/* * bool_or.c * * Created on: 20/11/2017 * Author: pedro */ #ifndef __OPENCL_VERSION__ #include #include #include "bool_or.h" #include "../bitmaps.h" #include "../config.h" #include "../variables.h" #endif #include "../kernels/cl_aux_functions.h" #if CL_D_TYPE == CL_BITMAP #include "../kernels/cl_bitmaps.h" #elif CL_D_TYPE == CL_INTERVAL #include "../kernels/cl_intervals.h" #endif #include "../kernels/cl_constraints.h" #include "../kernels/cl_variables.h" #include "../kernels/cl_ttl.h" #ifndef __OPENCL_VERSION__ /* * Creates a new constraint of the type bool_or and return the constraint ID * (∃ i ∈ 1..n : X[i]) ↔ y * X_ids - vector with the ID of the boolean variables that may be assigned with 1 (true) * n_vs - maximum number of boolean variables in X vector * y - boolean variable whose assignment is the result of the binary OR between X variables */ unsigned int c_bool_or(unsigned int* X_ids, unsigned int n_vs, unsigned int y_id) { unsigned int i; for (i = 0; i < n_vs; i++) { if (VS[X_ids[i]].max > 1) { v_del_gt(&VS[X_ids[i]], 1); if (VS[X_ids[i]].n_vals == 0) { fprintf(stderr, "\nError: Constraint BOOL_OR makes model inconsistent at creation:\n"); exit(-1); } } } // set to include in kernel compilation USE_CS[BOOL_OR] = 1; USE_NON_CS_REIFI[BOOL_OR] = 1; REV = 1; unsigned int* c_vs = malloc((n_vs + 1) * sizeof(unsigned int)); for (i = 0; i < n_vs; i++) { c_vs[i] = X_ids[i]; } c_vs[i] = y_id; // creates a new generic constraint unsigned int c_id = c_new(c_vs, n_vs + 1, NULL, 0, -1); // pointers to this type of constraint functions CS[c_id].kind = BOOL_OR; CS[c_id].check_sol_f = &bool_or_check; CS[c_id].constant_val = 0; free(c_vs); return c_id; } /* * Creates a new reified constraint of the bool_or type * (∃ i ∈ 1..n : X[i]) ↔ y * X_ids - vector with the ID of the boolean variables that may be assigned with 1 (true) * n_vs - maximum number of boolean variables in X vector * y - boolean variable whose assignment must be equal to all the X variables * reif_v_id - ID of the reification variable */ unsigned int c_bool_or_reif(unsigned int* X_ids, unsigned int n_vs, unsigned int y_id, int reif_v_id) { unsigned int i; if (VS[reif_v_id].max > 1) { v_del_gt(&VS[reif_v_id], 1); if (VS[reif_v_id].n_vals == 0) { fprintf(stderr, "\nError: Constraint BOOL_OR_REIF makes model inconsistent at creation:\n"); exit(-1); } } for (i = 0; i < n_vs; i++) { if (VS[X_ids[i]].max > 1) { v_del_gt(&VS[X_ids[i]], 1); if (VS[X_ids[i]].n_vals == 0) { fprintf(stderr, "\nError: Constraint BOOL_OR_REIF makes model inconsistent at creation:\n"); exit(-1); } } } // set to include in kernel compilation USE_CS[BOOL_OR] = 1; USE_CS_REIFI[BOOL_OR] = 1; REV = 1; unsigned int* c_vs = malloc((n_vs + 1) * sizeof(unsigned int)); for (i = 0; i < n_vs; i++) { c_vs[i] = X_ids[i]; } c_vs[i] = y_id; // creates a new generic constraint unsigned int c_id = c_new(c_vs, n_vs + 1, NULL, 0, reif_v_id); // pointers to this type of constraint functions CS[c_id].kind = BOOL_OR; CS[c_id].check_sol_f = &bool_or_check; CS[c_id].constant_val = 0; free(c_vs); return c_id; } /* * Return true if the bool_or constraint is respected or false if not * (∃ i ∈ 1..n : X[i]) ↔ y * c - constraint to check if is respected * explored - if the CSP was already explored, which mean that all the variables must already be singletons * */ bool bool_or_check(constr* c, bool explored) { var** X = c->c_vs; var* y = c->c_vs[c->n_c_vs - 1]; int ones_ctr = 0; int i; #if CHECK_SOL_N_VALS if (y->to_label && y->n_vals != 1) { if (explored) { fprintf(stderr, "\nError: Constraint BOOL_OR (%d) not respected:\n", c->c_id); for (i = 0; i < c->n_c_vs; i++) { fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[i]->v_id, b_get_min_val(&c->c_vs[i]->domain_b), b_get_max_val(&c->c_vs[i]->domain_b), b_cnt_vals(&c->c_vs[i]->domain_b)); } } return false; } #endif for (i = 0; i < c->n_c_vs - 1; i++) { #if CHECK_SOL_N_VALS if (X[i]->to_label && X[i]->n_vals != 1) { if (explored) { fprintf(stderr, "\nError: Constraint BOOL_OR (%d) not respected:\n", c->c_id); for (i = 0; i < c->n_c_vs; i++) { fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[i]->v_id, b_get_min_val(&c->c_vs[i]->domain_b), b_get_max_val(&c->c_vs[i]->domain_b), b_cnt_vals(&c->c_vs[i]->domain_b)); } } return false; } #endif if (X[i]->min == 1) { ones_ctr++; } } if (y->min == 1 && ones_ctr == 0) { if (explored) { fprintf(stderr, "\nError: Constraint BOOL_OR (%d) not respected:\n", c->c_id); for (i = 0; i < c->n_c_vs; i++) { fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[i]->v_id, b_get_min_val(&c->c_vs[i]->domain_b), b_get_max_val(&c->c_vs[i]->domain_b), b_cnt_vals(&c->c_vs[i]->domain_b)); } } return false; } return true; } #endif #if CS_BOOL_OR == 1 /* * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID bool_or constraint * (∃ i ∈ 1..n : X[i]) ↔ y * prop_ok will be set to 1 if success or to 0 if any domain became empty * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * prop_v_id - variable ID to propagate * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate */ CUDA_FUNC void bool_or_prop(CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_, bool* prop_ok CS_IGNORE_FUNC TTL_CTR) { int y_id = vs_per_c_idx[current_cs->n_c_vs - 1]; int x_id; bool ones = false; bool all_singl = true; int not_singl = 0; int not_singl_id; bool changed; int i; for (i = 0; i < current_cs->n_c_vs - 1; i++) { x_id = vs_per_c_idx[i]; if (V_N_VALS(vs_prop_[x_id]) == 1 && V_MIN(vs_prop_[x_id]) == 1) { ones = true; break; } else if (V_N_VALS(vs_prop_[x_id]) > 1) { all_singl = false; not_singl++; not_singl_id = x_id; } } // if any X is already set to 1 if (ones) { cl_v_del_all_except_val_m(&changed, &vs_prop_[y_id], 1 TTL_CTR_V); if (changed) { if (V_IS_EMPTY(vs_prop_[y_id]) ) { *prop_ok = 0; return; } v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif // if all the X are set to 0 } else if (all_singl) { cl_v_del_all_except_val_m(&changed, &vs_prop_[y_id], 0 TTL_CTR_V); if (changed) { if (V_IS_EMPTY(vs_prop_[y_id])) { *prop_ok = 0; return; } v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } else if (V_N_VALS(vs_prop_[y_id]) == 1) { // y is 1 and only one x is not singleton and all the others are 0 if (V_MIN(vs_prop_[y_id]) == 1) { if (not_singl == 1) { cl_v_bool_del_val_m(&vs_prop_[not_singl_id], 0 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, not_singl_id); #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } // y is 0, set all x to 0 } else { for (i = 0; i < current_cs->n_c_vs - 1; i++) { x_id = vs_per_c_idx[i]; if (V_N_VALS(vs_prop_[x_id]) > 1) { cl_v_bool_del_val_m(&vs_prop_[x_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, x_id); } } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } } } #if CS_R_BOOL_OR == 1 /* * Validate bool_or constraint to be normally propagated, when reified * (∃ i ∈ 1..n : X[i]) ↔ y * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate */ CUDA_FUNC void bool_or_reif( CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_ CS_IGNORE_FUNC TTL_CTR) { int y_id = vs_per_c_idx[current_cs->n_c_vs - 1]; int x_id; bool ones = false; int i; // y has 1 value if (V_N_VALS(vs_prop_[y_id]) == 1) { for (i = 0; i < current_cs->n_c_vs - 1; i++) { x_id = vs_per_c_idx[i]; if (V_N_VALS(vs_prop_[x_id]) == 1 && V_MIN(vs_prop_[x_id]) == 1) { ones = true; } } // at least one x is 1 if (ones) { if (V_MIN(vs_prop_[y_id]) == 1) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 0 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); } else { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } } } /* * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID bool_or opposite constraint * (∃ i !∈ 1..n : X[i]) ↔ y * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * prop_v_id - variable ID to propagate * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate */ CUDA_FUNC void bool_or_prop_opposite(CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_, bool* prop_ok CS_IGNORE_FUNC TTL_CTR) { int y_id = vs_per_c_idx[current_cs->n_c_vs - 1]; int x_id; bool ones = false; bool all_singl = true; bool changed; int i; for (i = 0; i < current_cs->n_c_vs - 1; i++) { x_id = vs_per_c_idx[i]; if (V_N_VALS(vs_prop_[x_id]) == 1 && V_MIN(vs_prop_[x_id]) == 1) { ones = true; } else if (V_N_VALS(vs_prop_[x_id]) > 1) { all_singl = false; } } // if any X is already set to 1 if (ones) { cl_v_del_val_m(&changed, &vs_prop_[y_id], 1 TTL_CTR_V); if (changed) { if (V_IS_EMPTY(vs_prop_[y_id]) ) { *prop_ok = 0; return; } v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif // if all the X are set to 0 } else if (!ones && all_singl) { cl_v_del_val_m(&changed, &vs_prop_[y_id], 0 TTL_CTR_V); if (changed) { if (V_IS_EMPTY(vs_prop_[y_id])) { *prop_ok = 0; return; } v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } } #endif CUDA_FUNC void bool_or_propagate(CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_, bool* prop_ok PROPAGATED_FUNC CS_IGNORE_FUNC TTL_CTR) { #if CS_R_BOOL_OR == 0 bool_or_prop(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); #if CL_STATS == 1 *propagated = true; #endif #elif CS_R_BOOL_OR == 1 if (current_cs->reified == 1) { if (V_N_VALS(vs_prop_[current_cs->reif_var_id]) > 1) { bool_or_reif(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_ CS_IGNORE_CALL TTL_CTR_V); } else { if (V_MIN(vs_prop_[current_cs->reif_var_id]) == 1) { bool_or_prop(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); } else { bool_or_prop_opposite(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); } #if CL_STATS == 1 *propagated = true; #endif } } else { bool_or_prop(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); #if CL_STATS == 1 *propagated = true; #endif } #endif } #endif