PaCCS version 0.90 All files Copyright (C) 2009-2014 Vasco Pedro All rights reserved. * Compiling Type make to build the parallel solver version, and make -mpi to build the distributed version (you need an MPI implementation for this). Bad things happen if you give make more than one target. ** Compilation options Use make EXTRA_DEFINES=... to add extra definitions to the compilation command, or make DEFINES=... to tweak the default compilation options. Useful options include: -DCOMPACT_DOMAINS bitmap based representation of the domains (REQUIRED) -DINLINE_DOMAINS fit domain (which is a bitmap) in a C integer type -DDOMAIN_BITS=N bitmap size (domains are {0, ..., N-1}) -DDOMAIN_BOUNDS include the domain's current minimum and maximum values in its representation (DEFAULT) -DFAST be quiet (DEFAULT) For other options, take a look at the Makefile, at src/options.c, or at the full solver source. The TUNING file says what options to use for the different applications. * Executing Use mpirun to run the distributed versions. ** Runtime options General: --workers=N how many workers to use per process (the default is 4) (may also be set through the FDC_AGENTS environment variable) --count-solutions count the solutions of the problem (does not work for optimisation problems) (the DEFAULT is to stop as soon as a solution has been found, or a best solution, in the case of optimisation problems) Variable selection heuristics: --first-var choose variables in order of creation (DEFAULT) --first-fail choose first variables with the smallest domain --most-constrained prefer variables involved in the most constraints --size-degree choose the variable with the least ratio between the domain size and the number of constraints it appears in --most-connected prefer variables which are connected by constraints with the most variables (approximately implemented) --random-var select a variable randomly --min-value select the variable with the least value in its domain --max-value select the variable with the greatest value in its domain Value selection heuristics: --val-min instantiate the selected variable with the smallest value from its domain (DEFAULT) --val-max instantiate the selected variable with the greatest value from its domain Problem splitting: --split-eager problem splitting works like variable labelling: the variable whose domain is split has a singleton domain in one subproblem, and the remaining values in the other (DEFAULT) --split-even try to divide the search space evenly amongst the subproblems --split-even1 same as above, but try to split the domain of just one variable --team-split-eager as above, for assigning work to the workers (only --team-split-even useful if one wishes to have a strategy which is --team-split-even1 different from the one used when assigning work to teams) See the TUNING file for the options to use with the different problems. * Programming The header file should be included by the program. ** Types fd_int variable fd_constraint constraint (not very useful) ** Constants Integer constants FD_OK FD_NOSOLUTION ** Functions fd_init(int *argc, char **argv[]) initialise the solver fd_end(void) stop the solver and clean up fd_solve(void) start the solver (returns FD_OK or FD_NOSOLUTION, which is only meaningful when not counting solutions) fd_int fd_new(int min, int max) create a new variable with domain [min, max] fd_label(fd_int vars[], int nvars) set variables to be labelled (the DEFAULT is to label all variables) fd_var_single(fd_int var, int *val) tests whether the variable domain is a singleton, in which case its value is stored at the specified address fd_var_value(fd_int var) return the variable's value fd_print(fd_int var) print the variable's domain fd_println(fd_int var) the same, followed by a newline ** Constraints Arithmetic constraints fd_eq(fd_int x, fd_int y) x = y fd_ne(fd_int x, fd_int y) x != y fd_lt(fd_int x, fd_int y) x < y fd_le(fd_int x, fd_int y) x <= y fd_gt(fd_int x, fd_int y) x > y fd_ge(fd_int x, fd_int y) x >= y fd_minus_eq(fd_int x, fd_int y, int k) x - y = k fd_minus_ne(fd_int x, fd_int y, int k) x - y != k fd_var_eq_minus(fd_int x, fd_int y, fd_int z) x = y - z fd_var_eq_times(fd_int x, fd_int y, fd_int z) x = y * z Global constraints fd_all_different(fd_int X[], int n) all n variables in X have different values fd_element(fd_int X[], int n, fd_int y, int k) X[y] = k fd_element_var(fd_int X[], int n, fd_int y, fd_int z) X[y] = z fd_sum(fd_int X[], int n, int k) sum(X) = k fd_sum2(fd_int X[], int n, fd_int y) sum(X) = y fd_sum_prod(fd_int X[], fd_int Y[], int n, int k) X . Y = k fd_poly_eq(int C[], fd_int Y[], int n, fd_int z) z <= C . Y <= z fd_poly_eq_k(int C[], fd_int Y[], int n, int k) C . Y = k fd_poly_ne(int C[], fd_int Y[], int n, fd_int z) C . Y != z fd_poly_ne_k(int C[], fd_int Y[], int n, int k) C . Y != k fd_knapsack2(fd_int X[], fd_int Y[], int n, fd_int z) z <= X . Y <= z fd_exactly(fd_int X[], int n, int c, int k) #{ i | X[i] = k } = c fd_exactly_var(fd_int X[], int n, fd_int y, int k) #{ i | X[i] = k } = y fd_exactly_vars(fd_int X[], int n, fd_int y, fd_int z) #{ i | X[i] = z } = y (A . B is the dot product of A and B.) ** Optimisation fd_min(fd_int x) Minimise the value of x fd_max(fd_int x) Maximise the value of x * Miscellaneous Use `ident ' (if available) to find which compilation options were used for compiling the application.