------------------------
        \item[A:] Because dependence can be \textit{explicitly} modelled.
        % --------------------------------
        \item So, it is assumed \textit{intention} of the \textit{modeller} to not explicit express such dependences.
        % --------------------------------
        \item \textbf{For example:} \todo{Some key examples}.
    \end{itemize}
    % --------------------------------
\end{frame}
% ================================================================
\begin{frame}%{Main Research Question}
    % --------------------------------
    A \textit{random variable} captures this uncertainty:
    $$
    \begin{aligned}
        \pr{\set{\neg a} \given X = x } &= 0.7, \cr
        \pr{\set{a, b} \given X = x } &= 0.3 x, \cr
        \pr{\set{a, c} \given X = x } &= 0.3 \co{x}.
    \end{aligned}
    $$
    % --------------------------------
    \begin{block}{Main Research Question}
        Can \textit{all} specification uncertainties be neatly expressed as that example?
    \end{block}
    % --------------------------------
    \begin{itemize}
        % --------------------------------
        \item Follow ASP syntax; for each case, what are the uncertainty scenarios? 
        % --------------------------------
        \item The disjunction example illustrates one such scenario.
        % --------------------------------
        \item \textit{Neat} means a function $d: \fml{S} \to \intcc{0, 1}$ such that
        $$
        \sum_{s\in\fml{S}_\theta} d\at{s} = 1
        $$
        for each $\theta \in \Theta$.
        % --------------------------------
    \end{itemize}    
    % --------------------------------
\end{frame}
% ================================================================
\begin{frame}{Leap into Inductive Programming}
    % --------------------------------
    Given a method that produces a distribution of samples, $p$, from a specification, $P$ and:
    % --------------------------------
    \begin{itemize}
        % --------------------------------
        \item $Z$, a dataset (of samples).
        % --------------------------------
        \item $e$, the respective empirical distribution.
        % --------------------------------
        \item $D$, some probability divergence, \textit{e.g.} Kullback-Leibler.
        % --------------------------------
    \end{itemize}
    % -------------------------------- 
    \begin{block}{Specification Performance \& Inductive Programming}    
        % --------------------------------    
        \begin{itemize}
            % --------------------------------
            \item $D\at{P} = D\at{e, p}$ is a \textbf{performance} measure of $P$.
            % --------------------------------
            \item Predictor performance measures, such as accuracy, are common in \textit{Machine Learning} tasks.
            % --------------------------------
            \item For \textit{Inductive Programming} this performance can be used, \textit{e.g.} as fitness, by algorithms searching for \textbf{optimal specifications of a dataset}.
            % --------------------------------
        \end{itemize}
        % --------------------------------
    \end{block}
    % --------------------------------
\end{frame}
% ================================================================
\section{Extending Probability to Samples}
% ================================================================
\begin{frame}{Resolution Path}
    Prior to \textit{conciliation} with data:
    \begin{enumerate}
        \item \alert{Hopefully}, \textit{conditional parameters} extend probability from total choices to \textit{standard models}.
        \item \textbf{How} to extend it to \textit{events}?
        \begin{itemize}
            \item $\pr{x} = 0$ for $x$ \textit{excluded} by the specification, including \textit{inconsistent} samples.
            \item $\pr{x}$ depends on the $s \in \fml{S}$ that contain/are contained in $x$.
        \end{itemize}
    \end{enumerate}
    \alert{Consider probabilities \textbf{conditional} on the total choice!}
\end{frame}
% ================================================================
\begin{frame}{Bounds of Events}    
    % --------------------------------
    \begin{itemize}
        % --------------------------------
        \item For $x\in\fml{E}$:
        % --------------------------------
        \begin{itemize}
            % --------------------------------
            \item \textbf{Lower Models:} $\lset{x} = \cset{s\in \fml{S} }{ s \subseteq x}$.
            % --------------------------------
            \item \textbf{Upper Models:} $\uset{x} = \cset{s\in \fml{S} }{ x \subseteq s}$.
            % --------------------------------
        \end{itemize}
        % --------------------------------
        \item\label{prop:lucases} \textbf{Proposition.} Exactly \textit{one} of the following cases takes place: 
        % --------------------------------
        \begin{enumerate}
            % --------------------------------
            \item\label{prop:lucases.a} $\lset{x} = \set{x} = \uset{x}$ and $x$ is a stable model. Then:
            \begin{equation}
                \pr{x \given C = \theta_x} = d\at{x}.
            \end{equation}
            % --------------------------------
            \item\label{prop:lucases.b} $\lset{x} \neq \emptyset \land \uset{x} = \emptyset$.  Then:
            \begin{equation}
                \pr{x \given C = \theta_s, s \in \lset{x}} = \prod_{s\in\lset{x}} d\at{s}.
            \end{equation}
            % --------------------------------
            \item\label{prop:lucases.c} $\lset{x} = \emptyset \land \uset{x} \neq \emptyset$. Then:
            \begin{equation}
                \pr{x \given  C = \theta_s, s \in \uset{x}} = \sum_{s\in\uset{x}} d\at{s}.
            \end{equation}
            % --------------------------------
            \item\label{prop:lucases.d} $\lset{x} = \emptyset = \uset{x}$.  Then:
            \begin{equation}
                \pr{x} = 0.
            \end{equation}
            % --------------------------------
        \end{enumerate}
        because stable models are \textit{minimal}.
        % --------------------------------
    \end{itemize}
    % --------------------------------
\end{frame}
% ================================================================
\begin{frame}{Conditional on Total Choices}    
    % --------------------------------
    \begin{itemize}
        % --------------------------------
        \item A stable model is entailed by an atomic choice plus the facts and rules of the specification.
        \item We express that entailment as a \textit{conditional}. For example:
        $$\pr{\set{a,b} \given X = x} = \pr{b \given X = x, \Theta = a}\pr{\theta = a}$$ 
        \item And now $\pr{b \given X = x, \Theta = a} = x$, since $X$ is a proxy for the stable models of the total choice $\theta = a$, we can further.
        % --------------------------------
    \end{itemize}
    % --------------------------------
\end{frame}
% ================================================================
\begin{frame}{Disjunction Example | The Events Lattice}
    \begin{center}
    \begin{tikzpicture}
        % --------------------------------
        %\draw [help lines, color=gray!20] grid (11,7);
        % --------------------------------
        \node at (7, 7) {$\pr{\Theta=a} = 0.3$};
        \node at (7, 6) {$x = \pr{S = ab \given \Theta}$};
        \node at (7, 5) {$\co{x} = \pr{S \not= ab \given \Theta}$};
        \node at (7, 7.5) {$\pr{E = abc \given \Theta} = \pr{S =  ab, S =  ac \given \Theta  }$};
        % --------------------------------
        % \node [rrect] (sub) at (2, 7) {sub};
        % --------------------------------
        % \node [ fill=gray!10] (sup) at (3, 7) {sup};
        % --------------------------------
        % \node (ind) at (4, 7) {ind};
        % --------------------------------
        %
        % --------------------------------
        \node [ sub,
                pin=45:\textcolor{violet}{$1$} ] 
            (E) at (5.5,0) {$\emptyset$};
        % --------------------------------
        %
        % --------------------------------
        \node [ sub,
                pin=0:\textcolor{blue!75}{$1$} ] 
            (a) at (1.5,1.5) {$a$};
        % --------------------------------
        \node [ sub,
                pin=315:\textcolor{blue!50}{$x$}] 
            (b) at (0,1.5) {$b$};
        % --------------------------------
        \node [ sub,
                pin=315:\textcolor{blue!50}{$\co{x}$}] 
            (c) at (4.5,1.5) {$c$};
        % --------------------------------
        % \node [ sm,
        %         pin=270:\textcolor{teal}{$1$}] 
        %     (A) at (8.5,1.5) {$\co{a}$};
        % % --------------------------------
        % \node [ ind,
        %         pin=270:\textcolor{purple}{$0$}] 
        %     (B) at (9.5, 1.5) {$\co{b}$};
        % % --------------------------------
        % \node [ ind,
        %         pin=270:\textcolor{purple}{$0$}] 
        %     (C) at (10.5, 1.5) {$\co{c}$};
        % --------------------------------
        %
        % --------------------------------
        \node [ sm,
                pin=0:\textcolor{teal}{$x$}] 
            (ab) at (0,4) {$ab$};
            % --------------------------------
        \node [ sm,
                pin=0:\textcolor{teal}{$\co{x}$}] 
            (ac) at (3,4) {$ac$};
        % --------------------------------
        % \node [ ind,
        %         pin=270:\textcolor{purple}{$0$}] 
        %     (aB) at (1,4) {$a\co{b}$};
        % % --------------------------------
        % \node [ ind,
        %         pin=270:\textcolor{purple}{$0$}] 
        %     (aC) at (2,4) {$a\co{c}$};
        % --------------------------------
        % \node [ sup,
        %         pin=90:\textcolor{blue!50}{$1$}] 
        %     (Ab) at (4,4) {$\co{a}b$};
        % % --------------------------------
        % \node [ sup,
        %         pin=90:\textcolor{blue!50}{$1$}] 
        %     (Ac) at (5,4) {$\co{a}c$};
        % % --------------------------------
        % \node [ sup,
        %         pin=90:\textcolor{blue!50}{$1$}] 
        %     (AB) at (6,4) {$\co{a}\co{b}$};
        % % --------------------------------
        % \node [ sup,
        %         pin=90:\textcolor{blue!50}{$1$}] 
        %     (AC) at (7,4) {$\co{a}\co{c}$};
        % % --------------------------------
        % \node [ ind,
        %         pin=270:\textcolor{purple}{$0$}] 
        %     (bc) at (10,4) {$bc$};
        % % --------------------------------
        % \node [ ind,
        %         pin=270:\textcolor{purple}{$0$}] 
        %     (bC) at (11,4) {$b\co{c}$};
        % % --------------------------------
        % \node [ ind,
        %         pin=270:\textcolor{purple}{$0$}] 
        %     (Bc) at (9.5,3.5) {$\co{b}c$};
        % % --------------------------------
        % \node [ ind,
        %         pin=270:\textcolor{purple}{$0$}] 
        %     (BC) at (10.5,3.5) {$\co{b}\co{c}$};
        % --------------------------------
        %
        % --------------------------------
        \node [ sup,
                pin=45:\textcolor{blue!75}{$x\co{x}$}]
            (abc) at (1.5,6)
            {$abc$};
        % --------------------------------
        \node [ sup, 
                pin=45:\textcolor{blue!50}{$x$}] 
            (abC) at (0,6) {$ab\co{c}$};
        % --------------------------------
        \node [ sup, 
                pin=45:\textcolor{blue!50}{$\co{x}$}] 
            (aBc) at (3,6) {$a\co{b}c$};
        % --------------------------------
        % \node [ ind,
        %         pin=90:\textcolor{purple}{$0$}] 
        %     (aBC) at (5,6) {$a\co{b}\co{c}$};
        % --------------------------------
        % \node [ sup,
        %         pin=90:\textcolor{blue!50}{$1$}] 
        %     (Abc) at (7,6) {$\co{a}bc$};
        % % --------------------------------
        % \node [ sup,
        %         pin=270:\textcolor{blue!50}{$1$}] 
        %     (AbC) at (8,6) {$\co{a}b\co{c}$};
        % % --------------------------------
        % \node [ sup,
        %         pin=270:\textcolor{blue!50}{$1$}] 
        %     (ABc) at (9,6) {$\co{a}\co{b}c$};
        % % --------------------------------
        % \node [ sup,
        %         pin=270:\textcolor{blue!50}{$1$}] 
        %     (ABC) at (10,6) {$\co{a}\co{b}\co{c}$};
        % --------------------------------
        %
        % --------------------------------
        \draw [->] (ab) to [out=270,in=180] (E);
        \draw [->] (ab) to [out=270,in=90] (a);
        \draw [->] (ab) to [out=270,in=90] (b);
        \draw [->] (ab) to [out=90,in=270] (abc);
        \draw [->] (ab) to [out=90,in=270] (abC);
        %
        \draw [->] (ac) to [out=270,in=180] (E);
        \draw [->] (ac) to [out=270,in=90] (a);
        \draw [->] (ac) to [out=270,in=90] (c);
        \draw [->] (ac) to [out=90,in=270] (abc);
        \draw [->] (ac) to [out=90,in=270] (aBc);
        %
        % \draw [->] (A) to [out=270,in=0] (E);
        % %
        % \draw [->] (A) to [out=90,in=270] (Abc);
        % \draw [->] (A) to [out=90,in=270] (AbC);
        % \draw [->] (A) to [out=90,in=270] (ABc);
        % \draw [->] (A) to [out=90,in=270] (ABC);
        % %
        % \draw [->] (A) to [out=90,in=270] (Ab);
        % \draw [->] (A) to [out=90,in=270] (Ac);
        % \draw [->] (A) to [out=90,in=270] (AB);
        % \draw [->] (A) to [out=90,in=270] (AC);
    \end{tikzpicture}    
    \end{center}
\end{frame}
% ================================================================
\begin{frame}{Disjunction Example | The Events Lattice}
    \begin{center}
    \begin{tikzpicture}
        % --------------------------------
        %\draw [help lines, color=gray!20] grid (11,7);
        % --------------------------------
        \node [sm] (sm) at (5, 7) {$\pr{\Theta=\set{\co{a}}} = \co{0.3}$};
        % --------------------------------
        % \node [rrect] (sub) at (2, 7) {sub};
        % --------------------------------
        % \node [ fill=gray!10] (sup) at (3, 7) {sup};
        % --------------------------------
        % \node (ind) at (4, 7) {ind};
        % --------------------------------
        %
        % --------------------------------
        \node [ sub,
                pin=45:\textcolor{violet}{$1$} ] 
            (E) at (5.5,0) {$\emptyset$};
        % --------------------------------
        %
        % --------------------------------
        % \node [ sub,
        %         pin=270:\textcolor{blue!75}{$1$} ] 
        %     (a) at (1.5,1.5) {$a$};
        % % --------------------------------
        % \node [ sub,
        %         pin=270:\textcolor{blue!50}{$x$}] 
        %     (b) at (0,1.5) {$b$};
        % % --------------------------------
        % \node [ sub,
        %         pin=270:\textcolor{blue!50}{$\co{x}$}] 
            (c) at (4.5,1.5) {$c$};
        % --------------------------------
        \node [ sm,
                pin=45:\textcolor{teal}{$1$}] 
            (A) at (8.5,1.5) {$\co{a}$};
        % --------------------------------
        % \node [ ind,
        %         pin=270:\textcolor{purple}{$0$}] 
        %     (B) at (9.5, 1.5) {$\co{b}$};
        % % --------------------------------
        % \node [ ind,
        %         pin=270:\textcolor{purple}{$0$}] 
        %     (C) at (10.5, 1.5) {$\co{c}$};
        % --------------------------------
        %
        % --------------------------------
        % \node [ sm,
        %         pin=90:\textcolor{teal}{$x$}] 
        %     (ab) at (0,4) {$ab$};
        %     % --------------------------------
        % \node [ sm,
        %         pin=90:\textcolor{teal}{$\co{x}$}] 
        %     (ac) at (3,4) {$ac$};
        % % --------------------------------
        % \node [ ind,
        %         pin=270:\textcolor{purple}{$0$}] 
        %     (aB) at (1,4) {$a\co{b}$};
        % % --------------------------------
        % \node [ ind,
        %         pin=270:\textcolor{purple}{$0$}] 
        %     (aC) at (2,4) {$a\co{c}$};
        % --------------------------------
        \node [ sup,
                pin=135:\textcolor{blue!50}{$1$}] 
            (Ab) at (4,4) {$\co{a}b$};
        % --------------------------------
        \node [ sup,
                pin=135:\textcolor{blue!50}{$1$}] 
            (Ac) at (5,4) {$\co{a}c$};
        % --------------------------------
        \node [ sup,
                pin=135:\textcolor{blue!50}{$1$}] 
            (AB) at (6,4) {$\co{a}\co{b}$};
        % --------------------------------
        \node [ sup,
                pin=135:\textcolor{blue!50}{$1$}] 
            (AC) at (7,4) {$\co{a}\co{c}$};
        % --------------------------------
        % \node [ ind,
        %         pin=270:\textcolor{purple}{$0$}] 
        %     (bc) at (10,4) {$bc$};
        % % --------------------------------
        % \node [ ind,
        %         pin=270:\textcolor{purple}{$0$}] 
        %     (bC) at (11,4) {$b\co{c}$};
        % % --------------------------------
        % \node [ ind,
        %         pin=270:\textcolor{purple}{$0$}] 
        %     (Bc) at (9.5,3.5) {$\co{b}c$};
        % % --------------------------------
        % \node [ ind,
        %         pin=270:\textcolor{purple}{$0$}] 
        %     (BC) at (10.5,3.5) {$\co{b}\co{c}$};
        % --------------------------------
        %
        % --------------------------------
        % \node [ sup,
        %         pin=90:\textcolor{blue!75}{$x\co{x}$}]
        %     (abc) at (1.5,6)
        %     {$abc$};
        % % --------------------------------
        % \node [ sup, 
        %         pin=90:\textcolor{blue!50}{$x$}] 
        %     (abC) at (0,6) {$ab\co{c}$};
        % % --------------------------------
        % \node [ sup, 
        %         pin=90:\textcolor{blue!50}{$\co{x}$}] 
        %     (aBc) at (3,6) {$a\co{b}c$};
        % % --------------------------------
        % \node [ ind,
        %         pin=90:\textcolor{purple}{$0$}] 
        %     (aBC) at (5,6) {$a\co{b}\co{c}$};
        % --------------------------------
        \node [ sup,
                pin=45:\textcolor{blue!50}{$1$}] 
            (Abc) at (7,6) {$\co{a}bc$};
        % --------------------------------
        \node [ sup,
                pin=45:\textcolor{blue!50}{$1$}] 
            (AbC) at (8,6) {$\co{a}b\co{c}$};
        % --------------------------------
        \node [ sup,
                pin=45:\textcolor{blue!50}{$1$}] 
            (ABc) at (9,6) {$\co{a}\co{b}c$};
        % --------------------------------
        \node [ sup,
                pin=45:\textcolor{blue!50}{$1$}] 
            (ABC) at (10,6) {$\co{a}\co{b}\co{c}$};
        % --------------------------------
        %
        % --------------------------------
        % \draw [->] (ab) to [out=270,in=180] (E);
        % \draw [->] (ab) to [out=270,in=90] (a);
        % \draw [->] (ab) to [out=270,in=90] (b);
        % \draw [->] (ab) to [out=90,in=270] (abc);
        % \draw [->] (ab) to [out=90,in=270] (abC);
        % %
        % \draw [->] (ac) to [out=270,in=180] (E);
        % \draw [->] (ac) to [out=270,in=90] (a);
        % \draw [->] (ac) to [out=270,in=90] (c);
        % \draw [->] (ac) to [out=90,in=270] (abc);
        % \draw [->] (ac) to [out=90,in=270] (aBc);
        %
        \draw [->] (A) to [out=270,in=0] (E);
        %
        \draw [->] (A) to [out=90,in=270] (Abc);
        \draw [->] (A) to [out=90,in=270] (AbC);
        \draw [->] (A) to [out=90,in=270] (ABc);
        \draw [->] (A) to [out=90,in=270] (ABC);
        %
        \draw [->] (A) to [out=90,in=270] (Ab);
        \draw [->] (A) to [out=90,in=270] (Ac);
        \draw [->] (A) to [out=90,in=270] (AB);
        \draw [->] (A) to [out=90,in=270] (AC);
    \end{tikzpicture}    
    \end{center}
\end{frame}
% ================================================================
\begin{frame}
    
    
    \begin{itemize}
        \item Consider the ASP program $P = C \land F \land R$ with total choices $\Theta $ and stable models $\fml{S}$.
        
        \item Let $d : \fml{S} \to \intcc{0,1}$ such that $\sum_{s\in\fml{S}_\theta} d\at{s} = 1$ for each $\theta \in \Theta$. 
    \end{itemize}
\end{frame}
% ================================================================
\begin{frame}
    For each $z\in\fml{Z}$ only one of the following cases takes place 
    \begin{enumerate}
        \item $z$ is inconsistent. Then \textbf{define}
        \begin{equation}
            w_d\at{x} = 0.\label{def:w.inconsistent}
        \end{equation}
        %
        \item $z$ is an event and $\lset{z} = \set{z} = \uset{z}$. Then $z$ is a stable model and \textbf{define}
        \begin{equation}
            w_d\at{z} = w\at{z} = d\at{z} \pr{\theta_z}.\label{eq:prob.sm}
        \end{equation}
        %
        \item $z$ is an event and $\lset{z} \neq \emptyset \land \uset{x} = \emptyset$. Then \textbf{define} 
        \begin{equation}
            w_d\at{z} = \sum_{s \in \lset{z}} w_d\at{s}.\label{def:w.disj}
        \end{equation}
        %
        \item $z$ is an event and $\lset{z} = \emptyset \land \uset{z} \neq \emptyset$. Then \textbf{define} 
        \begin{equation}
            w_d\at{z} = \prod_{s \in \uset{z}} w_d\at{s}.\label{def:w.conj}
        \end{equation}
        %
        \item $z$ is an event and $\lset{z} = \emptyset \land \uset{z} = \emptyset$. Then \textbf{define} 
        \begin{equation}
            w_d\at{z} = 0.\label{def:w.empty}
        \end{equation}
    \end{enumerate}
    \end{frame}
    % ================================================================
    \begin{frame}
        \begin{enumerate}
        %
        \item The last point defines a ``weight'' function on the samples that depends not only on the total choices and stable models of a PASP but also on a certain function $d$ that must respect some conditions. To simplify the notation we use the subscript in $w_d$ only when necessary.
        %
        \item At first, it may seem counter-intuitive that $w\at{\emptyset} = \sum_{s\in\fml{S}} w\at{s}$ is the largest ``weight'' in the lattice. But $\emptyset$, as an event, sets zero restrictions on the ``compatible'' stable models. The ``complement'' of $\bot = \emptyset$ is the \emph{maximal inconsistent} sample $\top = \fml{A} \cup \cset{\neg a }{ a \in \fml{A}}$.
        %
        \item \textbf{We haven't yet defined a probability measure.} To do so we must define a set of samples $\Omega$, a set of events $F\subseteq \pset{\Omega}$ and a function $P:F\to\intcc{0,1}$ such that:
        \begin{enumerate}
            \item $\pr{E} \in \intcc{0, 1}$ for any $E \in F$.
            \item $\pr{\Omega} = 1$.
            \item if $E_1 \cap E_2 = \emptyset$ then $\pr{E_1 \cup E_2} = \pr{E_1} + \pr{E_2}$. 
        \end{enumerate} 
        %
        \item In the following, assume that the stable models are iid.
        %
        \item Let the sample space $\Omega = \fml{Z}$ and the event space $F = \pset{\Omega}$. Define $Z = \sum_{\zeta\in\fml{Z}} w\at{\zeta}$ and
        \begin{equation}
            \pr{z} = \frac{w\at{z}}{Z}, z \in \Omega \label{eq:def.prob}
        \end{equation}
        and
        \begin{equation}
            \pr{E} = \sum_{x\in E} \pr{x}, E \subseteq \Omega. \label{eq:def.prob.event}
        \end{equation}
        Now:
        \begin{enumerate}
            \item $P(E) \in \intcc{0,1}$ results directly from the definitions of $P$ and $w$.
            \item $\pr{\Omega} = 1$ also results directly from the definitions.
            \item Consider two disjunct events $A, B \subset \Omega \land A \cap B = \emptyset$. Then 
            $$
            \begin{aligned}
                \pr{A \cup B} &= \sum_{x \in A \cup B} \pr{x} \cr
                    &= \sum_{x \in A} \pr{x} + \sum_{x \in B} \pr{x} - \sum_{x \in A \cap B} \pr{x}  \cr
                    &= \sum_{x \in A} \pr{x} + \sum_{x \in B} \pr{x} &\text{because}~A\cap B = \emptyset \cr
                    &= \pr{A} + \pr{B}.
            \end{aligned}
            $$
            \item So $\del{\Omega = \fml{Z}, F = \pset{\Omega}, P}$ is a probability space. {$\blacksquare$}
        \end{enumerate}
    \end{enumerate}
    
\end{frame}
% ================================================================
\section{Cases \& Examples}
% ================================================================
\subsection{Programs with disjunctive heads}
% ================================================================
\begin{frame}
    
    Consider the program:
    $$
    \begin{aligned}
    c_1 &= a \lor \neg a, \cr
    c_2 &= b \lor c \larr a.
    \end{aligned}
    $$
    This program has two total choices,
    $$
    \begin{aligned}
    \theta_1&= \set{ \neg a }, \cr
    \theta_2&= \set{ a }.
    \end{aligned}
    $$
    and three stable models,
    $$
    \begin{aligned}
    s_1 &= \set{ \neg a }, \cr
    s_2 &= \set{ a, b }, \cr
    s_3 &= \set{ a, c }.
    \end{aligned}
    $$
\end{frame}
% ================================================================
\begin{frame}
    Suppose that we add an annotation $x :: a$, which entails $\co{x} :: \neg a$. This is enough to get $w\at{s_1} = \co{x}$ but, on the absence of further information, no fixed probability can be assigned to either model $s_2, s_3$ except that the respective sum must be $x$. So, expressing our lack of knowledge using a parameter $d \in \intcc{0, 1}$ we get:
    $$
    \begin{cases}
        w\at{s_1 } = &\co{x}\cr
        w\at{s_2 } = &dx\cr
        w\at{s_3} = &\co{d}x.
    \end{cases}
    $$
\end{frame}
% ================================================================
\begin{frame}
    
    In this diagram:
    \begin{itemize}
        \item Negations are represented as \emph{e.g.} $\co{a}$ instead of $\neg a$; Stable models are denoted by shaded nodes as \tikz{\node[fill=gray!50] {$ab$}}.
        
        \item Events in $\lset{x}$ are \emph{e.g.} \tikz{\node[ circle] {$a$}} and those in $\uset{x}$ are \emph{e.g.}  \tikz{\node[draw] {$\co{a}b$}}. The remaining are simply denoted by \emph{e.g.}  \tikz{\node {$a\co{b}$}}.
        
        \item The edges connect stable models with related events. Up arrow indicate links to $\uset{s}$ and down arrows to $\lset{s}$.
        
        \item The \emph{weight propagation} sets:
        $$
        \begin{aligned}
            w\at{abc} &= w\at{ab} w\at{ac} =  x^2d\co{d}, \cr
            w\at{\co{a}\cdot\cdot} &= w\at{\neg a} = \co{x}, \cr
            w\at{a} &= w\at{ab} + w\at{ac} = x(d + \co{d}) = x, \cr
            w\at{b} &= w\at{ab} = dx, \cr
            w\at{c} &= w\at{ac} = \co{d}x, \cr
            w\at{\emptyset} &= w\at{ab} + w\at{ac} + w\at{\neg a} = dx + \co{d}x + \co{x} = 1, \cr
            w\at{a\co{b}} &= 0.
        \end{aligned}
        $$
        \item The total weight is
        $$
        \begin{aligned}
            Z   &= w\at{abc} + 8 w\at{\co{a}b}\cr
                &+ w\at{ab} + w\at{ac} + w\at{\co{a}}\cr
                &+ w\at{a}+ w\at{b}+ w\at{c}\cr
                &+ w\at{\emptyset}\cr
                %
                &= - x^{2} d^{2} + x^{2} d + 2 x d - 7 x + 10       
        \end{aligned}
        $$
        \item Now, if $x$ has an annotation to \emph{e.g.} $0.3$ we get
        $$
        Z = - 0.09 d^{2} + 0.69 d + 7.9
        $$ 
        \item Now some statistics are possible. For example we get 
        $$
        \pr{abc \mid x = 0.3} = \frac{0.09 d \left(d - 1\right)}{0.09 d^{2} - 0.69 d - 7.9}
        $$. 
    
        \item This expression can be plotted for $d\in\intcc{0,1}$
        \begin{center}
            \includegraphics[height=15em]{Pabc_alpha03.pdf}
        \end{center} 
        
        \item If a data set $E$ entails \emph{e.g.} $\pr{abc \mid E} = 0.0015$ we can numerically solve
        $$
        \begin{aligned}
            \pr{abc \mid x = 0.3} &= \pr{abc \mid E} \cr
            \iff\cr
            \frac{0.09 d \del{d - 1}}{0.09 d^{2} - 0.69 d - 7.9} &= 0.0015
        \end{aligned}
        $$
        which has two solutions, $d \approx 0.15861$ or $d \approx 0.83138$.
    \end{itemize}
\end{frame}
% ================================================================
\subsection{Non-stratified programs}
% ================================================================
\begin{frame}
    The following LP is non-stratified, because has a cycle with negated arcs:
    $$
    \begin{aligned}
        c_1 &= a\lor \neg a,\cr
        c_2 &= b \larr \naf c \land \naf a, \cr
        c_3 &= c \larr \naf b.
    \end{aligned}
    $$    
    This program has three stable models
    $$
    \begin{aligned}
    s_1 &= \set{ a, c }, \cr
    s_2 &= \set{ \neg a, b }, \cr
    s_3 &= \set{ \neg a, c }.
    \end{aligned}
    $$
\end{frame}

\begin{frame}    
    The disjunctive clause $a\lor\neg a$ defines a set of \textbf{total choices}
    $$
    \Theta = \set{
        \theta_1 = \set{ a },
        \theta_2 = \set{ \neg a }
    }.
    $$
\end{frame}
% ================================================================
\begin{frame}
    
    Looking into probabilistic events of the program and/or its models, we define $x = \pr{\Theta = \theta_1}\in\intcc{0, 1}$ and $\pr{\Theta = \theta_2} = \co{x}$.
    
    Since $s_1$ is the only stable model that results from $\Theta = \theta_1$, it is natural to extend $\pr{ s_1 } = \pr{\Theta = \theta_1}  = x$. However, there is no clear way to assign $\pr{s_2}, \pr{s_3}$ since \emph{both models result from the single total choice} $\Theta = \theta_2$. Clearly, 
    $$\pr{s_2 \mid \Theta} + \pr{s_3 \mid \Theta} =
    \begin{cases}
        0 & \text{if}~\Theta = \theta_1\cr
        1 & \text{if}~\Theta = \theta_2
    \end{cases}
    $$
    but further assumptions are not supported \emph{a priori}. So let's \textbf{parameterize} the equation above,
    $$
    \begin{cases}
        \pr{s_2 \mid \Theta = \theta_2} = &\beta \in \intcc{0, 1} \cr
        \pr{s_3 \mid \Theta = \theta_2} = &\co{\beta},
    \end{cases}
    $$
    in order to explicit our knowledge, or lack of, with numeric values and relations.
\end{frame}
% ================================================================
\begin{frame}
    Now we are able to define the \textbf{joint distribution} of the boolean random variables $A,B,C$:
    
    $$
    \begin{array}{cc|l}
        A, B, C& P & \text{Obs.}\cr
        \hline
        a, \neg b, c & x & s_1, \Theta=\theta_1\cr
        \neg a, b, \neg c & \co{x}\beta  & s_2, \Theta=\theta_2\cr
        \neg a, \neg b, c & \co{x}\co{\beta} & s_3, \Theta=\theta_2\cr
        \ast & 0&\text{not stable models}
    \end{array}
    $$
    where $x, \beta\in\intcc{0,1}$.
\end{frame}
% ================================================================
\section{Conclusions}
% ================================================================
\begin{frame}
    \begin{itemize}
        \item We can use the basics of probability theory and logic programming to assign explicit \emph{parameterized} probabilities to the (stable) models of a program.
        \item In the covered cases it was possible to define a (parameterized) \emph{family of joint distributions}.
        \item How far this approach can cover all the cases on logic programs is (still) an issue \emph{under investigation}.
        \item However, it is non-restrictive since \emph{no unusual assumptions are made}.
    \end{itemize}
\end{frame}
% ================================================================
\section*{ASP \& related definitions}
% ================================================================
\begin{frame}
    
    \begin{itemize}
        \item An \deft{atom} is $r(t_1, \ldots t_n)$ where
        \begin{itemize}
            \item $r$ is a $n$-ary predicate symbol and each $t_i$ is a constant or a variable.
            \item A \deft{ground atom} has no variables; A \deft{literal} is either an atom $a$ or a negated atom $\neg a$.
        \end{itemize}
        
        \item An \deft{ASP Program} is a set of \deft{rules} such as $h_1 \vee \cdots \vee h_m \leftarrow b_1 \wedge \cdots \wedge b_n$.
        \begin{itemize}
            \item The \deft{head} of this rule is $h_1 \vee \cdots \vee h_m$, the \deft{body} is $b_1 \wedge \cdots \wedge b_n$ and each $b_i$ is a \deft{subgoal}.
            \item Each $h_i$ is a literal, each subgoal $b_j$ is a literal or a literal preceded by $\naf\;$ and $m + n > 0$.
            \item A \deft{propositional program} has no variables.
            \item A \deft{non-disjunctive rule} has $m \leq 1$; A \deft{normal rule} has $m = 1$; A \deft{constraint} has $m = 0$; A \deft{fact} is a normal rule with $n = 0$.
        \end{itemize}
        
        \item The \deft{Herbrand base} of a program is the set of ground literals that result from combining all the predicates and constants of the program.     
        \begin{itemize}
            \item An \deft{event} is a consistent subset (\emph{i.e.} doesn't contain $\set{a, \neg a}$) of the Herbrand base.
            \item Given an event $I$, a ground literal $a$ is \deft{true}, $I \models a$, if $a \in I$; otherwise the literal is \deft{false}.
            \item A ground subgoal, $\naf b$, where $b$ is a ground literal, is \deft{true}, $I \models \naf b$, if $b \not\in I$; otherwise, if $b \in I$,  it is \deft{false}.
            \item A ground rule $r = h_1 \vee \cdots \vee h_m \leftarrow b_1 \wedge \cdots \wedge b_n$ is \deft{satisfied} by the event $I$, \emph{i.e.} $I \models r$, iff 
            $$
            \forall j \exists i~I \models b_j \implies I \models h_i.
            $$
            \item A \deft{model} of a program is an event that satisfies all its rules. Denote $\fml{M}_P$ the set of all models of $P$.
        \end{itemize}
        
        \item The \deft{dependency graph} of a program is a digraph where:
        \begin{itemize}
            \item Each grounded atom is a node.
            \item For each grounded rule there are edges from the atoms in the body to the atoms in the head.
            \item A \deft{negative edge} results from an atom with $\naf\;$; Otherwise it is a \deft{positive edge}.
            \item An \deft{acyclic program} has an acyclic dependency graph; A \deft{normal program} has only normal rules; A \deft{definite program} is a normal program that doesn't contains $\neg$ neither $\naf\;$.
            \item In the dependency graph of a \deft{stratified program} no cycle contains a negative edge.
            \item \textbf{A stratified program has a single minimal model} that assigns either true or false to each atom.
        \end{itemize}
        \item Every \emph{definite program} has a unique minimal model: its \deft{semantic}.
        \item Programs with negation may have no unique minimal model.
        \item Given a program $P$ and an event $I$, their \deft{reduct}, $P^I$, is the propositional program that results from
        \begin{enumerate}
            \item Removing all the rules with $\naf b$ in the body where $b \in I$.
            \item Removing all the $\naf b$ subgoals from the remaining rules.
        \end{enumerate}
        \item A \deft{stable model} (or \deft{answer set}) of the program $P$ is an event $I$ that is the minimal model of the reduct $P^I$.  
        \item Denote $\fml{S}_P$ the set of all stable models of program $P$. The \deft{semantics} (or \deft{answer sets}) of a program $P$ is the set $\fml{S}_P$.
        \begin{itemize}
            \item Some programs, such as $a \leftarrow \naf a$, have no stable models.
            \item A stable model is an event closed under the rules of the program.
        \end{itemize}
    \end{itemize}
\end{frame}
% ================================================================
\end{document}