808facfe
Francisco Coelho
Main text adapted...
|
1
|
\documentclass{beamer}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
2
3
4
5
6
|
%------------------------------------------
\usecolortheme{rose}
%------------------------------------------
\useinnertheme{circles}
%------------------------------------------
|
808facfe
Francisco Coelho
Main text adapted...
|
7
|
\setbeamertemplate{navigation symbols}{}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
%------------------------------------------
\AtBeginSection{
\begin{frame}<beamer>\small
\tableofcontents[currentsection,subsectionstyle=shaded/shaded/hide]
\end{frame}
}
%------------------------------------------
\AtBeginSubsection{
\begin{frame}<beamer>\small
\tableofcontents[
currentsection,sectionstyle=shaded/shaded,
currentsubsection,subsectionstyle=show/shaded/hide]
\end{frame}
}
%------------------------------------------
|
808facfe
Francisco Coelho
Main text adapted...
|
23
24
25
|
\usepackage[overridenote]{pdfpc}
\usepackage{tikz}
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
26
27
28
29
30
31
|
\usetikzlibrary{
% shapes,
% arrows,
% backgrounds,
positioning,
}
|
237d62bd
Francisco Coelho
Further rewriting...
|
32
|
\tikzset{
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
|
sm/.style={
rectangle,
rounded corners,
fill=teal!10,
align=center,
minimum height=1.5em,
},
sup/.style={
rectangle,
rounded corners,
fill=blue!10,
align=center,
minimum height=1.5em,
},
sub/.style={
rectangle,
rounded corners,
fill=red!10,
align=center,
minimum height=1.5em,
},
ind/.style={
align=center,
minimum height=1.5em,
},
|
237d62bd
Francisco Coelho
Further rewriting...
|
58
|
}
|
808facfe
Francisco Coelho
Main text adapted...
|
59
|
|
808facfe
Francisco Coelho
Main text adapted...
|
60
61
62
63
64
65
|
\usepackage[T1]{fontenc}
\usepackage{hyperref}
\hypersetup{%
colorlinks=true,
allcolors=blue,
}
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
66
67
|
\usepackage{commath}
\usepackage{amssymb}
|
808facfe
Francisco Coelho
Main text adapted...
|
68
69
70
71
72
73
74
75
76
77
78
79
|
%
% Local commands
%
\newcommand{\todo}[1]{{\color{orange}TODO #1}}
\newcommand{\naf}{\ensuremath{\sim\!}}
\newcommand{\larr}{\ensuremath{\leftarrow}}
\newcommand{\at}[1]{\ensuremath{\!\del{#1}}}
\newcommand{\co}[1]{\ensuremath{\overline{#1}}}
\newcommand{\fml}[1]{\ensuremath{{\cal #1}}}
\newcommand{\deft}[1]{\textbf{#1}}
\newcommand{\pset}[1]{\ensuremath{\mathbb{P}\at{#1}}}
\newcommand{\ent}{\ensuremath{\lhd}}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
80
|
\newcommand{\cset}[2]{\ensuremath{\set{#1,~#2}}}
|
808facfe
Francisco Coelho
Main text adapted...
|
81
82
83
|
\newcommand{\langof}[1]{\ensuremath{\fml{L}\at{#1}}}
\newcommand{\uset}[1]{\ensuremath{\left|{#1}\right>}}
\newcommand{\lset}[1]{\ensuremath{\left<{#1}\right|}}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
84
|
\newcommand{\pr}[1]{\ensuremath{\mathrm{p}\at{#1}}}
|
241956f9
Francisco Coelho
continuing 00_PASP
|
85
|
\newcommand{\given}{\ensuremath{~\middle|~}}
|
eb584496
Francisco Coelho
presentation, as ...
|
86
87
88
89
|
%
% Identificação deste documento
%
\title{Zugzwang}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
90
|
\subtitle{Stochastic Adventures in Inductive Logic}
|
eb584496
Francisco Coelho
presentation, as ...
|
91
92
|
\author{Francisco Coelho}
\institute[\texttt{fc@uevora.pt}]{
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
93
94
95
|
Departamento de Informática, Universidade de Évora\\
High Performance Computing Chair\\
NOVA-LINCS
|
eb584496
Francisco Coelho
presentation, as ...
|
96
|
}
|
808facfe
Francisco Coelho
Main text adapted...
|
97
98
|
\begin{document}
|
eb584496
Francisco Coelho
presentation, as ...
|
99
100
101
|
%
\begin{frame}[plain]
\titlepage
|
808facfe
Francisco Coelho
Main text adapted...
|
102
103
104
105
106
|
\end{frame}
\section{Introduction}
|
eb584496
Francisco Coelho
presentation, as ...
|
107
|
\begin{frame}{Notation and Assumptions}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
108
|
% --------------------------------
|
808facfe
Francisco Coelho
Main text adapted...
|
109
|
\begin{itemize}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
110
111
112
|
% --------------------------------
\item $\co{x} = 1 - x$.
% --------------------------------
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
113
|
\item \textbf{Probabilistic Atomic Choice (PAC):} $x :: a$ defines $a \lor \neg a$ and probabilities $\pr{a} = x, \pr{\neg a} = \co{x}$.
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
114
|
% --------------------------------
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
115
|
\item $\delta a$ denotes $a \lor \neg a$ and $\delta\! \set{x :: a, a \in \fml{A}} = \set{\delta a, a \in \fml{A}}$ for a set of atoms $\fml{A}$.
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
116
|
% --------------------------------
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
117
|
\item \textbf{Closed World Assumption:} $\naf p \models \neg p$.
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
118
119
120
|
% --------------------------------
% \item Probabilistic choices and sub-goals are independent.
% --------------------------------
|
808facfe
Francisco Coelho
Main text adapted...
|
121
|
\end{itemize}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
122
|
% --------------------------------
|
808facfe
Francisco Coelho
Main text adapted...
|
123
|
\end{frame}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
124
|
% ================================================================
|
eb584496
Francisco Coelho
presentation, as ...
|
125
|
\begin{frame}{General Setting}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
126
|
% --------------------------------
|
eb584496
Francisco Coelho
presentation, as ...
|
127
|
\begin{itemize}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
128
129
|
% --------------------------------
\item \textbf{Atoms} $\fml{A}$,
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
130
|
$\overline{\fml{A}} = \cset{\neg a}{a \in \fml{A}}$, and \textbf{literals} $\fml{L} = \fml{A} \cup \co{\fml{A}}$.
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
131
|
% --------------------------------
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
132
|
\item \textbf{Samples} $z \in \fml{Z} \iff z \subseteq \fml{L}$.
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
133
|
% --------------------------------
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
134
135
|
\item \textbf{Events} or \textit{consistent samples} $\fml{E}$ :
$$\fml{E} = \cset{z \in \fml{Z} }{ \forall a \in \fml{A}~\envert{\set{a,\neg a} \cap z} \leq 1}.$$
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
136
137
138
139
140
|
% --------------------------------
\item \textit{PASP Problem} or \textbf{Specification:} $P = C \land F \land R$ where
% --------------------------------
\begin{itemize}
% --------------------------------
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
141
|
\item $C = C_P = \cset{x_i :: a_i }{ i \in 1:n \land a_i \in \fml{A}}$ \textit{pacs}.
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
142
143
144
145
146
|
% --------------------------------
\item $F = F_P$ \textit{facts}.
% --------------------------------
\item $R = R_P$ \textit{rules}.
% --------------------------------
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
147
|
\item $\fml{A}_P, \fml{Z}_P$ and $\fml{E}_P$: \textit{atoms}, \textit{samples} and \textit{events} of $P$.
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
148
149
150
151
152
153
154
155
156
157
158
159
|
\end{itemize}
% --------------------------------
\item \textbf{Stable Models} of $P$, $\fml{S} = \fml{S}_P$, are the stable models of $\delta P = \delta C + F + R$.
% --------------------------------
\end{itemize}
% --------------------------------
\end{frame}
% ================================================================
\begin{frame}{Distribution Semantics}
% --------------------------------
\begin{itemize}
% --------------------------------
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
160
|
\item \textbf{Total Choices:} $\Theta = \Theta_C = \Theta_P$ elements are $\theta = \cset{t_c}{c \in C}$ where $c=x::a$ and $t_c$ is $a$ or $\neg a$.
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
161
162
163
164
|
% --------------------------------
%\item For $s\in\fml{S}$ let $\theta_s \subseteq s$ (unique \textit{total choice})
%\item Define $\fml{S}_\theta = \cset{s \in \fml{S}}{\theta \subset s}$.
% --------------------------------
|
808facfe
Francisco Coelho
Main text adapted...
|
165
|
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
166
167
168
|
% --------------------------------
\item \textbf{Total Choice Probability:}
\begin{equation}
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
169
|
\pr{\theta} = \prod_{a \in \theta}x \prod_{\neg a \in \theta}\co{x}.\label{eq:prob.tc}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
170
171
|
\end{equation}
% --------------------------------
|
808facfe
Francisco Coelho
Main text adapted...
|
172
|
\end{itemize}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
173
|
% --------------------------------
|
241956f9
Francisco Coelho
continuing 00_PASP
|
174
|
This is the \emph{distribution semantic} as set by Sato.
|
808facfe
Francisco Coelho
Main text adapted...
|
175
|
\end{frame}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
176
|
% ================================================================
|
237d62bd
Francisco Coelho
Further rewriting...
|
177
178
179
|
\begin{frame}
% --------------------------------
\begin{block}{Problem Statement}
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
180
|
How to \textit{extend} probability from total choices to stable models, events and samples?
|
237d62bd
Francisco Coelho
Further rewriting...
|
181
|
\end{block}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
182
183
|
% --------------------------------
\begin{quotation}
|
241956f9
Francisco Coelho
continuing 00_PASP
|
184
|
There's a problem right at extending to stable models.
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
|
\end{quotation}
% --------------------------------
\end{frame}
% ================================================================
\begin{frame}{The Disjunction Case}
% --------------------------------
\begin{exampleblock}{Disjuntion Example}
The specification
% --------------------------------
$$
\begin{aligned}
0.3 :: a &, \cr
b \lor c &\larr a .
\end{aligned}
$$
% --------------------------------
has three stable models,
% --------------------------------
$$
\begin{aligned}
s_1 &= \set{\neg a}, & s_2 &= \set{a, b}, & s_3 &= \set{a, c}.
\end{aligned}
$$
\end{exampleblock}
% --------------------------------
\begin{itemize}
% --------------------------------
\item\label{prop:unique.ext.tcsm}\textit{Any stable model contains exactly one total choice.~$\blacksquare$}
% --------------------------------
\item $\pr{\set{\neg a}} = 0.7$ is straightforward.
% --------------------------------
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
216
|
\item But, no \textit{informed} choice for $x\in\intcc{0,1}$ in
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
217
218
|
$$
\begin{aligned}
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
219
220
|
\pr{\set{a, b}} &= 0.3 x, \cr
\pr{\set{a, c}} &= 0.3 \co{x}.
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
221
222
223
224
225
226
227
|
\end{aligned}
$$
% --------------------------------
\end{itemize}
% --------------------------------
\end{frame}
% ================================================================
|
241956f9
Francisco Coelho
continuing 00_PASP
|
228
229
230
231
|
\begin{frame}{Lack of Information \& Parametrization}
% --------------------------------
\begin{itemize}
% --------------------------------
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
232
|
\item The specification \textit{lacks information} to set $x\in\intcc{0,1}$ in
|
241956f9
Francisco Coelho
continuing 00_PASP
|
233
234
|
$$
\begin{aligned}
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
235
236
|
\pr{\set{a, b}} &= 0.3 x, \cr
\pr{\set{a, c}} &= 0.3 \co{x}.
|
241956f9
Francisco Coelho
continuing 00_PASP
|
237
238
|
\end{aligned}
$$
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
239
|
\item A \textit{random variable} captures this uncertainty, \alert{assuming} that the stable models are statistically independent:
|
241956f9
Francisco Coelho
continuing 00_PASP
|
240
241
|
$$
\begin{aligned}
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
242
243
244
|
\pr{\set{\neg a} \given X = x } &= 0.7, \cr
\pr{\set{a, b} \given X = x } &= 0.3 x, \cr
\pr{\set{a, c} \given X = x } &= 0.3 \co{x}.
|
241956f9
Francisco Coelho
continuing 00_PASP
|
245
246
|
\end{aligned}
$$
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
247
|
\item Other uncertainties may lead to further conditions:
|
241956f9
Francisco Coelho
continuing 00_PASP
|
248
|
$$
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
249
|
\pr{s \given X_1 = x_1, \ldots, X_n = x_n }.
|
241956f9
Francisco Coelho
continuing 00_PASP
|
250
251
252
|
$$
% --------------------------------
\end{itemize}
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
|
Reducing \textbf{uncertainty}, \textit{e.g.} setting $X = 0.21$, must result from \textbf{external} sources, since the specification lacks information for further assertions.
% --------------------------------
\end{frame}
% ================================================================
\begin{frame}{Independence of Stable Models}
% --------------------------------
\begin{itemize}
\item[Q:] Why are the stable models assumed statistically independent?
% --------------------------------
\item[A:] Because dependence can be \textit{explicitly} modelled.
% --------------------------------
\item So, it is assumed \textit{intention} of the \textit{modeller} to not explicit express such dependences.
% --------------------------------
\item \textbf{For example:} \todo{Some key examples}.
\end{itemize}
|
241956f9
Francisco Coelho
continuing 00_PASP
|
269
270
271
|
% --------------------------------
\end{frame}
% ================================================================
|
237d62bd
Francisco Coelho
Further rewriting...
|
272
|
\begin{frame}%{Main Research Question}
|
241956f9
Francisco Coelho
continuing 00_PASP
|
273
|
% --------------------------------
|
237d62bd
Francisco Coelho
Further rewriting...
|
274
|
A \textit{random variable} captures this uncertainty:
|
241956f9
Francisco Coelho
continuing 00_PASP
|
275
276
|
$$
\begin{aligned}
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
277
278
279
|
\pr{\set{\neg a} \given X = x } &= 0.7, \cr
\pr{\set{a, b} \given X = x } &= 0.3 x, \cr
\pr{\set{a, c} \given X = x } &= 0.3 \co{x}.
|
241956f9
Francisco Coelho
continuing 00_PASP
|
280
281
282
283
284
285
286
287
288
|
\end{aligned}
$$
% --------------------------------
\begin{block}{Main Research Question}
Can \textit{all} specification uncertainties be neatly expressed as that example?
\end{block}
% --------------------------------
\begin{itemize}
% --------------------------------
|
237d62bd
Francisco Coelho
Further rewriting...
|
289
290
291
|
\item Follow ASP syntax; for each case, what are the uncertainty scenarios?
% --------------------------------
\item The disjunction example illustrates one such scenario.
|
241956f9
Francisco Coelho
continuing 00_PASP
|
292
|
% --------------------------------
|
237d62bd
Francisco Coelho
Further rewriting...
|
293
294
295
296
297
|
\item \textit{Neat} means a function $d: \fml{S} \to \intcc{0, 1}$ such that
$$
\sum_{s\in\fml{S}_\theta} d\at{s} = 1
$$
for each $\theta \in \Theta$.
|
241956f9
Francisco Coelho
continuing 00_PASP
|
298
299
300
301
302
|
% --------------------------------
\end{itemize}
% --------------------------------
\end{frame}
% ================================================================
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
303
|
\begin{frame}{Leap into Inductive Programming}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
304
|
% --------------------------------
|
237d62bd
Francisco Coelho
Further rewriting...
|
305
|
Given a method that produces a distribution of samples, $p$, from a specification, $P$ and:
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
306
307
308
|
% --------------------------------
\begin{itemize}
% --------------------------------
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
309
|
\item $Z$, a dataset (of samples).
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
310
311
312
313
314
315
|
% --------------------------------
\item $e$, the respective empirical distribution.
% --------------------------------
\item $D$, some probability divergence, \textit{e.g.} Kullback-Leibler.
% --------------------------------
\end{itemize}
|
237d62bd
Francisco Coelho
Further rewriting...
|
316
|
% --------------------------------
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
317
318
319
320
321
322
323
324
325
326
327
328
|
\begin{block}{Specification Performance \& Inductive Programming}
% --------------------------------
\begin{itemize}
% --------------------------------
\item $D\at{P} = D\at{e, p}$ is a \textbf{performance} measure of $P$.
% --------------------------------
\item Predictor performance measures, such as accuracy, are common in \textit{Machine Learning} tasks.
% --------------------------------
\item For \textit{Inductive Programming} this performance can be used, \textit{e.g.} as fitness, by algorithms searching for \textbf{optimal specifications of a dataset}.
% --------------------------------
\end{itemize}
% --------------------------------
|
237d62bd
Francisco Coelho
Further rewriting...
|
329
|
\end{block}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
330
331
332
|
% --------------------------------
\end{frame}
% ================================================================
|
237d62bd
Francisco Coelho
Further rewriting...
|
333
|
\section{Extending Probability to Samples}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
334
|
% ================================================================
|
241956f9
Francisco Coelho
continuing 00_PASP
|
335
|
\begin{frame}{Resolution Path}
|
237d62bd
Francisco Coelho
Further rewriting...
|
336
|
Prior to \textit{conciliation} with data:
|
241956f9
Francisco Coelho
continuing 00_PASP
|
337
|
\begin{enumerate}
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
338
339
340
341
342
343
|
\item \alert{Hopefully}, \textit{conditional parameters} extend probability from total choices to \textit{standard models}.
\item \textbf{How} to extend it to \textit{events}?
\begin{itemize}
\item $\pr{x} = 0$ for $x$ \textit{excluded} by the specification, including \textit{inconsistent} samples.
\item $\pr{x}$ depends on the $s \in \fml{S}$ that contain/are contained in $x$.
\end{itemize}
|
241956f9
Francisco Coelho
continuing 00_PASP
|
344
|
\end{enumerate}
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
345
|
\alert{Consider probabilities \textbf{conditional} on the total choice!}
|
241956f9
Francisco Coelho
continuing 00_PASP
|
346
|
\end{frame}
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
347
348
|
% ================================================================
\begin{frame}{Bounds of Events}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
349
|
% --------------------------------
|
808facfe
Francisco Coelho
Main text adapted...
|
350
|
\begin{itemize}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
351
|
% --------------------------------
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
352
|
\item For $x\in\fml{E}$:
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
353
|
% --------------------------------
|
eb584496
Francisco Coelho
presentation, as ...
|
354
|
\begin{itemize}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
355
356
357
358
359
|
% --------------------------------
\item \textbf{Lower Models:} $\lset{x} = \cset{s\in \fml{S} }{ s \subseteq x}$.
% --------------------------------
\item \textbf{Upper Models:} $\uset{x} = \cset{s\in \fml{S} }{ x \subseteq s}$.
% --------------------------------
|
eb584496
Francisco Coelho
presentation, as ...
|
360
|
\end{itemize}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
361
|
% --------------------------------
|
237d62bd
Francisco Coelho
Further rewriting...
|
362
|
\item\label{prop:lucases} \textbf{Proposition.} Exactly \textit{one} of the following cases takes place:
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
363
|
% --------------------------------
|
808facfe
Francisco Coelho
Main text adapted...
|
364
|
\begin{enumerate}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
365
|
% --------------------------------
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
366
367
368
369
|
\item\label{prop:lucases.a} $\lset{x} = \set{x} = \uset{x}$ and $x$ is a stable model. Then:
\begin{equation}
\pr{x \given C = \theta_x} = d\at{x}.
\end{equation}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
370
|
% --------------------------------
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
371
372
373
374
|
\item\label{prop:lucases.b} $\lset{x} \neq \emptyset \land \uset{x} = \emptyset$. Then:
\begin{equation}
\pr{x \given C = \theta_s, s \in \lset{x}} = \prod_{s\in\lset{x}} d\at{s}.
\end{equation}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
375
|
% --------------------------------
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
376
377
378
379
|
\item\label{prop:lucases.c} $\lset{x} = \emptyset \land \uset{x} \neq \emptyset$. Then:
\begin{equation}
\pr{x \given C = \theta_s, s \in \uset{x}} = \sum_{s\in\uset{x}} d\at{s}.
\end{equation}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
380
|
% --------------------------------
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
381
382
383
384
|
\item\label{prop:lucases.d} $\lset{x} = \emptyset = \uset{x}$. Then:
\begin{equation}
\pr{x} = 0.
\end{equation}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
385
|
% --------------------------------
|
808facfe
Francisco Coelho
Main text adapted...
|
386
|
\end{enumerate}
|
237d62bd
Francisco Coelho
Further rewriting...
|
387
|
because stable models are \textit{minimal}.
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
388
|
% --------------------------------
|
808facfe
Francisco Coelho
Main text adapted...
|
389
|
\end{itemize}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
390
|
% --------------------------------
|
808facfe
Francisco Coelho
Main text adapted...
|
391
|
\end{frame}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
392
|
% ================================================================
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
393
394
395
396
397
398
399
400
401
402
403
404
405
406
|
\begin{frame}{Conditional on Total Choices}
% --------------------------------
\begin{itemize}
% --------------------------------
\item A stable model is entailed by an atomic choice plus the facts and rules of the specification.
\item We express that entailment as a \textit{conditional}. For example:
$$\pr{\set{a,b} \given X = x} = \pr{b \given X = x, \Theta = a}\pr{\theta = a}$$
\item And now $\pr{b \given X = x, \Theta = a} = x$, since $X$ is a proxy for the stable models of the total choice $\theta = a$, we can further.
% --------------------------------
\end{itemize}
% --------------------------------
\end{frame}
% ================================================================
\begin{frame}{Disjunction Example | The Events Lattice}
|
237d62bd
Francisco Coelho
Further rewriting...
|
407
408
|
\begin{center}
\begin{tikzpicture}
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
409
410
411
412
413
414
415
416
417
418
419
420
421
422
|
% --------------------------------
%\draw [help lines, color=gray!20] grid (11,7);
% --------------------------------
\node at (7, 7) {$\pr{\Theta=a} = 0.3$};
\node at (7, 6) {$x = \pr{S = ab \given \Theta}$};
\node at (7, 5) {$\co{x} = \pr{S \not= ab \given \Theta}$};
\node at (7, 7.5) {$\pr{E = abc \given \Theta} = \pr{S = ab, S = ac \given \Theta }$};
% --------------------------------
% \node [rrect] (sub) at (2, 7) {sub};
% --------------------------------
% \node [ fill=gray!10] (sup) at (3, 7) {sup};
% --------------------------------
% \node (ind) at (4, 7) {ind};
% --------------------------------
|
237d62bd
Francisco Coelho
Further rewriting...
|
423
|
%
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
424
425
426
427
428
|
% --------------------------------
\node [ sub,
pin=45:\textcolor{violet}{$1$} ]
(E) at (5.5,0) {$\emptyset$};
% --------------------------------
|
237d62bd
Francisco Coelho
Further rewriting...
|
429
|
%
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
|
% --------------------------------
\node [ sub,
pin=0:\textcolor{blue!75}{$1$} ]
(a) at (1.5,1.5) {$a$};
% --------------------------------
\node [ sub,
pin=315:\textcolor{blue!50}{$x$}]
(b) at (0,1.5) {$b$};
% --------------------------------
\node [ sub,
pin=315:\textcolor{blue!50}{$\co{x}$}]
(c) at (4.5,1.5) {$c$};
% --------------------------------
% \node [ sm,
% pin=270:\textcolor{teal}{$1$}]
% (A) at (8.5,1.5) {$\co{a}$};
% % --------------------------------
% \node [ ind,
% pin=270:\textcolor{purple}{$0$}]
% (B) at (9.5, 1.5) {$\co{b}$};
% % --------------------------------
% \node [ ind,
% pin=270:\textcolor{purple}{$0$}]
% (C) at (10.5, 1.5) {$\co{c}$};
% --------------------------------
|
237d62bd
Francisco Coelho
Further rewriting...
|
455
|
%
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
|
% --------------------------------
\node [ sm,
pin=0:\textcolor{teal}{$x$}]
(ab) at (0,4) {$ab$};
% --------------------------------
\node [ sm,
pin=0:\textcolor{teal}{$\co{x}$}]
(ac) at (3,4) {$ac$};
% --------------------------------
% \node [ ind,
% pin=270:\textcolor{purple}{$0$}]
% (aB) at (1,4) {$a\co{b}$};
% % --------------------------------
% \node [ ind,
% pin=270:\textcolor{purple}{$0$}]
% (aC) at (2,4) {$a\co{c}$};
% --------------------------------
% \node [ sup,
% pin=90:\textcolor{blue!50}{$1$}]
% (Ab) at (4,4) {$\co{a}b$};
% % --------------------------------
% \node [ sup,
% pin=90:\textcolor{blue!50}{$1$}]
% (Ac) at (5,4) {$\co{a}c$};
% % --------------------------------
% \node [ sup,
% pin=90:\textcolor{blue!50}{$1$}]
% (AB) at (6,4) {$\co{a}\co{b}$};
% % --------------------------------
% \node [ sup,
% pin=90:\textcolor{blue!50}{$1$}]
% (AC) at (7,4) {$\co{a}\co{c}$};
% % --------------------------------
% \node [ ind,
% pin=270:\textcolor{purple}{$0$}]
% (bc) at (10,4) {$bc$};
% % --------------------------------
% \node [ ind,
% pin=270:\textcolor{purple}{$0$}]
% (bC) at (11,4) {$b\co{c}$};
% % --------------------------------
% \node [ ind,
% pin=270:\textcolor{purple}{$0$}]
% (Bc) at (9.5,3.5) {$\co{b}c$};
% % --------------------------------
% \node [ ind,
% pin=270:\textcolor{purple}{$0$}]
% (BC) at (10.5,3.5) {$\co{b}\co{c}$};
% --------------------------------
|
237d62bd
Francisco Coelho
Further rewriting...
|
505
|
%
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
|
% --------------------------------
\node [ sup,
pin=45:\textcolor{blue!75}{$x\co{x}$}]
(abc) at (1.5,6)
{$abc$};
% --------------------------------
\node [ sup,
pin=45:\textcolor{blue!50}{$x$}]
(abC) at (0,6) {$ab\co{c}$};
% --------------------------------
\node [ sup,
pin=45:\textcolor{blue!50}{$\co{x}$}]
(aBc) at (3,6) {$a\co{b}c$};
% --------------------------------
% \node [ ind,
% pin=90:\textcolor{purple}{$0$}]
% (aBC) at (5,6) {$a\co{b}\co{c}$};
% --------------------------------
% \node [ sup,
% pin=90:\textcolor{blue!50}{$1$}]
% (Abc) at (7,6) {$\co{a}bc$};
% % --------------------------------
% \node [ sup,
% pin=270:\textcolor{blue!50}{$1$}]
% (AbC) at (8,6) {$\co{a}b\co{c}$};
% % --------------------------------
% \node [ sup,
% pin=270:\textcolor{blue!50}{$1$}]
% (ABc) at (9,6) {$\co{a}\co{b}c$};
% % --------------------------------
% \node [ sup,
% pin=270:\textcolor{blue!50}{$1$}]
% (ABC) at (10,6) {$\co{a}\co{b}\co{c}$};
% --------------------------------
|
237d62bd
Francisco Coelho
Further rewriting...
|
540
|
%
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
541
|
% --------------------------------
|
237d62bd
Francisco Coelho
Further rewriting...
|
542
543
544
545
|
\draw [->] (ab) to [out=270,in=180] (E);
\draw [->] (ab) to [out=270,in=90] (a);
\draw [->] (ab) to [out=270,in=90] (b);
\draw [->] (ab) to [out=90,in=270] (abc);
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
546
|
\draw [->] (ab) to [out=90,in=270] (abC);
|
237d62bd
Francisco Coelho
Further rewriting...
|
547
548
549
550
551
|
%
\draw [->] (ac) to [out=270,in=180] (E);
\draw [->] (ac) to [out=270,in=90] (a);
\draw [->] (ac) to [out=270,in=90] (c);
\draw [->] (ac) to [out=90,in=270] (abc);
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
|
\draw [->] (ac) to [out=90,in=270] (aBc);
%
% \draw [->] (A) to [out=270,in=0] (E);
% %
% \draw [->] (A) to [out=90,in=270] (Abc);
% \draw [->] (A) to [out=90,in=270] (AbC);
% \draw [->] (A) to [out=90,in=270] (ABc);
% \draw [->] (A) to [out=90,in=270] (ABC);
% %
% \draw [->] (A) to [out=90,in=270] (Ab);
% \draw [->] (A) to [out=90,in=270] (Ac);
% \draw [->] (A) to [out=90,in=270] (AB);
% \draw [->] (A) to [out=90,in=270] (AC);
\end{tikzpicture}
\end{center}
\end{frame}
% ================================================================
\begin{frame}{Disjunction Example | The Events Lattice}
\begin{center}
\begin{tikzpicture}
% --------------------------------
%\draw [help lines, color=gray!20] grid (11,7);
% --------------------------------
\node [sm] (sm) at (5, 7) {$\pr{\Theta=\set{\co{a}}} = \co{0.3}$};
% --------------------------------
% \node [rrect] (sub) at (2, 7) {sub};
% --------------------------------
% \node [ fill=gray!10] (sup) at (3, 7) {sup};
% --------------------------------
% \node (ind) at (4, 7) {ind};
% --------------------------------
%
% --------------------------------
\node [ sub,
pin=45:\textcolor{violet}{$1$} ]
(E) at (5.5,0) {$\emptyset$};
% --------------------------------
%
% --------------------------------
% \node [ sub,
% pin=270:\textcolor{blue!75}{$1$} ]
% (a) at (1.5,1.5) {$a$};
% % --------------------------------
% \node [ sub,
% pin=270:\textcolor{blue!50}{$x$}]
% (b) at (0,1.5) {$b$};
% % --------------------------------
% \node [ sub,
% pin=270:\textcolor{blue!50}{$\co{x}$}]
(c) at (4.5,1.5) {$c$};
% --------------------------------
\node [ sm,
pin=45:\textcolor{teal}{$1$}]
(A) at (8.5,1.5) {$\co{a}$};
% --------------------------------
% \node [ ind,
% pin=270:\textcolor{purple}{$0$}]
% (B) at (9.5, 1.5) {$\co{b}$};
% % --------------------------------
% \node [ ind,
% pin=270:\textcolor{purple}{$0$}]
% (C) at (10.5, 1.5) {$\co{c}$};
% --------------------------------
%
% --------------------------------
% \node [ sm,
% pin=90:\textcolor{teal}{$x$}]
% (ab) at (0,4) {$ab$};
% % --------------------------------
% \node [ sm,
% pin=90:\textcolor{teal}{$\co{x}$}]
% (ac) at (3,4) {$ac$};
% % --------------------------------
% \node [ ind,
% pin=270:\textcolor{purple}{$0$}]
% (aB) at (1,4) {$a\co{b}$};
% % --------------------------------
% \node [ ind,
% pin=270:\textcolor{purple}{$0$}]
% (aC) at (2,4) {$a\co{c}$};
% --------------------------------
\node [ sup,
pin=135:\textcolor{blue!50}{$1$}]
(Ab) at (4,4) {$\co{a}b$};
% --------------------------------
\node [ sup,
pin=135:\textcolor{blue!50}{$1$}]
(Ac) at (5,4) {$\co{a}c$};
% --------------------------------
\node [ sup,
pin=135:\textcolor{blue!50}{$1$}]
(AB) at (6,4) {$\co{a}\co{b}$};
% --------------------------------
\node [ sup,
pin=135:\textcolor{blue!50}{$1$}]
(AC) at (7,4) {$\co{a}\co{c}$};
% --------------------------------
% \node [ ind,
% pin=270:\textcolor{purple}{$0$}]
% (bc) at (10,4) {$bc$};
% % --------------------------------
% \node [ ind,
% pin=270:\textcolor{purple}{$0$}]
% (bC) at (11,4) {$b\co{c}$};
% % --------------------------------
% \node [ ind,
% pin=270:\textcolor{purple}{$0$}]
% (Bc) at (9.5,3.5) {$\co{b}c$};
% % --------------------------------
% \node [ ind,
% pin=270:\textcolor{purple}{$0$}]
% (BC) at (10.5,3.5) {$\co{b}\co{c}$};
% --------------------------------
%
% --------------------------------
% \node [ sup,
% pin=90:\textcolor{blue!75}{$x\co{x}$}]
% (abc) at (1.5,6)
% {$abc$};
% % --------------------------------
% \node [ sup,
% pin=90:\textcolor{blue!50}{$x$}]
% (abC) at (0,6) {$ab\co{c}$};
% % --------------------------------
% \node [ sup,
% pin=90:\textcolor{blue!50}{$\co{x}$}]
% (aBc) at (3,6) {$a\co{b}c$};
% % --------------------------------
% \node [ ind,
% pin=90:\textcolor{purple}{$0$}]
% (aBC) at (5,6) {$a\co{b}\co{c}$};
% --------------------------------
\node [ sup,
pin=45:\textcolor{blue!50}{$1$}]
(Abc) at (7,6) {$\co{a}bc$};
% --------------------------------
\node [ sup,
pin=45:\textcolor{blue!50}{$1$}]
(AbC) at (8,6) {$\co{a}b\co{c}$};
% --------------------------------
\node [ sup,
pin=45:\textcolor{blue!50}{$1$}]
(ABc) at (9,6) {$\co{a}\co{b}c$};
% --------------------------------
\node [ sup,
pin=45:\textcolor{blue!50}{$1$}]
(ABC) at (10,6) {$\co{a}\co{b}\co{c}$};
% --------------------------------
%
% --------------------------------
% \draw [->] (ab) to [out=270,in=180] (E);
% \draw [->] (ab) to [out=270,in=90] (a);
% \draw [->] (ab) to [out=270,in=90] (b);
% \draw [->] (ab) to [out=90,in=270] (abc);
% \draw [->] (ab) to [out=90,in=270] (abC);
% %
% \draw [->] (ac) to [out=270,in=180] (E);
% \draw [->] (ac) to [out=270,in=90] (a);
% \draw [->] (ac) to [out=270,in=90] (c);
% \draw [->] (ac) to [out=90,in=270] (abc);
% \draw [->] (ac) to [out=90,in=270] (aBc);
|
237d62bd
Francisco Coelho
Further rewriting...
|
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
|
%
\draw [->] (A) to [out=270,in=0] (E);
%
\draw [->] (A) to [out=90,in=270] (Abc);
\draw [->] (A) to [out=90,in=270] (AbC);
\draw [->] (A) to [out=90,in=270] (ABc);
\draw [->] (A) to [out=90,in=270] (ABC);
%
\draw [->] (A) to [out=90,in=270] (Ab);
\draw [->] (A) to [out=90,in=270] (Ac);
\draw [->] (A) to [out=90,in=270] (AB);
\draw [->] (A) to [out=90,in=270] (AC);
\end{tikzpicture}
\end{center}
\end{frame}
% ================================================================
|
808facfe
Francisco Coelho
Main text adapted...
|
729
730
|
\begin{frame}
|
237d62bd
Francisco Coelho
Further rewriting...
|
731
732
733
734
735
736
|
\begin{itemize}
\item Consider the ASP program $P = C \land F \land R$ with total choices $\Theta $ and stable models $\fml{S}$.
\item Let $d : \fml{S} \to \intcc{0,1}$ such that $\sum_{s\in\fml{S}_\theta} d\at{s} = 1$ for each $\theta \in \Theta$.
\end{itemize}
|
808facfe
Francisco Coelho
Main text adapted...
|
737
|
\end{frame}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
738
|
% ================================================================
|
808facfe
Francisco Coelho
Main text adapted...
|
739
|
\begin{frame}
|
237d62bd
Francisco Coelho
Further rewriting...
|
740
|
For each $z\in\fml{Z}$ only one of the following cases takes place
|
808facfe
Francisco Coelho
Main text adapted...
|
741
|
\begin{enumerate}
|
237d62bd
Francisco Coelho
Further rewriting...
|
742
743
744
745
746
|
\item $z$ is inconsistent. Then \textbf{define}
\begin{equation}
w_d\at{x} = 0.\label{def:w.inconsistent}
\end{equation}
%
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
747
|
\item $z$ is an event and $\lset{z} = \set{z} = \uset{z}$. Then $z$ is a stable model and \textbf{define}
|
237d62bd
Francisco Coelho
Further rewriting...
|
748
749
750
751
|
\begin{equation}
w_d\at{z} = w\at{z} = d\at{z} \pr{\theta_z}.\label{eq:prob.sm}
\end{equation}
%
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
752
|
\item $z$ is an event and $\lset{z} \neq \emptyset \land \uset{x} = \emptyset$. Then \textbf{define}
|
237d62bd
Francisco Coelho
Further rewriting...
|
753
754
755
756
|
\begin{equation}
w_d\at{z} = \sum_{s \in \lset{z}} w_d\at{s}.\label{def:w.disj}
\end{equation}
%
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
757
|
\item $z$ is an event and $\lset{z} = \emptyset \land \uset{z} \neq \emptyset$. Then \textbf{define}
|
237d62bd
Francisco Coelho
Further rewriting...
|
758
759
760
761
|
\begin{equation}
w_d\at{z} = \prod_{s \in \uset{z}} w_d\at{s}.\label{def:w.conj}
\end{equation}
%
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
762
|
\item $z$ is an event and $\lset{z} = \emptyset \land \uset{z} = \emptyset$. Then \textbf{define}
|
237d62bd
Francisco Coelho
Further rewriting...
|
763
764
765
766
767
768
769
|
\begin{equation}
w_d\at{z} = 0.\label{def:w.empty}
\end{equation}
\end{enumerate}
\end{frame}
% ================================================================
\begin{frame}
|
808facfe
Francisco Coelho
Main text adapted...
|
770
|
\begin{enumerate}
|
808facfe
Francisco Coelho
Main text adapted...
|
771
|
%
|
237d62bd
Francisco Coelho
Further rewriting...
|
772
|
\item The last point defines a ``weight'' function on the samples that depends not only on the total choices and stable models of a PASP but also on a certain function $d$ that must respect some conditions. To simplify the notation we use the subscript in $w_d$ only when necessary.
|
808facfe
Francisco Coelho
Main text adapted...
|
773
|
%
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
774
|
\item At first, it may seem counter-intuitive that $w\at{\emptyset} = \sum_{s\in\fml{S}} w\at{s}$ is the largest ``weight'' in the lattice. But $\emptyset$, as an event, sets zero restrictions on the ``compatible'' stable models. The ``complement'' of $\bot = \emptyset$ is the \emph{maximal inconsistent} sample $\top = \fml{A} \cup \cset{\neg a }{ a \in \fml{A}}$.
|
808facfe
Francisco Coelho
Main text adapted...
|
775
776
777
|
%
\item \textbf{We haven't yet defined a probability measure.} To do so we must define a set of samples $\Omega$, a set of events $F\subseteq \pset{\Omega}$ and a function $P:F\to\intcc{0,1}$ such that:
\begin{enumerate}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
778
779
780
|
\item $\pr{E} \in \intcc{0, 1}$ for any $E \in F$.
\item $\pr{\Omega} = 1$.
\item if $E_1 \cap E_2 = \emptyset$ then $\pr{E_1 \cup E_2} = \pr{E_1} + \pr{E_2}$.
|
808facfe
Francisco Coelho
Main text adapted...
|
781
782
783
784
785
786
|
\end{enumerate}
%
\item In the following, assume that the stable models are iid.
%
\item Let the sample space $\Omega = \fml{Z}$ and the event space $F = \pset{\Omega}$. Define $Z = \sum_{\zeta\in\fml{Z}} w\at{\zeta}$ and
\begin{equation}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
787
|
\pr{z} = \frac{w\at{z}}{Z}, z \in \Omega \label{eq:def.prob}
|
808facfe
Francisco Coelho
Main text adapted...
|
788
789
790
|
\end{equation}
and
\begin{equation}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
791
|
\pr{E} = \sum_{x\in E} \pr{x}, E \subseteq \Omega. \label{eq:def.prob.event}
|
808facfe
Francisco Coelho
Main text adapted...
|
792
793
794
795
|
\end{equation}
Now:
\begin{enumerate}
\item $P(E) \in \intcc{0,1}$ results directly from the definitions of $P$ and $w$.
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
796
|
\item $\pr{\Omega} = 1$ also results directly from the definitions.
|
808facfe
Francisco Coelho
Main text adapted...
|
797
798
799
|
\item Consider two disjunct events $A, B \subset \Omega \land A \cap B = \emptyset$. Then
$$
\begin{aligned}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
800
801
802
803
|
\pr{A \cup B} &= \sum_{x \in A \cup B} \pr{x} \cr
&= \sum_{x \in A} \pr{x} + \sum_{x \in B} \pr{x} - \sum_{x \in A \cap B} \pr{x} \cr
&= \sum_{x \in A} \pr{x} + \sum_{x \in B} \pr{x} &\text{because}~A\cap B = \emptyset \cr
&= \pr{A} + \pr{B}.
|
808facfe
Francisco Coelho
Main text adapted...
|
804
805
806
807
808
809
810
|
\end{aligned}
$$
\item So $\del{\Omega = \fml{Z}, F = \pset{\Omega}, P}$ is a probability space. {$\blacksquare$}
\end{enumerate}
\end{enumerate}
\end{frame}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
811
|
% ================================================================
|
808facfe
Francisco Coelho
Main text adapted...
|
812
|
\section{Cases \& Examples}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
813
|
% ================================================================
|
808facfe
Francisco Coelho
Main text adapted...
|
814
|
\subsection{Programs with disjunctive heads}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
815
|
% ================================================================
|
808facfe
Francisco Coelho
Main text adapted...
|
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
|
\begin{frame}
Consider the program:
$$
\begin{aligned}
c_1 &= a \lor \neg a, \cr
c_2 &= b \lor c \larr a.
\end{aligned}
$$
This program has two total choices,
$$
\begin{aligned}
\theta_1&= \set{ \neg a }, \cr
\theta_2&= \set{ a }.
\end{aligned}
$$
and three stable models,
$$
\begin{aligned}
s_1 &= \set{ \neg a }, \cr
s_2 &= \set{ a, b }, \cr
s_3 &= \set{ a, c }.
\end{aligned}
$$
\end{frame}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
841
|
% ================================================================
|
808facfe
Francisco Coelho
Main text adapted...
|
842
|
\begin{frame}
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
843
|
Suppose that we add an annotation $x :: a$, which entails $\co{x} :: \neg a$. This is enough to get $w\at{s_1} = \co{x}$ but, on the absence of further information, no fixed probability can be assigned to either model $s_2, s_3$ except that the respective sum must be $x$. So, expressing our lack of knowledge using a parameter $d \in \intcc{0, 1}$ we get:
|
808facfe
Francisco Coelho
Main text adapted...
|
844
845
|
$$
\begin{cases}
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
846
847
848
|
w\at{s_1 } = &\co{x}\cr
w\at{s_2 } = &dx\cr
w\at{s_3} = &\co{d}x.
|
808facfe
Francisco Coelho
Main text adapted...
|
849
850
851
|
\end{cases}
$$
\end{frame}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
852
|
% ================================================================
|
808facfe
Francisco Coelho
Main text adapted...
|
853
854
|
\begin{frame}
|
808facfe
Francisco Coelho
Main text adapted...
|
855
856
857
858
|
In this diagram:
\begin{itemize}
\item Negations are represented as \emph{e.g.} $\co{a}$ instead of $\neg a$; Stable models are denoted by shaded nodes as \tikz{\node[fill=gray!50] {$ab$}}.
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
859
|
\item Events in $\lset{x}$ are \emph{e.g.} \tikz{\node[ circle] {$a$}} and those in $\uset{x}$ are \emph{e.g.} \tikz{\node[draw] {$\co{a}b$}}. The remaining are simply denoted by \emph{e.g.} \tikz{\node {$a\co{b}$}}.
|
808facfe
Francisco Coelho
Main text adapted...
|
860
|
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
861
|
\item The edges connect stable models with related events. Up arrow indicate links to $\uset{s}$ and down arrows to $\lset{s}$.
|
808facfe
Francisco Coelho
Main text adapted...
|
862
863
864
865
|
\item The \emph{weight propagation} sets:
$$
\begin{aligned}
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
866
867
868
869
870
871
|
w\at{abc} &= w\at{ab} w\at{ac} = x^2d\co{d}, \cr
w\at{\co{a}\cdot\cdot} &= w\at{\neg a} = \co{x}, \cr
w\at{a} &= w\at{ab} + w\at{ac} = x(d + \co{d}) = x, \cr
w\at{b} &= w\at{ab} = dx, \cr
w\at{c} &= w\at{ac} = \co{d}x, \cr
w\at{\emptyset} &= w\at{ab} + w\at{ac} + w\at{\neg a} = dx + \co{d}x + \co{x} = 1, \cr
|
808facfe
Francisco Coelho
Main text adapted...
|
872
873
874
875
876
877
878
879
880
881
882
|
w\at{a\co{b}} &= 0.
\end{aligned}
$$
\item The total weight is
$$
\begin{aligned}
Z &= w\at{abc} + 8 w\at{\co{a}b}\cr
&+ w\at{ab} + w\at{ac} + w\at{\co{a}}\cr
&+ w\at{a}+ w\at{b}+ w\at{c}\cr
&+ w\at{\emptyset}\cr
%
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
883
|
&= - x^{2} d^{2} + x^{2} d + 2 x d - 7 x + 10
|
808facfe
Francisco Coelho
Main text adapted...
|
884
885
|
\end{aligned}
$$
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
886
|
\item Now, if $x$ has an annotation to \emph{e.g.} $0.3$ we get
|
808facfe
Francisco Coelho
Main text adapted...
|
887
888
889
890
891
|
$$
Z = - 0.09 d^{2} + 0.69 d + 7.9
$$
\item Now some statistics are possible. For example we get
$$
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
892
|
\pr{abc \mid x = 0.3} = \frac{0.09 d \left(d - 1\right)}{0.09 d^{2} - 0.69 d - 7.9}
|
808facfe
Francisco Coelho
Main text adapted...
|
893
894
895
896
897
898
899
|
$$.
\item This expression can be plotted for $d\in\intcc{0,1}$
\begin{center}
\includegraphics[height=15em]{Pabc_alpha03.pdf}
\end{center}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
900
|
\item If a data set $E$ entails \emph{e.g.} $\pr{abc \mid E} = 0.0015$ we can numerically solve
|
808facfe
Francisco Coelho
Main text adapted...
|
901
902
|
$$
\begin{aligned}
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
903
|
\pr{abc \mid x = 0.3} &= \pr{abc \mid E} \cr
|
808facfe
Francisco Coelho
Main text adapted...
|
904
905
906
907
908
909
910
|
\iff\cr
\frac{0.09 d \del{d - 1}}{0.09 d^{2} - 0.69 d - 7.9} &= 0.0015
\end{aligned}
$$
which has two solutions, $d \approx 0.15861$ or $d \approx 0.83138$.
\end{itemize}
\end{frame}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
911
|
% ================================================================
|
808facfe
Francisco Coelho
Main text adapted...
|
912
|
\subsection{Non-stratified programs}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
913
|
% ================================================================
|
808facfe
Francisco Coelho
Main text adapted...
|
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
|
\begin{frame}
The following LP is non-stratified, because has a cycle with negated arcs:
$$
\begin{aligned}
c_1 &= a\lor \neg a,\cr
c_2 &= b \larr \naf c \land \naf a, \cr
c_3 &= c \larr \naf b.
\end{aligned}
$$
This program has three stable models
$$
\begin{aligned}
s_1 &= \set{ a, c }, \cr
s_2 &= \set{ \neg a, b }, \cr
s_3 &= \set{ \neg a, c }.
\end{aligned}
$$
\end{frame}
\begin{frame}
The disjunctive clause $a\lor\neg a$ defines a set of \textbf{total choices}
$$
\Theta = \set{
\theta_1 = \set{ a },
\theta_2 = \set{ \neg a }
}.
$$
\end{frame}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
942
|
% ================================================================
|
808facfe
Francisco Coelho
Main text adapted...
|
943
944
|
\begin{frame}
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
945
|
Looking into probabilistic events of the program and/or its models, we define $x = \pr{\Theta = \theta_1}\in\intcc{0, 1}$ and $\pr{\Theta = \theta_2} = \co{x}$.
|
808facfe
Francisco Coelho
Main text adapted...
|
946
|
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
947
|
Since $s_1$ is the only stable model that results from $\Theta = \theta_1$, it is natural to extend $\pr{ s_1 } = \pr{\Theta = \theta_1} = x$. However, there is no clear way to assign $\pr{s_2}, \pr{s_3}$ since \emph{both models result from the single total choice} $\Theta = \theta_2$. Clearly,
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
948
|
$$\pr{s_2 \mid \Theta} + \pr{s_3 \mid \Theta} =
|
808facfe
Francisco Coelho
Main text adapted...
|
949
950
951
952
953
954
955
956
|
\begin{cases}
0 & \text{if}~\Theta = \theta_1\cr
1 & \text{if}~\Theta = \theta_2
\end{cases}
$$
but further assumptions are not supported \emph{a priori}. So let's \textbf{parameterize} the equation above,
$$
\begin{cases}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
957
958
|
\pr{s_2 \mid \Theta = \theta_2} = &\beta \in \intcc{0, 1} \cr
\pr{s_3 \mid \Theta = \theta_2} = &\co{\beta},
|
808facfe
Francisco Coelho
Main text adapted...
|
959
960
961
962
|
\end{cases}
$$
in order to explicit our knowledge, or lack of, with numeric values and relations.
\end{frame}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
963
|
% ================================================================
|
808facfe
Francisco Coelho
Main text adapted...
|
964
|
\begin{frame}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
965
|
Now we are able to define the \textbf{joint distribution} of the boolean random variables $A,B,C$:
|
808facfe
Francisco Coelho
Main text adapted...
|
966
967
968
969
970
|
$$
\begin{array}{cc|l}
A, B, C& P & \text{Obs.}\cr
\hline
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
971
972
973
|
a, \neg b, c & x & s_1, \Theta=\theta_1\cr
\neg a, b, \neg c & \co{x}\beta & s_2, \Theta=\theta_2\cr
\neg a, \neg b, c & \co{x}\co{\beta} & s_3, \Theta=\theta_2\cr
|
808facfe
Francisco Coelho
Main text adapted...
|
974
975
976
|
\ast & 0&\text{not stable models}
\end{array}
$$
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
977
|
where $x, \beta\in\intcc{0,1}$.
|
808facfe
Francisco Coelho
Main text adapted...
|
978
|
\end{frame}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
979
|
% ================================================================
|
808facfe
Francisco Coelho
Main text adapted...
|
980
|
\section{Conclusions}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
981
|
% ================================================================
|
808facfe
Francisco Coelho
Main text adapted...
|
982
983
984
985
986
987
988
989
|
\begin{frame}
\begin{itemize}
\item We can use the basics of probability theory and logic programming to assign explicit \emph{parameterized} probabilities to the (stable) models of a program.
\item In the covered cases it was possible to define a (parameterized) \emph{family of joint distributions}.
\item How far this approach can cover all the cases on logic programs is (still) an issue \emph{under investigation}.
\item However, it is non-restrictive since \emph{no unusual assumptions are made}.
\end{itemize}
\end{frame}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
990
|
% ================================================================
|
808facfe
Francisco Coelho
Main text adapted...
|
991
|
\section*{ASP \& related definitions}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
992
|
% ================================================================
|
808facfe
Francisco Coelho
Main text adapted...
|
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
|
\begin{frame}
\begin{itemize}
\item An \deft{atom} is $r(t_1, \ldots t_n)$ where
\begin{itemize}
\item $r$ is a $n$-ary predicate symbol and each $t_i$ is a constant or a variable.
\item A \deft{ground atom} has no variables; A \deft{literal} is either an atom $a$ or a negated atom $\neg a$.
\end{itemize}
\item An \deft{ASP Program} is a set of \deft{rules} such as $h_1 \vee \cdots \vee h_m \leftarrow b_1 \wedge \cdots \wedge b_n$.
\begin{itemize}
\item The \deft{head} of this rule is $h_1 \vee \cdots \vee h_m$, the \deft{body} is $b_1 \wedge \cdots \wedge b_n$ and each $b_i$ is a \deft{subgoal}.
\item Each $h_i$ is a literal, each subgoal $b_j$ is a literal or a literal preceded by $\naf\;$ and $m + n > 0$.
\item A \deft{propositional program} has no variables.
\item A \deft{non-disjunctive rule} has $m \leq 1$; A \deft{normal rule} has $m = 1$; A \deft{constraint} has $m = 0$; A \deft{fact} is a normal rule with $n = 0$.
\end{itemize}
\item The \deft{Herbrand base} of a program is the set of ground literals that result from combining all the predicates and constants of the program.
\begin{itemize}
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
1012
1013
|
\item An \deft{event} is a consistent subset (\emph{i.e.} doesn't contain $\set{a, \neg a}$) of the Herbrand base.
\item Given an event $I$, a ground literal $a$ is \deft{true}, $I \models a$, if $a \in I$; otherwise the literal is \deft{false}.
|
808facfe
Francisco Coelho
Main text adapted...
|
1014
|
\item A ground subgoal, $\naf b$, where $b$ is a ground literal, is \deft{true}, $I \models \naf b$, if $b \not\in I$; otherwise, if $b \in I$, it is \deft{false}.
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
1015
|
\item A ground rule $r = h_1 \vee \cdots \vee h_m \leftarrow b_1 \wedge \cdots \wedge b_n$ is \deft{satisfied} by the event $I$, \emph{i.e.} $I \models r$, iff
|
808facfe
Francisco Coelho
Main text adapted...
|
1016
1017
1018
|
$$
\forall j \exists i~I \models b_j \implies I \models h_i.
$$
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
1019
|
\item A \deft{model} of a program is an event that satisfies all its rules. Denote $\fml{M}_P$ the set of all models of $P$.
|
808facfe
Francisco Coelho
Main text adapted...
|
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
|
\end{itemize}
\item The \deft{dependency graph} of a program is a digraph where:
\begin{itemize}
\item Each grounded atom is a node.
\item For each grounded rule there are edges from the atoms in the body to the atoms in the head.
\item A \deft{negative edge} results from an atom with $\naf\;$; Otherwise it is a \deft{positive edge}.
\item An \deft{acyclic program} has an acyclic dependency graph; A \deft{normal program} has only normal rules; A \deft{definite program} is a normal program that doesn't contains $\neg$ neither $\naf\;$.
\item In the dependency graph of a \deft{stratified program} no cycle contains a negative edge.
\item \textbf{A stratified program has a single minimal model} that assigns either true or false to each atom.
\end{itemize}
\item Every \emph{definite program} has a unique minimal model: its \deft{semantic}.
\item Programs with negation may have no unique minimal model.
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
1033
|
\item Given a program $P$ and an event $I$, their \deft{reduct}, $P^I$, is the propositional program that results from
|
808facfe
Francisco Coelho
Main text adapted...
|
1034
1035
1036
1037
|
\begin{enumerate}
\item Removing all the rules with $\naf b$ in the body where $b \in I$.
\item Removing all the $\naf b$ subgoals from the remaining rules.
\end{enumerate}
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
1038
|
\item A \deft{stable model} (or \deft{answer set}) of the program $P$ is an event $I$ that is the minimal model of the reduct $P^I$.
|
808facfe
Francisco Coelho
Main text adapted...
|
1039
1040
1041
|
\item Denote $\fml{S}_P$ the set of all stable models of program $P$. The \deft{semantics} (or \deft{answer sets}) of a program $P$ is the set $\fml{S}_P$.
\begin{itemize}
\item Some programs, such as $a \leftarrow \naf a$, have no stable models.
|
53b3b48c
Francisco Coelho
Started pre-paper...
|
1042
|
\item A stable model is an event closed under the rules of the program.
|
808facfe
Francisco Coelho
Main text adapted...
|
1043
1044
1045
|
\end{itemize}
\end{itemize}
\end{frame}
|
b43c061c
Francisco Coelho
rewriting 00_PASP...
|
1046
|
% ================================================================
|
808facfe
Francisco Coelho
Main text adapted...
|
1047
|
\end{document}
|