/* * element.c * * Created on: 26/01/2017 * Author: pedro */ #ifndef __OPENCL_VERSION__ #include #include #include "element.h" #include "../bitmaps.h" #include "../config.h" #include "../variables.h" #endif #include "../kernels/cl_aux_functions.h" #if CL_D_TYPE == CL_BITMAP #include "../kernels/cl_bitmaps.h" #elif CL_D_TYPE == CL_INTERVAL #include "../kernels/cl_intervals.h" #endif #include "../kernels/cl_constraints.h" #include "../kernels/cl_variables.h" #include "../kernels/cl_ttl.h" #ifndef __OPENCL_VERSION__ /* * Creates a new constraint of the element type and return the constraint ID * 1 ≤ y <= n ∧ X[y] = k * X_ids - vector with the ID of the variables that may be in the domain of y_id variable * n_vs - maximum number of variables in X vector * y_id - ID of the variable whose domain are the index of the variables in X_ids vector * k - Value that should be in X_ids[y_id] domain */ unsigned int c_element(unsigned int* X_ids, unsigned int n_vs, unsigned int y_id, unsigned int k) { var* y = &VS[y_id]; unsigned int i; if (y->max > n_vs) { v_del_gt(y, (int)n_vs); if (y->n_vals == 0) { fprintf(stderr, "\nError: Constraint ELEMENT makes model inconsistent at creation:\n"); exit(-1); } } if (y->min == 0) { v_del_val(y, 0); if (y->n_vals == 0) { fprintf(stderr, "\nError: Constraint ELEMENT makes model inconsistent at creation:\n"); exit(-1); } } // set to include in kernel compilation USE_CS[ELEMENT] = 1; USE_NON_CS_REIFI[ELEMENT] = 1; REV = 1; unsigned int* c_vs = malloc((n_vs + 1) * sizeof(unsigned int)); for (i = 0; i < n_vs; i++) { c_vs[i] = X_ids[i]; } c_vs[n_vs] = y_id; // creates a new generic constraint unsigned int c_id = c_new(c_vs, n_vs + 1, NULL, 0, -1); // pointers to this type of constraint functions CS[c_id].kind = ELEMENT; CS[c_id].check_sol_f = &element_check; CS[c_id].constant_val = (int)k; free(c_vs); return c_id; } /* * Creates a new reified constraint of the element type and return the constraint ID * 1 ≤ y <= n ∧ X[y] = k * X_ids - vector with the ID of the variables that may be in the domain of y_id variable * n_vs - maximum number of variables in X vector * y_id - ID of the variable whose domain are the index of the variables in X_ids vector * k - Value that should be in X_ids[y_id] domain * reif_v_id - ID of the reification variable */ unsigned int c_element_reif(unsigned int* X_ids, unsigned int n_vs, unsigned int y_id, unsigned int k, int reif_v_id) { var* y = &VS[y_id]; unsigned int i; if (VS[reif_v_id].max > 1) { v_del_gt(&VS[reif_v_id], 1); if (VS[reif_v_id].n_vals == 0) { fprintf(stderr, "\nError: Constraint ELEMENT_REIF makes model inconsistent at creation:\n"); exit(-1); } } if (y->max > n_vs) { v_del_gt(y, (int)n_vs); if (y->n_vals == 0) { fprintf(stderr, "\nError: Constraint ELEMENT_REIF makes model inconsistent at creation:\n"); exit(-1); } } if (y->min == 0) { v_del_val(y, 0); if (y->n_vals == 0) { fprintf(stderr, "\nError: Constraint ELEMENT_REIF makes model inconsistent at creation:\n"); exit(-1); } } // set to include in kernel compilation USE_CS[ELEMENT] = 1; USE_CS_REIFI[ELEMENT] = 1; REV = 1; unsigned int* c_vs = malloc((n_vs + 1) * sizeof(unsigned int)); for (i = 0; i < n_vs; i++) { c_vs[i] = X_ids[i]; } c_vs[n_vs] = y_id; // creates a new generic constraint unsigned int c_id = c_new(c_vs, n_vs + 1, NULL, 0, reif_v_id); // pointers to this type of constraint functions CS[c_id].kind = ELEMENT; CS[c_id].check_sol_f = &element_check; CS[c_id].constant_val = (int)k; free(c_vs); return c_id; } /* * Return true if the element constraint is respected or false if not * 1 ≤ y <= n ∧ X[y] = k * c - constraint to check if is respected * explored - if the CSP was already explored, which mean that all the variables must already be singletons * */ bool element_check(constr* c, bool explored) { var** X = c->c_vs; var* y = c->c_vs[c->n_c_vs - 1]; // y variable #if CHECK_SOL_N_VALS if (y->to_label && y->n_vals != 1) { return false; } #endif // X[y] variable if ( #if CHECK_SOL_N_VALS (X[y->min - 1]->to_label && X[y->min - 1]->n_vals != 1) || #endif X[y->min - 1]->min != c->constant_val) { if (explored) { fprintf(stderr, "\nError: Constraint ELEMENT (%d) not respected:\n", c->c_id); fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", X[y->min - 1]->v_id, b_get_min_val(&X[y->min - 1]->domain_b), b_get_max_val(&X[y->min - 1]->domain_b), b_cnt_vals(&X[y->min - 1]->domain_b)); fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", y->v_id, b_get_min_val(&y->domain_b), b_get_max_val(&y->domain_b), b_cnt_vals(&y->domain_b)); } return false; } return true; } #endif // //#if CS_ELEMENT == 1 ///* // * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID element constraint // * 1 ≤ y <= n ∧ X[y] = k // * prop_ok will be set to 1 if success or to 0 if any domain became empty // * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order // * vs_prop_ - all CSP variables with current step values // * prop_v_id - variable ID to propagate // * current_cs - constraint that should be propagated for the variable with prop_v_id ID // * vs_id_to_prop_ - circular vector with the ids of the variables to propagate // */ //CUDA_FUNC void element_prop(CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, unsigned int prop_v_id, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_, // bool* prop_ok CS_IGNORE_FUNC TTL_CTR) { // // int y_id = vs_per_c_idx[current_cs->n_c_vs - 1]; // ID of the variable whose domain are the index of the variables in elements vector // int k = current_cs->constant_val; // int x_id; // bool contains; // bool changed = 0; // int i; // // // if y is singleton // if (V_N_VALS(vs_prop_[y_id]) == 1) { // x_id = vs_per_c_idx[V_MIN(vs_prop_[y_id]) - 1]; // // cl_v_del_all_except_val_m(&changed, &vs_prop_[x_id], k TTL_CTR_V); // if (changed) { // // // if X[i] doesn't contain k // if (V_IS_EMPTY(vs_prop_[x_id])) { // *prop_ok = 0; // return; // } // v_add_to_prop(vs_id_to_prop_, vs_prop_, x_id); // } //#if CL_CS_IGNORE // cs_ignore[current_cs->c_id] = 1; //#endif // return; // } // // // if y is not singleton and an x is to be propagated // if (prop_v_id != (unsigned int)y_id) { // // cl_v_contains_val_m(&contains, &vs_prop_[prop_v_id], k TTL_CTR_V); // if (!contains) { // for (i = V_MIN(vs_prop_[y_id]); i <= V_MAX(vs_prop_[y_id]); i++) { // CHECK_TTL(ttl_ctr, 53) // // if ((unsigned int)vs_per_c_idx[i - 1] == prop_v_id) { // // cl_v_del_val_m(&changed, &vs_prop_[y_id], i TTL_CTR_V); // if (changed) { // // if (V_IS_EMPTY(vs_prop_[y_id])) { // *prop_ok = 0; // return; // } // // // if y was set singleton // if (V_N_VALS(vs_prop_[y_id]) == 1) { // // x_id = vs_per_c_idx[V_MIN(vs_prop_[y_id]) - 1]; // cl_v_del_all_except_val_m(&changed, &vs_prop_[x_id], k TTL_CTR_V); // if (changed) { // // // if X[i] doesn't contain k // if (V_IS_EMPTY(vs_prop_[x_id])) { // *prop_ok = 0; // return; // } // v_add_to_prop(vs_id_to_prop_, vs_prop_, x_id); // } //#if CL_CS_IGNORE // cs_ignore[current_cs->c_id] = 1; //#endif // } // v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); // } // return; // } // } // } // } //} // //#if CS_R_ELEMENT == 1 ///* // * Validate element constraint to be normally propagated, when reified // * 1 ≤ y <= n ∧ X[y] = k // * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order // * vs_prop_ - all CSP variables with current step values // * current_cs - constraint that should be propagated for the variable with prop_v_id ID // * vs_id_to_prop_ - circular vector with the ids of the variables to propagate // */ //CUDA_FUNC void element_reif( CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, unsigned int prop_v_id, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_ TTL_CTR) { // // int y_id = vs_per_c_idx[current_cs->n_c_vs - 1]; // ID of the variable whose domain are the index of the variables in elements vector // VARS_PROP y; // int x_id; // VARS_PROP x; // bool contains; // bool changed = 0; // int i; // // // if y is singleton and x doesn't contain k is inconsistent // if (prop_v_id == (unsigned int)y_id && V_N_VALS(vs_prop_[y_id]) == 1) { // // x_id = vs_per_c_idx[V_MIN(vs_prop_[y_id]) - 1]; // cl_v_copy_pm(&x, &vs_prop_[x_id] TTL_CTR_V); // // cl_v_del_all_except_val_n(&changed, &x, current_cs->constant_val TTL_CTR_V); // // // if X[i] doesn't contain k // if (V_IS_EMPTY(x)) { // cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); // v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); // } // // // constraint already fixed // if (V_N_VALS(vs_prop_[x_id]) == 1) { // cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 0 TTL_CTR_V); // v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); // } // return; // } // // // remove x from y if x doesn't contain k // for (i = V_MIN(vs_prop_[y_id]); i <= V_MAX(vs_prop_[y_id]); i++) { // CHECK_TTL(ttl_ctr, 210) // x_id = vs_per_c_idx[i - 1]; // if ((unsigned int)x_id == prop_v_id) { // // cl_v_contains_val_m(&contains, &vs_prop_[x_id], current_cs->constant_val TTL_CTR_V); // if (!contains) { // cl_v_copy_pm(&y, &vs_prop_[y_id] TTL_CTR_V); // // cl_v_del_val_n(&changed, &y, i TTL_CTR_V); // if (V_IS_EMPTY(y)) { // cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); // v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); // return; // } // } // break; // } // } // // // if y is singleton and x doesn't contain k is inconsistent // if (V_N_VALS(vs_prop_[y_id]) == 1) { // // x_id = vs_per_c_idx[V_MIN(vs_prop_[y_id]) - 1]; // cl_v_copy_pm(&x, &vs_prop_[x_id] TTL_CTR_V); // // cl_v_del_all_except_val_n(&changed, &x, current_cs->constant_val TTL_CTR_V); // // if X[i] doesn't contain k // if (V_IS_EMPTY(x)) { // cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); // v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); // return; // } // // // constraint already fixed // if (V_N_VALS(vs_prop_[x_id]) == 1) { // cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 0 TTL_CTR_V); // v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); // } // } //} // ///* // * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID element opposite constraint // * 1 ≤ y <= n ∧ X[y] != k // * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order // * vs_prop_ - all CSP variables with current step values // * prop_v_id - variable ID to propagate // * current_cs - constraint that should be propagated for the variable with prop_v_id ID // * vs_id_to_prop_ - circular vector with the ids of the variables to propagate // */ //CUDA_FUNC void element_prop_opposite(CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, unsigned int prop_v_id, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_, // bool* prop_ok CS_IGNORE_FUNC TTL_CTR) { // // int y_id = vs_per_c_idx[current_cs->n_c_vs - 1]; // ID of the variable whose domain are the index of the variables in elements vector // int x_id; // bool changed = 0; // // // if y is singleton and x doesn't contain k is inconsistent // if (prop_v_id == (unsigned int)y_id && V_N_VALS(vs_prop_[y_id]) == 1) { // // x_id = vs_per_c_idx[V_MIN(vs_prop_[y_id]) - 1]; // // cl_v_del_val_m(&changed, &vs_prop_[x_id], current_cs->constant_val TTL_CTR_V); // if (changed) { // // // if X[i] doesn't contain k // if (V_IS_EMPTY(vs_prop_[x_id])) { // *prop_ok = 0; // return; // } // v_add_to_prop(vs_id_to_prop_, vs_prop_, x_id); // } //#if CL_CS_IGNORE // cs_ignore[current_cs->c_id] = 1; //#endif // } //} // //#endif // //CUDA_FUNC void element_propagate(CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, unsigned int prop_v_id, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_, // bool* prop_ok PROPAGATED_FUNC CS_IGNORE_FUNC TTL_CTR) { // //#if CS_R_ELEMENT == 0 // element_prop(vs_per_c_idx, vs_prop_, prop_v_id, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); //#if CL_STATS == 1 // *propagated = true; //#endif //#elif CS_R_ELEMENT == 1 // if (current_cs->reified == 1) { // if (prop_v_id != current_cs->reif_var_id) { // if (V_N_VALS(vs_prop_[current_cs->reif_var_id]) > 1) { // element_reif(vs_per_c_idx, vs_prop_, prop_v_id, current_cs, vs_id_to_prop_ TTL_CTR_V); // } // if (V_N_VALS(vs_prop_[current_cs->reif_var_id]) == 1) { // if (V_MIN(vs_prop_[current_cs->reif_var_id]) == 1) { // element_prop(vs_per_c_idx, vs_prop_, prop_v_id, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); // } else { // element_prop_opposite(vs_per_c_idx, vs_prop_, prop_v_id, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); // } //#if CL_STATS == 1 // *propagated = true; //#endif // } // } // } else { // element_prop(vs_per_c_idx, vs_prop_, prop_v_id, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); //#if CL_STATS == 1 // *propagated = true; //#endif // } //#endif //} // //#endif // #if CS_ELEMENT == 1 /* * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID element constraint * 1 ≤ y <= n ∧ X[y] = k * prop_ok will be set to 1 if success or to 0 if any domain became empty * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * prop_v_id - variable ID to propagate * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate */ CUDA_FUNC void element_prop(CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, unsigned int prop_v_id, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_, bool* prop_ok CS_IGNORE_FUNC TTL_CTR) { int y_id = vs_per_c_idx[current_cs->n_c_vs - 1]; // ID of the variable whose domain are the index of the variables in elements vector int k = current_cs->constant_val; int x_id; bool contains; bool changed = 0; int i; // if y is singleton if (V_N_VALS(vs_prop_[y_id]) == 1) { x_id = vs_per_c_idx[V_MIN(vs_prop_[y_id]) - 1]; cl_v_del_all_except_val_m(&changed, &vs_prop_[x_id], k TTL_CTR_V); if (changed) { // if X[i] doesn't contain k if (V_IS_EMPTY(vs_prop_[x_id])) { *prop_ok = 0; return; } v_add_to_prop(vs_id_to_prop_, vs_prop_, x_id); } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } // if y is not singleton and an x is to be propagated if (prop_v_id != (unsigned int)y_id) { cl_v_contains_val_m(&contains, &vs_prop_[prop_v_id], k TTL_CTR_V); if (!contains) { for (i = V_MIN(vs_prop_[y_id]); i <= V_MAX(vs_prop_[y_id]); i++) { CHECK_TTL(ttl_ctr, 53) if ((unsigned int)vs_per_c_idx[i - 1] == prop_v_id) { cl_v_del_val_m(&changed, &vs_prop_[y_id], i TTL_CTR_V); if (changed) { if (V_IS_EMPTY(vs_prop_[y_id])) { *prop_ok = 0; return; } // if y was set singleton if (V_N_VALS(vs_prop_[y_id]) == 1) { x_id = vs_per_c_idx[V_MIN(vs_prop_[y_id]) - 1]; cl_v_del_all_except_val_m(&changed, &vs_prop_[x_id], k TTL_CTR_V); if (changed) { // if X[i] doesn't contain k if (V_IS_EMPTY(vs_prop_[x_id])) { *prop_ok = 0; return; } v_add_to_prop(vs_id_to_prop_, vs_prop_, x_id); } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } return; } } } } } #if CS_R_ELEMENT == 1 /* * Validate element constraint to be normally propagated, when reified * 1 ≤ y <= n ∧ X[y] = k * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate */ CUDA_FUNC void element_reif( CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, unsigned int prop_v_id, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_ TTL_CTR) { int y_id = vs_per_c_idx[current_cs->n_c_vs - 1]; // ID of the variable whose domain are the index of the variables in elements vector VARS_PROP y; int x_id; VARS_PROP x; bool contains; bool changed = 0; int i; // if y is singleton and x doesn't contain k is inconsistent if (prop_v_id == (unsigned int)y_id && V_N_VALS(vs_prop_[y_id]) == 1) { x_id = vs_per_c_idx[V_MIN(vs_prop_[y_id]) - 1]; cl_v_copy_pm(&x, &vs_prop_[x_id] TTL_CTR_V); cl_v_del_all_except_val_n(&changed, &x, current_cs->constant_val TTL_CTR_V); // if X[i] doesn't contain k if (V_IS_EMPTY(x)) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); } // constraint already fixed if (V_N_VALS(vs_prop_[x_id]) == 1) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 0 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); } return; } // remove x from y if x doesn't contain k for (i = V_MIN(vs_prop_[y_id]); i <= V_MAX(vs_prop_[y_id]); i++) { CHECK_TTL(ttl_ctr, 210) x_id = vs_per_c_idx[i - 1]; if ((unsigned int)x_id == prop_v_id) { cl_v_contains_val_m(&contains, &vs_prop_[x_id], current_cs->constant_val TTL_CTR_V); if (!contains) { cl_v_copy_pm(&y, &vs_prop_[y_id] TTL_CTR_V); cl_v_del_val_n(&changed, &y, i TTL_CTR_V); if (V_IS_EMPTY(y)) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); return; } } break; } } // if y is singleton and x doesn't contain k is inconsistent if (V_N_VALS(vs_prop_[y_id]) == 1) { x_id = vs_per_c_idx[V_MIN(vs_prop_[y_id]) - 1]; cl_v_copy_pm(&x, &vs_prop_[x_id] TTL_CTR_V); cl_v_del_all_except_val_n(&changed, &x, current_cs->constant_val TTL_CTR_V); // if X[i] doesn't contain k if (V_IS_EMPTY(x)) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); return; } // constraint already fixed if (V_N_VALS(vs_prop_[x_id]) == 1) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 0 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); } } } /* * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID element opposite constraint * 1 ≤ y <= n ∧ X[y] != k * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * prop_v_id - variable ID to propagate * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate */ CUDA_FUNC void element_prop_opposite(CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, unsigned int prop_v_id, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_, bool* prop_ok CS_IGNORE_FUNC TTL_CTR) { int y_id = vs_per_c_idx[current_cs->n_c_vs - 1]; // ID of the variable whose domain are the index of the variables in elements vector int x_id; bool changed = 0; // if y is singleton and x doesn't contain k is inconsistent if (prop_v_id == (unsigned int)y_id && V_N_VALS(vs_prop_[y_id]) == 1) { x_id = vs_per_c_idx[V_MIN(vs_prop_[y_id]) - 1]; cl_v_del_val_m(&changed, &vs_prop_[x_id], current_cs->constant_val TTL_CTR_V); if (changed) { // if X[i] doesn't contain k if (V_IS_EMPTY(vs_prop_[x_id])) { *prop_ok = 0; return; } v_add_to_prop(vs_id_to_prop_, vs_prop_, x_id); } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } } #endif CUDA_FUNC void element_propagate(CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, unsigned int prop_v_id, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_, bool* prop_ok PROPAGATED_FUNC CS_IGNORE_FUNC TTL_CTR) { #if CS_R_ELEMENT == 0 element_prop(vs_per_c_idx, vs_prop_, prop_v_id, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); #if CL_STATS == 1 *propagated = true; #endif #elif CS_R_ELEMENT == 1 if (current_cs->reified == 1) { if (prop_v_id != current_cs->reif_var_id) { if (V_N_VALS(vs_prop_[current_cs->reif_var_id]) > 1) { element_reif(vs_per_c_idx, vs_prop_, prop_v_id, current_cs, vs_id_to_prop_ TTL_CTR_V); } if (V_N_VALS(vs_prop_[current_cs->reif_var_id]) == 1) { if (V_MIN(vs_prop_[current_cs->reif_var_id]) == 1) { element_prop(vs_per_c_idx, vs_prop_, prop_v_id, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); } else { element_prop_opposite(vs_per_c_idx, vs_prop_, prop_v_id, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); } #if CL_STATS == 1 *propagated = true; #endif } } } else { element_prop(vs_per_c_idx, vs_prop_, prop_v_id, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); #if CL_STATS == 1 *propagated = true; #endif } #endif } #endif