aasasp-llncs.tex 60.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
%\documentclass[a4paper, 10pt]{article}
\documentclass{llncs}

\usepackage[
bibstyle=numeric,
citestyle=numeric
]{biblatex} %Imports biblatex package
\addbibresource{zugzwang.bib} %Import the bibliography file

\usepackage[x11colors]{xcolor}

\usepackage{tikz}
\tikzset{
event/.style={},
smodel/.style={fill=gray!25},
tchoice/.style={draw, circle},
indep/.style={},%{draw, dashed},
proptc/.style = {-latex, dashed},
propsm/.style = {-latex, thick},
doubt/.style = {gray}
}
\usetikzlibrary{calc, positioning, patterns}

\usepackage{hyperref}
\hypersetup{
colorlinks=true,
linkcolor=blue,
citecolor=blue,
urlcolor=blue,
}

\usepackage{commath}
%\usepackage{amsthm}
\newtheorem{assumption}{Assumption}
%\newtheorem{definition}{Definition}
%\newtheorem{proposition}{Proposition}
%\newtheorem{example}{Example}
%\newtheorem{theorem}{Theorem}
\usepackage{amssymb}
\usepackage[normalem]{ulem}
\usepackage[nice]{nicefrac}
\usepackage{stmaryrd}
\usepackage{acronym}
\usepackage{multicol}
\usepackage{cleveref}
%
% Local commands
%
\newcommand{\naf}{\ensuremath{\sim\!}}
\newcommand{\larr}{\ensuremath{\leftarrow}}
\newcommand{\at}[1]{\ensuremath{\!\del{#1}}}
\newcommand{\co}[1]{\ensuremath{\overline{#1}}}
\newcommand{\fml}[1]{\ensuremath{{\cal #1}}}
\newcommand{\deft}[1]{\textbf{#1}}
\newcommand{\pset}[1]{\ensuremath{\mathbb{P}\at{#1}}}
\newcommand{\ent}{\ensuremath{\lhd}}
\newcommand{\cset}[2]{\ensuremath{\set{#1,~#2}}}
\newcommand{\langof}[1]{\ensuremath{\fml{L}\at{#1}}}
\newcommand{\uset}[1]{\ensuremath{#1^{\ast}}}
\newcommand{\lset}[1]{\ensuremath{#1_{\ast}}}
\newcommand{\yset}[1]{\ensuremath{\left\langle #1 \right\rangle}}
\newcommand{\stablecore}[1]{\ensuremath{\left\llbracket #1 \right\rrbracket}}
\newcommand{\uclass}[1]{\ensuremath{\intco{#1}}}
\newcommand{\lclass}[1]{\ensuremath{\intoc{#1}}}
\newcommand{\smclass}[1]{\ensuremath{\intcc{#1}}}
\newcommand{\pr}[1]{\ensuremath{\mathrm{P}\at{#1}}}
\newcommand{\err}[1]{\ensuremath{\mathrm{err}\at{#1}}}
\newcommand{\pw}[1]{\ensuremath{\mu\at{#1}}}
\newcommand{\pwcfname}{\ensuremath{\mu_{\textrm{TC}}}}
\newcommand{\pwc}[1]{\ensuremath{\pwcfname\at{#1}}}
\newcommand{\class}[1]{\ensuremath{[{#1}]_{\sim}}}
\newcommand{\urep}[1]{\ensuremath{\rep{#1}{}}}
\newcommand{\lrep}[1]{\ensuremath{\rep{}{#1}}}
\newcommand{\rep}[2]{\ensuremath{\left\langle #1 \middle| #2 \right\rangle}}
\newcommand{\inconsistent}{\bot}
\newcommand{\given}{\ensuremath{~\middle|~}}
\newcommand{\emptyevent}{\ensuremath{\vartriangle}}
\newcommand{\indepclass}{\ensuremath{\Diamond}}
\newcommand{\probfact}[2]{\ensuremath{#2\mkern-4mu:\mkern-4mu#1}}
\newcommand{\probrule}[3]{\probfact{#1}{#2} \leftarrow #3}
%\newcommand{\tcgen}[1]{\ensuremath{\widehat{#1}}}
\newcommand{\tcgen}[1]{\ensuremath{\left<#1\right>}}
\newcommand{\lfrac}[2]{\ensuremath{{#1}/{#2}}}
\newcommand{\condsymb}[2]{\ensuremath{p_{#1|#2}}}
%
%\newcommand{\oldnote}[1]{\marginpar{\scriptsize #1}}
\newcommand{\oldnote}[1]{\note{#1}}
\newcommand{\todo}[1]{{\color{red!50!black}(\emph{#1})}}
% \newcommand{\oldremark}[2]{\uwave{#1}~{\color{green!40!black}(\emph{#2})}}
\newcommand{\oldremark}[2]{\remark{#1}{#2}}
\newcommand{\oldreplace}[2]{\sout{#1}/{\color{green!20!black}#2}}
\newcommand{\delete}[1]{\xout{#1}}
\newcommand{\franc}[1]{{\color{orange!60!black}#1}}
\newcommand{\bruno}{\color{red!60!blue}}

%
%   Acronyms
%
\acrodef{BK}[BK]{background knowledge}
\acrodef{ASP}[ASP]{answer set programming}
\acrodef{NP}[NP]{normal program}
\acrodef{DS}[DS]{distribution semantics}
\acrodef{PF}[PF]{probabilistic fact}
\acrodef{TC}[TC]{total choice}
\acrodef{SM}[SM]{stable model}
\acrodef{SC}[SC]{stable core}
\acrodef{KL}[KL]{Kullback-Leibler}
\acrodef{SBF}[SBF]{Simple But Fruitful}
\acrodef{RSL}[RSL]{Random Set of Literals}
\acrodef{RCE}[RCE]{Random Consistent Event}
%

%
%
%
\renewcommand{\remark}[2]{%
    \stepcounter{remark}%
    \!{\color{red}/\!}%
    #1%
    {\!\color{red}/}\footnotemark[\arabic{remark}]%
    \footnotetext[\arabic{remark}]{{\color{red}/}#2}%
    }
\renewcommand{\note}[1]{
    \stepcounter{remark}%
    {\!\!\color{red}/}\footnotemark[\arabic{remark}]\!\!%
    \footnotetext[\arabic{remark}]{{\color{red}/}#1}
}
%
%
%
\begin{document}
%
%
%
%
%
	\title{An Algebraic Approach to Stochastic ASP}
	\author{Salvador Abreu\inst{1} \and   Francisco Coelho\inst{1} \and Bruno Dinis \inst{1}}
	\institute{Universidade de Évora}
	\date{}
	\maketitle\thispagestyle{empty}
	
%
%
%
\begin{abstract}
    We address the problem of extending probability from the total choices of an \acs{ASP} program to the \aclp{SM}, and from there to general events.
    %
    Our approach is algebraic in the sense that it relies on an equivalence relation over the set of events and uncertainty is expressed with variables and polynomial expressions.
    %
    We illustrate our methods with two examples, one of which shows a connection to bayesian networks.
\end{abstract}
%
%
%
\section{Introduction and Motivation}
%
%
%
A major limitation of logical representations in real world applications is the implicit assumption that the \acl{BK} is perfect. This assumption is problematic if data is noisy, which is often the case. Here we aim to explore how \acl{ASP} programs with probabilistic facts can lead to characterizations of probability functions on the program's domain, which is not straightforward in the context of \acl{ASP}, as explained below (see also \cite{cozman2020joy,verreet2022inference,baral2009probabilistic,pajunen2021solution}). Unlike current systems such as ProbLog \cite{de2007problog}, P-log \cite{baral2009probabilistic}, LP\textsuperscript{MLN} \cite{lee2016weighted}, or cplint \cite{alberti2017cplint}, that derive a probability distribution from a program, in our system some choices are represented by a parameter that can be later estimated from further information, \emph{e.g.}\ observations. This approach enables later refinement and scoring of a partial program of a model from additional evidence.

\Ac{ASP} \cite{lifschitz2002answer} is a logic programming paradigm based on the \ac{SM} semantics of \acp{NP} that can be implemented using the latest advances in SAT solving technology. Unlike ProLog, \ac{ASP} is a truly declarative language that supports language constructs such as disjunction in the head of a clause, choice rules, and both hard and weak constraints.

The \ac{DS} \cite{sato1995statistical,riguzzi2022foundations} is a key approach to extend logical representations with probabilistic reasoning. 
%
Let $\fml{A}$ be a finite set of atoms. A \emph{pre-total choice} is a subset $t^{\ast}$ of \fml{A}. The \emph{\acl{TC}} (TC) associated to $t^{\ast}$ is the set $t := t^{\ast} \cup \set{\co{a} \given a \in \fml{A} \setminus t^{\ast}}$ where $\co{a}$ stands for $\neg a$. \Acp{PF} are the most basic \ac{DS} stochastic primitives and take the form  $\probfact{p}{a}$ where each $a\in\fml{A}$ is associated to some $p\in\intcc{0, 1}$. Each \ac{PF} then represents a boolean random variable that is true with probability $p$ and false with probability $\co{p} = 1 - p$.

%\note{revisit this part. $\co{a}$ não foi definido! Talvez escrever $\neg a$ na definição de $t$?}
Let $F = \set{\probfact{p}{a} \given a \in \fml{A}, p \in \intcc{0, 1}}$. For a \acl{TC} $t$ over $\fml{A}$, define
$$
P_t := \set{ p \given a \in t^{\ast} \wedge \probfact{p}{a} \in F} \cup 
    \set{\co{p} \given a \in t \setminus t^{\ast} \wedge \probfact{p}{a} \in F}
$$

and

\begin{equation}
    \pr{T = t} = \prod_{p \in P_t} p,
    \label{eq:prob.total.choice}
\end{equation}

where $T$ is a random variable whose values are \aclp{TC}.

Our goal is to extend this probability (which is, indeed, a product of Bernoulli distributions \cite{Teugels90}), from \aclp{TC}, to cover the program domain. We use the term ``program'' as a set of rules and facts, plain and probabilistic. We can foresee two key applications of this extended probability:

\begin{enumerate}
    \item Support probabilistic reasoning/tasks on the program domain.
    \item Given a dataset and a divergence measure, the program can be scored (by the divergence w.r.t.\ the \emph{empiric} distribution of the dataset), and weighted or sorted amongst other programs. These are key ingredients in algorithms searching, for example, optimal models of a dataset.
\end{enumerate}

To extend probabilities from \aclp{TC} we start with the stance that \emph{a program describes an observable system}, that \emph{the \aclp{SM} are all the possible states} of that system and that \emph{observations (i.e.\ events) are stochastic} --- one observation can be sub-complete (a proper subset of a \ac{SM}) or super-complete (a proper superset of a \ac{SM}),
%\note{We should explain this!}
 and might not determine the real state of the system. From here, probabilities must be extended from \acp{TC} to \acp{SM} and then to any event.
%
This extension process starts with a critical problem, illustrated by the  example in \cref{sec:example.1}, concerning situations where multiple \acp{SM}, $ab$ and $ac$, result from a single \ac{TC}, $a$, but there is not enough information (in the program) to assign a single probability to each \ac{SM}. We propose to address this issue by using algebraic variables to describe that lack of information and then estimate the value of those variables from empirical data. This lack of uniqueness is also addressed in \cite{cozman2020joy} along a different approach, using credal sets.

In another related work \cite{verreet2022inference} epistemic uncertainty (or model uncertainty) is considered as a lack of knowledge about the underlying model, that may be mi\-ti\-ga\-ted via further observations. This seems to presuppose a bayesian approach to imperfect knowledge in the sense that having further observations allows to improve/correct the model. Indeed, that approach uses Beta distributions on the total choices in order to be able to learn a distribution on the events
%\remark{events}{Check this: do they learn distributions on the events?}
. This approach seems to be specially fitted to being able to tell when some probability lies beneath some given value. Our approach seems to be similar in spirit, while remaining algebraic in the way that the extension of probabilities is addressed.

The example in \cref{sec:example.1} uses the code available in the project's repository\footnote{\url{https://git.xdi.uevora.pt/fc/sasp}}, developed with the \textit{Julia} programming language \cite{bezanson2017julia}, and the \textit{Symbolics} \cite{gowda2021high}, and \textit{DataFrames} \cite{bouchetvalat2023dataframes} libraries.
%
%
%
\section{A Simple but Fruitful Example}\label{sec:example.1}
%
%
%
In this section we consider a somewhat simple case that showcases the problem of extending probabilities from \aclp{TC} to \aclp{SM} and then to events. As mentioned before, the main issue arises from the lack of information in the program to assign a single probability to each stable model. This becomes a crucial problem in situations where multiple \aclp{SM} result from a single \acl{TC}. We will come back to this example in \cref{subsec:sbf.example}, after we present our proposal for extending probabilities from \aclp{TC} to \aclp{SM} in \cref{sec:extending.probalilities}.


\begin{example}\label{running.example}
    Consider $\fml{A} = \set{a, b, c}$ and the following program
    %\note{Introduce the notation $\probfact{p}{a}$ and what is the underlying ASP program.}

    \begin{equation}
        \begin{aligned}
            \probfact{0.3}{a} & ,\cr
            b \vee c          & \leftarrow a.
        \end{aligned}
        \label{eq:example.1}
    \end{equation}

    %\note{Explain how the SM are defined.}
    %\note{Explain our position about negation and be clear about $\co{a} = \neg a$ and not $\co{a} =\,\sim\!\! a$.}
    %\note{Introduce the parameterization $\theta_{s,t}$.}
    The \emph{standard form} of this program results from replacing annotated facts, such as $\probfact{0.3}{a}$, by the associated disjunctions, $a \vee \neg a$. The \aclp{SM} of the annotated program are the same as the ones from the standard form:  $\co{a}, ab$ and $ac$, where $\co{a}$ stands for $\neg a$ (see \cref{fig:running.example}). While it is straightforward to assume $\pr{\co{a}}=0.7$, there is no obvious explicit way to assign values to $\pr{ab}$ and $\pr{ac}$. For instance, we can use a parameter $\theta$ as in
    $$
        \begin{aligned}
            \pr{ab} & = 0.3 \theta,\cr
            \pr{ac} & = 0.3 (1 - \theta)
        \end{aligned}
    $$
    to express our knowledge that $ab,ac$ are events related in a certain way and, simultaneously, our uncertainty about that relation. The pa\-ra\-me\-ter $\theta=\theta_{s,t}$ depends on both the \acl{SM} $s$ and the \acl{TC} $t$. This uncertainty can then be addressed with the help of adequate distributions, such as empirical distributions from a dataset.
\end{example}

If an \ac{ASP} program is intended to describe some system then:

\begin{enumerate}

    \item With a probability set for the \aclp{SM}, we want to extend it to all the events of the program domain.

    \item In the case where some statistical knowledge is available, for example, in the form of a distribution, we consider it as ``external'' knowledge about the parameters, that doesn't affect the extension procedure described below.

    \item Statistical knowledge can be used to estimate parameters and to ``score'' the program.

    \item\label{item:program.selection} If that program is only but one of many possible candidates then that score can be used, \emph{e.g.} as fitness, by algorithms searching (optimal) programs of a dataset of observations.

    \item  If observations are not consistent with the program, then we ought to conclude that the program is wrong and must be changed accordingly.
\end{enumerate}

Currently, we are addressing the problem of extending a probability function (possibly using parameters such as $\theta$ above), defined on the \acp{SM} of a program, to all the events of that program. This extension must satisfy the Kolmogorov axioms of probability so that probabilistic reasoning is consistent with the \ac{ASP} program and follow our interpretation of \aclp{SM} as the states of an observable system.

As sets, the \acp{SM} can have non-empty intersection. But, as states of a system, we assume that \acp{SM} are disjoint events, in the following sense:

\begin{assumption}\label{assumption:smodels.disjoint}
    \Aclp{SM} are disjoint events: For any set $X$ of \aclp{SM},
    \begin{equation}
        \pr{X} = \sum_{s\in X}\pr{s}
    \end{equation}
\end{assumption}

Consider the \aclp{SM} $ab, ac$ from \cref{running.example}, that result from the clause $b \vee c \leftarrow a$ and the \acl{TC} $\set{a}$. Since we intend to associate each \acl{SM} with a state of the system, $ab$ and $ac$ should be \emph{disjoint} events. So $b \vee c$ is interpreted as an \emph{exclusive disjunction} and, from that particular clause, no further relation between $b$ and $c$ is assumed. This does not prevent that other clauses may be added that entail further dependencies between $b$ and $c$, which in turn may change the \aclp{SM}.

By not making distribution assumptions on the clauses of the program we can state such properties on the semantics of the program, as we've done in assumption \ref{assumption:smodels.disjoint}.
%
%
%
\section{Extending Probabilities}\label{sec:extending.probalilities}
%
%
%
\begin{figure}[t]
    \begin{center}
        \begin{tikzpicture}
            \node[event] (E) {$\emptyevent$};
            \node[tchoice, above left = of E] (a) {$a$};
            \node[smodel, above left = of a] (ab) {$ab$};
            \node[smodel, above right = of a] (ac) {$ac$};
            \node[event, below = of ab] (b) {$b$};
            \node[event, below = of ac] (c) {$c$};
            \node[event, above right = of ab] (abc) {$abc$};
            \node[event, above left = of ab] (abC) {$\co{c}ab$};
            \node[event, above right = of ac] (aBc) {$\co{b}ac$};
            \node[indep, right = of ac] (bc) {$bc$};
            \node[tchoice, smodel, below right = of bc] (A) {$\co{a}$};
            \node[event, above = of A] (Ac) {$\co{a}c$};
            \node[event, above right = of Ac] (Abc) {$\co{a}bc$};
            % ----
            \draw[doubt] (a) to[bend left] (ab);
            \draw[doubt] (a) to[bend right] (ac);

            \draw[doubt] (ab) to[bend left] (abc);
            \draw[doubt] (ab) to[bend right] (abC);

            \draw[doubt] (ac) to[bend right] (abc);
            \draw[doubt] (ac) to[bend left] (aBc);

            \draw[doubt, dashed] (Ac) to (Abc);

            \draw[doubt] (A) to (Ac);
            \draw[doubt] (A) to (Abc);

            \draw[doubt] (ab) to[bend right] (E);
            \draw[doubt] (ac) to[bend right] (E);
            \draw[doubt] (A) to[bend left] (E);

            \draw[doubt] (ab) to (b);
            \draw[doubt] (ac) to (c);
            % \draw[doubt] (ab) to[bend left] (a);
            % \draw[doubt] (ac) to[bend right] (a);
            \draw[doubt, dashed] (c) to[bend right] (bc);
            \draw[doubt, dashed] (abc) to[bend left] (bc);
            \draw[doubt, dashed] (bc) to (Abc);
            \draw[doubt, dashed] (c) to[bend right] (Ac);
        \end{tikzpicture}
    \end{center}

    \caption{Some events related to the \aclp{SM} of \cref{running.example}. The circle nodes are \aclp{TC} and shaded nodes are \aclp{SM}. Solid lines represent relations with the \acp{SM} and dashed lines relations between other events. The  set of events contained in all \aclp{SM}, denoted by $\emptyevent$, is empty in this example.}
    \label{fig:running.example}
\end{figure}

The diagram in \cref{fig:running.example} illustrates the problem of extending probabilities from \aclp{TC} to \aclp{SM} and then to general events in an \emph{edge-wise} process, where the value in a node is defined from the values in its neighbors. This quickly leads to coherence problems concerning probability, with no clear systematic approach. Notice that $bc$ is not directly related with any \acl{SM} therefore propagating values through edges would assign a hard to justify ($\not= 0$) value to $bc$. Instead, we propose to base the extension in the relation an event has with the \aclp{SM}.
%
%
%
\subsection{An Equivalence Relation}\label{subsec:equivalence.relation}
%
%
%
\begin{figure}[t]
    \begin{center}
        \begin{tikzpicture}
            \node[event] (E) {$\emptyevent$};
            \node[tchoice, above left = of E] (a) {$a$};
            \node[smodel, above left = of a] (ab) {$ab$};
            \node[smodel, above right = of a] (ac) {$ac$};
            \node[event, below = of ab] (b) {$b$};
            \node[event, below = of ac] (c) {$c$};
            \node[event, above right = of ab] (abc) {$abc$};
            \node[event, above left = of ab] (abC) {$\co{c}ab$};
            \node[event, above right = of ac] (aBc) {$\co{b}ac$};
            \node[indep, right = of ac] (bc) {$bc$};
            \node[tchoice, smodel, below right = of bc] (A) {$\co{a}$};
            \node[event, above = of A] (Ac) {$\co{a}c$};
            \node[event, above right = of Ac] (Abc) {$\co{a}bc$};
            % ----
            \path[draw, rounded corners, pattern=north west lines, opacity=0.2]
            (ab.west) --
            (ab.north west) --
            %
            (abC.south west) --
            (abC.north west) --
            (abC.north) --
            %
            (abc.north east) --
            (abc.east) --
            (abc.south east) --
            %
            (ab.north east) --
            (ab.east) --
            (ab.south east) --
            %
            (a.north east) --
            %
            (E.north east) --
            (E.east) --
            (E.south east) --
            (E.south) --
            (E.south west) --
            %
            (b.south west) --
            %
            (ab.west)
            ;
            % ----
            \path[draw, rounded corners, pattern=north east lines, opacity=0.2]
            (ac.south west) --
            (ac.west) --
            (ac.north west) --
            %
            (abc.south west) --
            (abc.west) --
            (abc.north west) --
            %
            (aBc.north east) --
            (aBc.east) --
            (aBc.south east) --
            %
            (ac.north east) --
            %
            (c.east) --
            %
            (E.east) --
            (E.south east) --
            (E.south) --
            (E.south west) --
            %
            (a.south west) --
            (a.west) --
            (a.north west) --
            (a.north) --
            %
            (ac.south west)
            ;
            % ----
            \path[draw, rounded corners, pattern=horizontal lines, opacity=0.2]
            % (A.north west) --
            %
            (Ac.north west) --
            %
            (Abc.north west) --
            (Abc.north) --
            (Abc.north east) --
            (Abc.south east) --
            %
            % (Ac.north east) --
            % (Ac.east) --
            %
            % (A.east) --
            (A.south east) --
            %
            (E.south east) --
            (E.south) --
            (E.south west) --
            (E.west) --
            (E.north west) --
            %
            (Ac.north west)
            ;
        \end{tikzpicture}
    \end{center}

    \caption{Classes (of consistent events) related to the \aclp{SM} of \cref{running.example} are defined through intersections and inclusions. In this picture we can see, for example, the classes $\set{\co{c}ab, ab, b}$ and $\set{a, abc}$. Different fillings correspond to different classes and, as before, the circle nodes are \aclp{TC} and shaded nodes are \aclp{SM}. Notice that $bc$ is not in a ``filled'' area.}
    \label{fig:running.example.classes}
\end{figure}

Given an ASP program, we consider a set of \emph{atoms} $ \fml{A}$, the set $\fml{L}$ of the \emph{literals} over \fml{A}, and the set of \emph{events} $\fml{E}$ such that $e \in \fml{E} \iff e \subseteq \fml{L}$. We also consider $\fml{W}$ the set of \emph{worlds} (consistent events), 
%\note{Be more precise on this definition} 
a set of \emph{\aclp{TC}} $\fml{T}$ such that for every $a \in \fml{A}$ we have $a \in t$ or $\neg a \in t$
%\note{Shouldn't it be $a \in t$ or $\neg a \in t$???}
, and $\fml{S}$ the set of \emph{\aclp{SM}} such that $ \fml{S}\subset\fml{W}$. At last, the set of \aclp{SM} entailed by the \acl{TC} $t$ is denoted by $\tcgen{t}$.

Our path to extend probabilities starts with a perspective of \aclp{SM} as playing a role similar to \emph{prime factors}.  The \aclp{SM} of a program are the irreducible events entailed from that program and any event must be considered under its relation with the \aclp{SM}.

From  \cref{running.example}, consider the \acp{SM} $\co{a}, ab, ac$ and events $a, abc$ and $c$. While $a$ is related with (contained in) with both $ab, ac$, event $c$ is related only with $ac$. So, $a$ and $c$ are related with different \acp{SM}. On the other hand, both $ab, ac$ are related with $abc$. So $a$ and $abc$ are related with the same \aclp{SM}.

\begin{definition}\label{def:stable.core}
    The \emph{\ac{SC}} of the event $e\in \fml{E}$ is
    \begin{equation}
        \stablecore{e} := \set{s \in \fml{S} \given s \subseteq e \vee e \subseteq s}. \label{eq:stable.core}
    \end{equation}
    where $\fml{S}$ is the set of \aclp{SM}.
\end{definition}

We now define an equivalence relation so that two events are related if either both are inconsistent or both are consistent and, in the latter case, with the same \acl{SC}.

\begin{definition}\label{def:equiv.rel}
    For a given program, let $u, v \in \fml{E}$. The equivalence relation $\sim$ is defined by
    \begin{equation}
        u \sim v :\!\iff u,v \not\in\fml{W} \vee \del{u,v \in \fml{W} \wedge \stablecore{u} = \stablecore{v}}.\label{eq:equiv.rel}
    \end{equation}
\end{definition}

Observe that the minimality of \aclp{SM} implies that, in \cref{def:stable.core}, either $e$ is a \acl{SM} or at least one of $\exists s \del{s \subseteq e}, \exists s \del{e \subseteq s}$ is false. This equivalence relation defines a partition on the set of events, where each class holds a unique relation with the \aclp{SM}. In particular we denote each class by:

\begin{equation}
    \class{e} =
    \begin{cases}
        \inconsistent := \fml{E} \setminus \fml{W}
         & \text{if~} e \in \fml{E} \setminus \fml{W}, \\
        \set{u \in \fml{W} \given \stablecore{u} = \stablecore{e}}
         & \text{if~} e \in \fml{W}.
    \end{cases}\label{eq:event.class}
\end{equation}

The combinations of the \aclp{SM}, together with the set of inconsistent events $\inconsistent$, form a set of representatives. Consider again \cref{running.example}. As previously mentioned, the \aclp{SM} are the elements of $\fml{S} = \set{\co{a}, ab, ac}$ so the quotient set of this relation is
\begin{equation}
    \class{\fml{E}} = \set{
        \inconsistent,
        \indepclass,
        \class{\co{a}},
        \class{ab},
        \class{ac},
        \class{\co{a}, ab},
        \class{\co{a}, ac},
        \class{ab, ac},
        \class{\co{a}, ab, ac}
    },
\end{equation}
where $\indepclass$ denotes, with abuse of notation, both the class of \emph{independent} events $e$ such that $\stablecore{e} = \emptyset$ and its core and $\emptyevent$ is the set of events contained in all \acp{SM}. We have:
%\note{Remark the odd nature of $\emptyevent$.}

\begin{equation*}
    \begin{array}{l|lr}
        \text{\textbf{Core}}, \stablecore{e}
         & \text{\textbf{Class}}, \class{e}
         & \text{\textbf{Size}}, \# \class{e}                                                 \\
        \hline
        %
        \inconsistent
         & \co{a}a, \ldots
         & 37
        \\
        %
        \indepclass
         & \co{b}, \co{c}, bc, \co{b}a, \co{b}c, \co{bc}, \co{c}a, \co{c}b, \co{bc}a
         & 9
        \\
        %
        \co{a}
         & \co{a}, \co{a}b, \co{a}c, \co{ab}, \co{ac}, \co{a}bc, \co{ac}b, \co{ab}c, \co{abc}
         & 9
        \\
        %
        ab
         & b, ab, \co{c}ab
         & 3
        \\
        %
        ac
         & c, ac, \co{b}ac
         & 3
        \\
        %
        \co{a}, ab
         & \emptyset
         & 0
        \\
        %
        \co{a}, ac
         & \emptyset
         & 0
        %
        \\
        %
        ab, ac
         & a, abc
         & 2
        \\
        %
        \co{a}, ab, ac
         & \emptyevent
         & 1
        \\
        %
        \hline
        \class{\fml{E}}
         & \fml{E}
         & 64
    \end{array}
\end{equation*}

 Since all events within an equivalence class are in relation with a specific set of \aclp{SM}, \emph{measures, including probability, should be constant within classes}:
          \[
              \forall u\in \class{e} \left(\mu\at{u} = \mu\at{e} \right).
          \]
          
     In general, we have \emph{much more} \aclp{SM} than literals but their combinations are still \emph{much less} than events. Nevertheless, the equivalence classes allow us to propagate probabilities from \aclp{TC} to events, as explained in the next subsection.
          
    In this specific case, instead of dealing with $64 = 2^6$ events, we consider only the $9 = 2^3 + 1$ classes, well defined in terms of combinations of the \aclp{SM}.

%
%
%
\subsection{From Total Choices to Events}\label{subsec:from.tchoices.to.events}
%
%
%
Our path to set a distribution on $\fml{E}$ starts with the more general problem of extending \emph{measures}, since extending \emph{probabilities} easily follows by means of a suitable normalization (done in \eqref{eq:measure.events.unconditional} and \eqref{eq:probability.event}), and has two phases:
\begin{enumerate}
    \item Extension of the probabilities, \emph{as measures}, from the \aclp{TC} to events.
    \item Normalization of the measures on events, recovering a probability.
\end{enumerate}

The ``extension'' phase, traced by \cref{eq:prob.total.choice} and eqs.\ \eqref{eq:measure.tchoice} to \eqref{eq:measure.events}, starts with the measure (probability) of \aclp{TC}, $\pw{t} = \pr{T = t}$, expands it to \aclp{SM}, $\pw{s}$, and then, within the equivalence relation from \cref{eq:equiv.rel}, to (general) events, $\pw{e}$, including (consistent) worlds.

\begin{description}
    %
    \item[Total Choices.] Using \cref{eq:prob.total.choice}, this case is given by
          \begin{equation}
              \pwc{t} := \pr{T = t}= \prod_{p\in P_t} p.
              \label{eq:measure.tchoice}
          \end{equation}
          %

    \item[Stable Models.] Recall that each \acl{TC} $t$, together with the rules and the other facts of a program, defines the set \tcgen{t} of \aclp{SM} associated with that choice.
            Given a \acl{TC} $t$, a \acl{SM} $s$, and variables or values $\theta_{s,t} \in \intcc{0, 1}$ such that $\sum_{s\in \tcgen{t}} \theta_{s,t} = 1$, we define
          \begin{equation}
              \pw{s, t} := \begin{cases}
                  \theta_{s,t} & \text{if~} s \in \tcgen{t}\cr
                  0            & \text{otherwise.}
              \end{cases}
              \label{eq:measure.stablemodel}
          \end{equation}

          %

    \item[Classes.] \label{item:class.cases} Each class is either the inconsistent class, $\inconsistent$, or is represented by some set of \aclp{SM}.
          \begin{description}
              \item[Inconsistent Class.] The inconsistent class contains events that are logically inconsistent, thus should never be observed and have measure zero:
                    \begin{equation}
                        \pw{\inconsistent, t} := 0.\footnote{Notice that this measure being equal to zero is actually independent of the \acl{TC}.}
                        \label{eq:measure.class.inconsistent}
                    \end{equation}
              \item[Independent Class.] A world that neither contains nor is contained in a \acl{SM} corresponds to a non-state, according to the program. So the respective measure is also set to zero:
                    \begin{equation}
                        \pw{\indepclass, t} := 0.
                        \label{eq:measure.class.independent}
                    \end{equation}
              \item[Other Classes.] The extension must be constant within a class, its value should result from the elements in the \acl{SC}, and respects assumption \ref{assumption:smodels.disjoint} (\aclp{SM} are disjoint):
                    \begin{equation}
                        \pw{\class{e}, t} := \pw{\stablecore{e}, t} = \sum_{s\in\stablecore{e}}\pw{s, t}
                        \label{eq:measure.class.other}
                    \end{equation}
                    and
                    \begin{equation}
                        \pw{\class{e}} := \sum_{t \in \fml{T}} \pw{\class{e}, t}\pwc{t}.
                        \label{eq:measure.class.unconditional}
                    \end{equation}
          \end{description}
          %

    \item[Events.] \label{item:event.cases} Each (general) event $e$ is in the class defined by its \acl{SC}, $\stablecore{e}$. So, denoting by $\# X$ the number of elements in $X$, we set:
          \begin{equation}
              \pw{e, t} :=
              \begin{cases}
                  \frac{\pw{\class{e}, t}}{\# \class{e}} & \text{if~}\# \class{e} > 0, \\
                  0                                      & \text{otherwise}.
              \end{cases}
              \label{eq:measure.events}
          \end{equation}
          and
          \begin{equation}
              \pw{e} := \sum_{t\in\fml{T}} \pw{e, t} \pwc{t}.
              \label{eq:measure.events.unconditional}
          \end{equation}
\end{description}



The $\theta_{s,t}$ parameters in equation \eqref{eq:measure.stablemodel} express the \emph{program's} lack of knowledge about the measure assignment, when a single \acl{TC} entails more than one \acl{SM}. In that case, how to distribute the respective measures? Our proposal to address this problem consists in assigning an unknown measure, $\theta_{s,t}$, conditional on the \acl{TC}, $t$, to each \acl{SM} $s$. This approach allows the expression of an unknown quantity and future estimation, given observed data.
% Consider the event $bc$ from \cref{running.example}. Since $\class{bc} = \indepclass$, from \cref{eq:measure.class.independent} we get $\mu\at{bc} = 0$. data.

% SUPERSET
Equation \eqref{eq:measure.class.other} results from assumption \ref{assumption:smodels.disjoint} and states that the measure of a class $\class{e}$ is the sum over it's \acl{SC}, $\stablecore{e}$, and \eqref{eq:measure.class.unconditional} \emph{marginalizes} the \acp{TC} on \eqref{eq:measure.class.other}.

The \emph{normalizing factor} is:
\begin{equation*}
    Z :=
    \sum_{e \in \fml{E}} \pw{e} =
    \sum_{\class{e} \in \class{\fml{E}}} \pw{\class{e}},
\end{equation*}

and now equation \eqref{eq:measure.events.unconditional} provides a straightforward way to define the \emph{probability of observation of a single event}:

\begin{equation}
    \pr{E = e} := \frac{\pw{e}}{Z}.\label{eq:probability.event}
\end{equation}

Equation \eqref{eq:measure.events.unconditional} together with external statistical knowledge, can be used to learn about the \emph{initial} probabilities of the atoms, that should not (and by \cref{prop:two.distributions} can't) be confused with the explicit $\pwcfname$ set in the program.

It is now straightforward to check that $\pr{E}$ satisfies the Kolmogorov axioms of probability.

Since \aclp{TC} are also events, one can ask, for an arbitrary \aclp{TC}  $t$, if $\pr{T = t} = \pr{E = t}$ or, equivalently, if $\pwc{t} = \pw{t}$.  However, it is easy to see that, in general, that cannot be true. While the domain of the random variable $T$ is the set of \aclp{TC}, for $E$ the domain is much larger, including all the events. Except for trivial programs, where the \acp{SM} are the \acp{TC}, some events other than \aclp{TC} have non-zero probability.

\begin{proposition} \label{prop:two.distributions}
    In a program with a \acl{SM} that is not a \acl{TC} there is at least one $t\in\fml{T}$ such that:
    \begin{equation}
        \pr{T = t} \not= \pr{E = t}. \label{eq:two.distributions}
    \end{equation}
\end{proposition}

\begin{proof}
    Suppose towards a contradiction that $\pr{T = t} = \pr{E = t}$ for all $t \in \fml{T}$.  Then
    $$
        \sum_{t\in\fml{T}} \pr{E = t} = \sum_{t\in\fml{T}} \pr{T = t} = 1.
    $$

    Hence $\pr{E = x} = 0$ for all $x \in \fml{E}\setminus\fml{T}$, in contradiction with the fact that for at least one $s \in \fml{S}\setminus\fml{T}$ one has $\pr{E = s} > 0$.
\end{proof}

The essential conclusion of \cref{prop:two.distributions} is that we are dealing with \emph{two distributions}: one, on the \acp{TC}, explicit in the annotations of the programs and another one, on the events, and entailed by the explicit annotations \emph{and the structure of the \aclp{SM}}.

%
%
%
\section{Developed Examples}\label{sec:developed.examples}
%
%
%
Here we apply the methods from \cref{sec:extending.probalilities} to \cref{running.example} and to a well known bayesian network: the Earthquake, Burglar, Alarm problem.

\subsection{The SBF Example}\label{subsec:sbf.example}

We continue with the program from \cref{eq:example.1}.

\begin{description}
    %    
    \item[\Aclp{TC}.] The \aclp{TC}, and respective \aclp{SM}, are
          %
          \begin{center}
              \begin{tabular}{ll|r}
                  \textbf{\Acl{TC}} & \textbf{\Aclp{SM}} & \textbf{$\pwc{t}$} \\
                  \hline
                  $a$               & $ab, ac$           & $0.3$              \\
                  $\co{a}$          & $\co{a}$           & $\co{0.3} = 0.7$
              \end{tabular}
          \end{center}
          %

    \item[\Aclp{SM}.] The $\theta_{s,t}$ parameters in this example are
          $$
              \begin{array}{l|cc}
                  \theta_{s,t} & \co{a} & a           \\
                  \hline
                  \co{a}       & 1      & 0           \\
                  ab           & 0      & \theta      \\
                  ac           & 0      & \co{\theta}
              \end{array}
          $$
          with $\theta \in \intcc{0, 1}$.

    \item[Classes.] Following the definitions in \cref{eq:stable.core,eq:equiv.rel,eq:event.class,eq:measure.class.inconsistent,eq:measure.class.independent,eq:measure.class.other} we get the following quotient set (ignoring $\inconsistent$ and $\indepclass$), and measures:
          \begin{equation*}
              \begin{array}{l|ll|rr|r}
                  \stablecore{e}
                   & \pw{s, \co{a}}
                   & \pw{s, a}
                   & \pw{\class{e}, \co{a}}
                   & \pw{\class{e}, a}
                   & \pw{\class{e}}
                  \\[2pt]
                   & \co{a}, ab, ac
                   & \co{a}, ab, ac
                   & \pwcfname=0.7
                   & \pwcfname=0.3
                   &
                  \\[2pt]
                  \hline
                  \co{a}
                   & \boxed{1},0,0
                   & \boxed{0},\theta, \co{\theta}
                   & 1
                   & 0
                   & 0.7
                  \\[2pt]
                  %
                  ab
                   & 1,\boxed{0},0
                   & 0,\boxed{\theta}, \co{\theta}
                   & 0
                   & \theta
                   & 0.3\theta
                  \\[2pt]
                  %
                  ac
                   & 1,0,\boxed{0}
                   & 0,\theta, \boxed{\co{\theta}}
                   & 0
                   & \co{\theta}
                   & 0.3\co{\theta}
                  \\[2pt]
                  %
                  \co{a}, ab
                   & \boxed{1},\boxed{0},0
                   & \boxed{0},\boxed{\theta}, \co{\theta}
                   & 1
                   & \theta
                   & 0.7 + 0.3\theta
                  \\[2pt]
                  %
                  \co{a}, ac
                   & \boxed{1},0,\boxed{0}
                   & \boxed{0},\theta, \boxed{\co{\theta}}
                   & 1
                   & \co{\theta}
                   & 0.7 + 0.3\co{\theta}
                  \\[2pt]
                  %
                  ab, ac
                   & 1,\boxed{0},\boxed{0}
                   & 0,\boxed{\theta}, \boxed{\co{\theta}}
                   & 0
                   & \theta + \co{\theta} = 1
                   & 0.3
                  \\[2pt]
                  %
                  \co{a}, ab, ac
                   & \boxed{1},\boxed{0},\boxed{0}
                   & \boxed{0},\boxed{\theta}, \boxed{\co{\theta}}
                   & 1
                   & \theta + \co{\theta} = 1
                   & 1
              \end{array}
          \end{equation*}

    \item[Prior Distributions.] Following the above values (in rational form), and considering the inconsistent and independent classes (resp. $\inconsistent, \indepclass$):
          \begin{equation*}
              \begin{array}{lr|cc|cc}
                  \stablecore{e}
                   & \# \class{e}
                   & \pw{\class{e}}
                   & \pw{e}
                   & \pr{E = e}
                   & \pr{E \in \class{e}}
                  \\
                  \hline
                  %
                  \inconsistent
                   & 37
                   & 0
                   & 0
                   & 0
                   & 0
                  \\[4pt]
                  %
                  \indepclass
                   & 9
                   & 0
                   & 0
                   & 0
                   & 0
                  \\[4pt]
                  %
                  \co{a}
                   & 9
                   & \frac{7}{10}
                   & \frac{7}{90}
                   & \frac{7}{207}
                   & \frac{7}{23}
                  \\[4pt]
                  %
                  ab
                   & 3
                   & \frac{3}{10}\theta
                   & \frac{1}{10}\theta
                   & \frac{1}{23}\theta
                   & \frac{3}{23}\theta
                  \\[4pt]
                  %
                  ac
                   & 3
                   & \frac{3}{10}\co{\theta}
                   & \frac{1}{10}\co{\theta}
                   & \frac{1}{23}\co{\theta}
                   & \frac{3}{23}\co{\theta}
                  \\[4pt]
                  %
                  \co{a}, ab
                   & 0
                   & \frac{7 + 3\theta}{10}
                   & 0
                   & 0
                   & 0
                  \\[4pt]
                  %
                  \co{a}, ac
                   & 0
                   & \frac{7 + 3\co{\theta}}{10}
                   & 0
                   & 0
                   & 0
                  %
                  \\[4pt]
                  %
                  ab, ac
                   & 2
                   & \frac{3}{10}
                   & \frac{3}{20}
                   & \frac{3}{46}
                   & \frac{3}{23}
                  \\[4pt]
                  %
                  \co{a}, ab, ac
                   & 1
                   & 1
                   & 1
                   & \frac{10}{23}
                   & \frac{10}{23}
                  \\[4pt]
                  %
                  \hline
                   &
                   &
                   & Z = \frac{23}{10}
                   &
                  %& \Sigma = 1
              \end{array}
          \end{equation*}
\end{description}

So the prior distributions, denoted by the random variable $E$, of events and classes are:

\begin{equation}
    \begin{array}{l|ccccccccc}
        \stablecore{e}          &
        \inconsistent           &
        \indepclass             &
        \co{a}                  &
        ab                      &
        ac                      &
        \co{a}, ab              &
        \co{a}, ac              &
        ab, ac                  &
        \co{a}, ab, ac
        \\ \hline\\[-12pt]

        \pr{E = e}              &
        0                       &
        0                       &
        \frac{7}{207}           &
        \frac{1}{23}\theta      &
        \frac{1}{23}\co{\theta} &
        0                       &
        0                       &
        \frac{3}{46}            &
        \frac{10}{23}
        \\[4pt]

        \pr{E \in \class{e}}    &
        0                       &
        0                       &
        \frac{7}{23}            &
        \frac{3}{23}\theta      &
        \frac{3}{23}\co{\theta} &
        0                       &
        0                       &
        \frac{3}{23}            &
        \frac{10}{23}
    \end{array}\label{eq:sbf.prior}
\end{equation}
%
%
%
\subsubsection*{Testing the Prior Distributions}
%
%
%
These results can be \emph{tested by simulation} in a two-step process, where (1) a ``system'' is \emph{simulated}, to gather some ``observations'' and then (2) empirical distributions from those samples are \emph{related} with the prior distributions from \cref{eq:sbf.prior}. \Cref{tab:sbf.example,tab:sbf.examples.2.3} summarize some of those tests, where datasets of $n = 1000$ observations are generated and analyzed.

\bigskip\noindent\textbf{Simulating a System.} Following some criteria, more or less related to the given program, a set of events, that represent observations, is generated. Possible simulation procedures include:
\begin{itemize}
    %
    \item \emph{Random.} Each sample is a \ac{RSL}. Additional sub-criteria may require, for example, consistent events, a \ac{RCE} simulation.
          %
    \item \emph{Model+Noise.} Gibbs' sampling \cite{geman84} tries to replicate the program model and also to add some noise. For example, let $\alpha, \beta, \gamma \in \intcc{0,1}$ be some parameters to control the sample generation. The first parameter, $\alpha$ is the ``out of model'' samples ratio; $\beta$ represents the choice $a$ or $\co{a}$ (explicit in the model) and $\gamma$ is the simulation representation of $\theta$. A single sample is then generated following the probabilistic choices below:
          $$
              \begin{cases}
                  \alpha & \text{by \ac{RCE}} \\%[-2pt]
                         &
                  \begin{cases}
                      \beta & \co{a} \\%[-2pt]
                            &
                      \begin{cases}
                          \gamma & ab \\%[-2pt]
                                 & ac
                      \end{cases}
                  \end{cases}
              \end{cases},
          $$
          where
          $$
              \begin{cases}
                  p & x \\%[-4pt]
                    & y
              \end{cases}
          $$
          denotes ``\emph{the value of $x$ with probability $p$, otherwise $y$}'' --- notice that $y$ might entail $x$ and \emph{vice-versa}: E.g.\ some $ab$ can be generated in the \ac{RCE}.
    \item \emph{Other Processes.} Besides the two sample generations procedures above, any other processes and variations can be used. For example, requiring that one of $x, \co{x}$ literals is always in a sample or using specific distributions to guide the sampling of literals or events.
\end{itemize}

\noindent\textbf{Relating the Empirical and the Prior Distributions.} The data from the simulated observations is used to test the prior distribution. Consider the prior, $\pr{E}$, and the empirical, $\pr{S}$, distributions and the following error function:
\begin{equation}
    \err{\theta} := \sum_{e\in\fml{E}} \del{\pr{E = e} - \pr{S = e}}^2.\label{eq:err.e.s}
\end{equation}

Since $E$ depends on $\theta$, one can ask how does the error varies with $\theta$, what is  the \emph{optimal} (i.e.\ minimum) error value
          \begin{equation}
              \hat{\theta} := \arg\min_\theta \err{\theta}\label{eq:opt.err}
          \end{equation}
          and what does it tell us about the program.


\begin{table}
    \begin{center}
        $$
            \begin{array}{l|cc|c}
                \stablecore{e}
                 & \#\set{S \in \class{e}}
                 & \pr{S \in \class{e}}
                 & \pr{E \in \class{e}}
                \\
                \hline
                %
                \inconsistent
                 & 0
                 & 0
                 & 0
                \\[2pt]
                %
                \indepclass
                 & 24
                 & \frac{24}{1000}
                 & 0
                \\[2pt]
                %
                \co{a}
                 & 647
                 & \frac{647}{1000}
                 & \frac{7}{23}
                \\[2pt]
                %
                ab
                 & 66
                 & \frac{66}{1000}
                 & \frac{3}{23}\theta
                \\[2pt]
                %
                ac
                 & 231
                 & \frac{231}{1000}
                 & \frac{3}{23}\co{\theta}
                \\[2pt]
                %
                \co{a}, ab
                 & 0
                 & 0
                 & 0
                \\[2pt]
                %
                \co{a}, ac
                 & 0
                 & 0
                 & 0
                %
                \\[2pt]
                %
                ab, ac
                 & 7
                 & \frac{7}{1000}
                 & \frac{3}{23}
                \\[2pt]
                %
                \co{a}, ab, ac
                 & 25
                 & \frac{25}{1000}
                 & \frac{10}{23}
                \\[2pt]
                \hline
                 & n = 1000
            \end{array}
        $$
    \end{center}

    \caption{\emph{Experiment 1.} Results from an experiment where $n=1000$ samples where generated following the \emph{Model+Noise} procedure with parameters $\alpha = 0.1, \beta = 0.3, \gamma = 0.2$. The \emph{empirical} distribution is represented by the random variable $S$ while the \emph{prior}, as before, is denoted by $E$.}\label{tab:sbf.example}
\end{table}

In order to illustrate this analysis, consider the experiment summarized in \cref{tab:sbf.example}:

\begin{enumerate}
    \item Equation \eqref{eq:err.e.s} becomes
          $$
              \err{\theta} = \frac{20869963}{66125000} + \frac{477}{52900}\theta + \frac{18}{529}\theta^2.
          $$
    \item The minimum of $\err{\theta}$ is at $\frac{477}{52900} + 2\frac{18}{529}\theta = 0$. Since this value is negative and $\theta \in \intcc{0,1}$, it must be $\hat{\theta} = 0$, and
          $$
              \err{\hat{\theta}} = \frac{20869963}{66125000} \approx 0.31561.
          $$
\end{enumerate}

The parameters $\alpha, \beta, \gamma$ of that experiment favour $ac$ over $ab$. In particular, setting $\gamma = 0.2$ means that in the simulation process, choices between $ab$ and $ac$ favour $ac$, 4 to 1. For completeness sake, we also describe one experiment that favours $ab$ over $ac$ (setting $\gamma=0.8$) and one balanced ($\gamma=0.5$).

\begin{description}
    \item[For $\gamma=0.8$,] the error function is
          \begin{equation*}
              \err{\theta} = \frac{188207311}{529000000} - \frac{21903}{264500} \theta + \frac{18}{529} \theta^{2} \approx 0.35579 - 0.08281 \theta + 0.03403 \theta ^2
          \end{equation*}
          and, with $\theta\in\intcc{0, 1}$ the minimum is at $-0.08281 + 0.06805 \theta = 0$, \emph{i.e.}:
          \begin{eqnarray*}
              \hat{\theta} :              \frac{0.08281}{0.06805} \approx 1.21683& >1. &\text{So,~} \hat{\theta} = 1, \\
              \err{\hat{\theta}} \approx  0.30699&.
          \end{eqnarray*}

    \item[For $\gamma=0.5$,] the error function is
          \begin{equation*}
              \err{\theta} = \frac{10217413}{33062500} - \frac{2181}{66125} \theta + \frac{18}{529} \theta^{2}\approx 0.30903 - 0.03298 \theta + 0.03402 \theta ^2
          \end{equation*}
          and, with $\theta\in\intcc{0, 1}$ the minimum is at $-0.03298 + 0.06804 \theta = 0$, \emph{i.e.}:
          \begin{eqnarray*}
              \hat{\theta}        &\approx &
              \frac{0.03298}{0.06804}
              \approx 0.48471
              \approx \frac{1}{2}, \\
              \err{\hat{\theta}}  &\approx &
              0.30104
          \end{eqnarray*}

\end{description}

\begin{table}
    \begin{center}
        $$
            \begin{array}{l|ccc}
                \stablecore{e}
                 & \#\set{S_{0.2} \in \class{e}}
                 & \#\set{S_{0.8} \in \class{e}}
                 & \#\set{S_{0.5} \in \class{e}}
                \\
                \hline
                %
                \inconsistent
                 & 0
                 & 0
                 & 0
                \\[2pt]
                %
                \indepclass
                 & 24
                 & 28
                 & 23
                \\[2pt]
                %
                \co{a}
                 & 647
                 & 632
                 & 614
                \\[2pt]
                %
                ab
                 & 66
                 & 246
                 & 165
                \\[2pt]
                %
                ac
                 & 231
                 & 59
                 & 169
                \\[2pt]
                %
                \co{a}, ab
                 & 0
                 & 0
                 & 0
                \\[2pt]
                %
                \co{a}, ac
                 & 0
                 & 0
                 & 0
                %
                \\[2pt]
                %
                ab, ac
                 & 7
                 & 8
                 & 4
                \\[2pt]
                %
                \co{a}, ab, ac
                 & 25
                 & 27
                 & 25
            \end{array}
        $$
    \end{center}

    \caption{\emph{Experiments 2 and 3.} Results from experiments, each with $n=1000$ samples generated following the \emph{Model+Noise} procedure, with parameters $\alpha = 0.1, \beta = 0.3, \gamma = 0.8$ (Experiment 2) and $\gamma=0.5$ (Experiment 3). Empirical distributions are represented by the random variables $S_{0.8}$ and $S_{0.5}$ respectively. Data from experience \cref{tab:sbf.example} is also included, and denoted by $S_{0.2}$, to provide reference.}\label{tab:sbf.examples.2.3}
\end{table}

%\oldnote{under- and over- estimation}
These experiments show that data can indeed be used to estimate the parameters of the model. However, we observe that the estimated $\hat{\theta}$ has a tendency to  over- or under- estimate the $\theta$ used to generate the samples. More precisely, in experiment \ref{tab:sbf.example} data is generated with $\gamma = 0.2$ (the surrogate of $\theta$) which is under-estimated with $\hat{\theta} = 0$ while in experiment 2, $\gamma = 0.8$ leads the over-estimation $\hat{\theta} = 1$. This suggests that we might need to refine the error estimation process. However, experiment 3 data results from $\gamma = 0.5$ and we've got $\hat{\theta} \approx 0.48471 \approx 0.5$, which is more in line with what is to be expected.
%
%
%
\subsection{An Example Involving Bayesian Networks}\label{subsec:example.bayesian.networks}
%
%
%
As it turns out, our framework is suitable to deal with more sophisticated cases, in particular cases involving bayesian networks. In order to illustrate this, in this section we see how the classical example of the Burglary, Earthquake, Alarm \cite{Judea88} works in our setting. This example is a commonly used example in bayesian networks because it illustrates reasoning under uncertainty.  The gist of the example is given in \cref{Figure_Alarm}. It involves a simple network of events and conditional probabilities.

The events are: Burglary ($B$), Earthquake ($E$), Alarm ($A$), Mary calls ($M$) and John calls ($J$). The initial events $B$ and $E$ are assumed to be independent events that occur with probabilities $\pr{B}$ and $\pr{E}$, respectively. There is an alarm system that can be triggered by either of the initial events $B$ and $E$. The probability of the alarm going off is a conditional probability given that $B$ and $E$ have occurred. One denotes these probabilities, as per usual,  by $\pr{A \given B}$, and $\pr{A \given E}$. There are two neighbors, Mary and John who have agreed to call if they hear the alarm. The probability that they do actually call is also a conditional probability denoted by $\pr{M \given A}$ and $\pr{J \given A}$, respectively.

\begin{figure}
    \begin{center}
        \begin{tikzpicture}[node distance=2.5cm]

            % Nodes
            \node[smodel, circle] (A) {A};
            \node[tchoice, above right of=A] (B) {B};
            \node[tchoice, above left of=A] (E) {E};
            \node[tchoice, below left of=A] (M) {M};
            \node[tchoice, below right of=A] (J) {J};

            % Edges
            \draw[->] (B) to[bend left] (A) node[right,xshift=1.1cm,yshift=0.8cm] {\footnotesize{$\pr{B}=0.001$}} ;
            \draw[->] (E) to[bend right] (A) node[left, xshift=-1.4cm,yshift=0.8cm] {\footnotesize{$\pr{E}=0.002$}} ;
            \draw[->] (A) to[bend right] (M) node[left,xshift=0.2cm,yshift=0.7cm] {\footnotesize{$\pr{M \given A}$}};
            \draw[->] (A) to[bend left] (J) node[right,xshift=-0.2cm,yshift=0.7cm] {\footnotesize{$\pr{J \given A}$}} ;
        \end{tikzpicture}
    \end{center}

    \begin{multicols}{3}

        \footnotesize{
            \begin{equation*}
                \begin{split}
                    &\pr{M \given A}\\
                    &  \begin{array}{c|cc}
                               & m    & \neg m \\
                        \hline
                        a      & 0.9  & 0.1    \\
                        \neg a & 0.05 & 0.95
                    \end{array}
                \end{split}
            \end{equation*}
        }

        \footnotesize{
            \begin{equation*}
                \begin{split}
                    &\pr{J \given A}\\
                    &  \begin{array}{c|cc}
                               & j    & \neg j \\
                        \hline
                        a      & 0.7  & 0.3    \\
                        \neg a & 0.01 & 0.99
                    \end{array}
                \end{split}
            \end{equation*}
        }
        \footnotesize{
            \begin{equation*}
                \begin{split}
                    \pr{A \given B \wedge E}\\
                    \begin{array}{c|c|cc}
                               &        & a     & \neg a \\
                        \hline
                        b      & e      & 0.95  & 0.05   \\
                        b      & \neg e & 0.94  & 0.06   \\
                        \neg b & e      & 0.29  & 0.71   \\
                        \neg b & \neg e & 0.001 & 0.999
                    \end{array}
                \end{split}
            \end{equation*}
        }
    \end{multicols}
    \caption{The Earthquake, Burglary, Alarm model}
    \label{Figure_Alarm}
\end{figure}

We follow the convention of representing the (upper case) random variable $X$ by the lower case $x$.
%
Considering the probabilities given in \cref{Figure_Alarm} we obtain the following spe\-ci\-fi\-ca\-tion:

\begin{equation*}
    \begin{aligned}
        \probfact{0.001}{b} & ,\cr
        \probfact{0.002}{e} & ,\cr
    \end{aligned}
    \label{eq:not_so_simple_example}
\end{equation*}

For the table giving the probability $\pr{M \given A}$ we obtain the program:

\begin{equation*}
    \begin{aligned}
        \probfact{0.9}{\condsymb{m}{a}}       & ,\cr
        \probfact{0.05}{\condsymb{m}{\co{a}}} & ,\cr
        m                                     & \leftarrow a \wedge \condsymb{m}{a},\cr
        m                                     & \leftarrow \neg a \wedge \condsymb{m}{\co{a}}.
    \end{aligned}
\end{equation*}

The latter program can be simplified (abusing notation) by writing $\probrule{0.9}{m}{a}$ and $\probrule{0.05}{m}{\neg a}$.
%\note{SPA: \emph{parece-me que pode ser feito assim, mas estritamente falando já não corresponde à forma inicialmente anunciada} --- ``abusing notation''}

Similarly, for the probability $\pr{J \given A}$ we obtain

\begin{equation*}
    \begin{aligned}
        \probrule{0.7}{j}{&a},      \\
        \probrule{0.01}{j}{&\neg a},
    \end{aligned}
\end{equation*}

Finally, for the probability $\pr{A \given B \wedge E}$ we obtain

\begin{equation*}
    \begin{aligned}
        \probrule{0.95}{a}{b, e},      &  &  &
        \probrule{0.94}{a}{b, \co{e}},\cr
        \probrule{0.29}{a}{\co{b}, e}, &  &  &
        \probrule{0.001}{a}{\co{b}, \co{e}}.
    \end{aligned}
\end{equation*}

One can then proceed as in the previous subsection and analyze this example. The details of such analysis are not given here since they are analogous, albeit admittedly more cumbersome.
%
%
%
\section{Discussion and Future Work}
%
%
%
This work is a first venture into expressing probability distributions using algebraic expressions derived from a logical program, in particular an \ac{ASP}.
We would like to point out that there is still much to explore concerning the full expressive power of logic programs and \ac{ASP} programs. So far, we have not considered recursion, logical variables or functional symbols. Also, there is still little effort to articulate with the  related fields, probabilistic logical programming, machine learning, inductive programming, \emph{etc.}

The equivalence relation from \cref{def:equiv.rel} identifies the $s \subseteq e$ and $e \subseteq s$ cases. Relations that distinguish such cases might enable better relations between the models and processes from the \aclp{SM}.

The example from \cref{subsec:example.bayesian.networks} shows that the theory, methodology, and tools, from bayesian networks can be adapted to our approach. The connection with Markov Fields \cite{kindermann80} is left for future work. An example of a ``program selection'' application (as mentioned in \cref{item:program.selection}, \cref{sec:example.1}) is also left for future work.

%\oldnote{under- over- estimate}
Related with the remark at the end of \cref{subsec:sbf.example}, on the tendency of $\hat{\theta}$ to under- or over- estimate $\theta$, notice that the error function in \eqref{eq:err.e.s} expresses only one of many possible ``distances'' between the empirical and prior distributions. Variations include normalizing this function by the size of $\fml{E}$ or using the \acl{KL} divergence. The key contribution of this function in this work is to find an optimal $\theta$. Moreover, further experiments, not included in this paper, with $\alpha = 0.0$, lead to $\hat{\theta} \approx \gamma$, \emph{i.e.}\ setting the prior noise to zero leads to full recovering $\theta$ from the observations.

We decided to set the measure of inconsistent events to $0$ but, maybe, in some cases, we shouldn't. For example, since observations may be affected by noise, one can expect inconsistencies between the literals of an observation to occur.
%
%
%
\section*{Acknowledgements}
%
%
%
This work is supported by NOVALINCS (UIDB/04516/2020) with the financial support of FCT.IP.
The third author acknowledges the support of FCT - Funda\c{c}\~ao para a Ci\^{e}ncia e Tecnologia under the project UIDP/04674/2020, and the research center CIMA -- Centro de Investigação em Matemática e Aplicações.

The authors grateful to Lígia Henriques-Rodrigues, Matthias Knorr and Ricardo Gonçalves for valuable comments on a preliminary version of this paper, and Alice Martins for contributions on software.
%
%
%
\printbibliography
%
%
%
\end{document}