/* * sum.c * * Created on: 14/03/2017 * Author: Pedro */ #ifndef __OPENCL_VERSION__ #include #include #include "sum.h" #include "../bitmaps.h" #include "../config.h" #include "../variables.h" #endif #include "../kernels/cl_aux_functions.h" #if CL_D_TYPE == CL_BITMAP #include "../kernels/cl_bitmaps.h" #elif CL_D_TYPE == CL_INTERVAL #include "../kernels/cl_intervals.h" #endif #include "../kernels/cl_constraints.h" #include "../kernels/cl_variables.h" #include "../kernels/cl_ttl.h" #ifndef __OPENCL_VERSION__ /* * Creates a new constraint of the sum type and return the ID of the constraint * sum(X, k) * X_ids - vector with the ID of the variables that may contain the value of y * n_vs - maximum number of variables in X vector * k - value of the sum of all the variables in X */ unsigned int c_sum(unsigned int *X_ids, unsigned int n_vs, unsigned int k) { unsigned int i; // set to include in kernel compilation USE_CS[SUM] = 1; USE_NON_CS_REIFI[SUM] = 1; REV = 1; unsigned int *c_vs = malloc((n_vs) * sizeof(unsigned int)); for (i = 0; i < n_vs; i++) { c_vs[i] = X_ids[i]; } // creates a new generic constraint unsigned int c_id = c_new(c_vs, n_vs, NULL, 0, -1); // pointers to this type of constraint functions CS[c_id].kind = SUM; CS[c_id].check_sol_f = &sum_check; CS[c_id].constant_val = (int) k; free(c_vs); return c_id; } /* * Creates a new reified constraint of the sum type and return the ID of the constraint * sum(X, k) * X_ids - vector with the ID of the variables that may contain the value of y * n_vs - maximum number of variables in X vector * k - value of the sum of all the variables in X * reif_v_id - ID of the reification variable */ unsigned int c_sum_reif(unsigned int *X_ids, unsigned int n_vs, unsigned int k, int reif_v_id) { unsigned int i; if (VS[reif_v_id].max > 1) { v_del_gt(&VS[reif_v_id], 1); if (VS[reif_v_id].n_vals == 0) { printf("\nConstraint SUM_REIF makes model inconsistent at creation. No solution found.\n"); #if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__) printf("\nPress any key to exit\n"); int a = getchar(); #endif exit(0); } } // set to include in kernel compilation USE_CS[SUM] = 1; USE_CS_REIFI[SUM] = 1; REV = 1; unsigned int *c_vs = malloc((n_vs) * sizeof(unsigned int)); for (i = 0; i < n_vs; i++) { c_vs[i] = X_ids[i]; } // creates a new generic constraint unsigned int c_id = c_new(c_vs, n_vs, NULL, 0, reif_v_id); // pointers to this type of constraint functions CS[c_id].kind = SUM; CS[c_id].check_sol_f = &sum_check; CS[c_id].constant_val = (int) k; free(c_vs); return c_id; } /* * Return true if the sum constraint is respected or false if not * sum(X, k) * c - constraint to check if is respected * explored - if the CSP was already explored, which mean that all the variables must already be singletons * */ bool sum_check(constr *c, bool explored) { var **X = c->c_vs; var *x; int k = c->constant_val; int sum = 0; unsigned int i; if (!explored) { for (i = 0; i < c->n_c_vs; i++) { if (c->c_vs[i]->n_vals > 1) { return false; } } } if (c->reified && VS[c->reif_v_id].n_vals > 1) { if (explored) { fprintf(stderr, "\nError: Reification variable of constraint SUM_REIF (%d) has 2 values.\n", c->c_id); return false; } } for (i = 0; i < c->n_c_vs; i++) { x = X[i]; sum += x->min; } if (((!c->reified || (c->reified && VS[c->reif_v_id].min == 1)) && sum != k) || (c->reified && VS[c->reif_v_id].min == 0 && sum == k)) { if (explored) { if (c->reified) { fprintf(stderr, "\nError: Constraint SUM_REIF (%d) not respected:\n", c->c_id); fprintf(stderr, "Reif ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->reif_v_id, b_get_min_val(&VS[c->reif_v_id].domain_b), b_get_max_val(&VS[c->reif_v_id].domain_b), b_cnt_vals(&VS[c->reif_v_id].domain_b)); } else { fprintf(stderr, "\nError: Constraint SUM_LE (%d) not respected:\n", c->c_id); } for (i = 0; i < c->n_c_vs; i++) { fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[i]->v_id, b_get_min_val(&c->c_vs[i]->domain_b), b_get_max_val(&c->c_vs[i]->domain_b), b_cnt_vals(&c->c_vs[i]->domain_b)); } } return false; } return true; } #endif #if CS_SUM == 1 /* * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID sum constraint * sum(X, k) * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate * prop_ok - will be set to 1 or 0 if the constraint is respected or not * terms_mem - auxiliary buffer */ CUDA_FUNC void sum_prop(CL_INTS_MEM int *vs_per_c_idx, CL_MEMORY VARS_PROP *vs_prop_, CL_CS_MEM cl_constr *current_cs, CL_MEMORY unsigned short *vs_id_to_prop_, bool *prop_ok, __global int *terms_mem CS_IGNORE_FUNC TTL_CTR) { int terms = current_cs->n_c_vs; // number of constants and variables constrained by this constraint int equat_result = current_cs->constant_val; int y_id; __global int *mins = terms_mem; __global int *maxs = &terms_mem[current_cs->n_c_vs]; int min, max; int xmin, xmax, bound; bool changed = 0; int i; min = 0; max = 0; for (i = 0; i < terms; i++) { CHECK_TTL(ttl_ctr, 69) y_id = vs_per_c_idx[i]; min += mins[i] = V_MIN(vs_prop_[y_id]); max += maxs[i] = V_MAX(vs_prop_[y_id]); } if (min > equat_result || max < equat_result) { *prop_ok = 0; return; } if (min == max) { #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } if (min == equat_result) { for (i = 0; i < terms; i++) { CHECK_TTL(ttl_ctr, 70) y_id = vs_per_c_idx[i]; if (V_N_VALS(vs_prop_[y_id]) > 1) { cl_v_del_all_except_val_m(&changed, &vs_prop_[y_id], mins[i] TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } if (max == equat_result) { for (i = 0; i < terms; i++) { CHECK_TTL(ttl_ctr, 71) y_id = vs_per_c_idx[i]; if (V_N_VALS(vs_prop_[y_id]) > 1) { cl_v_del_all_except_val_m(&changed, &vs_prop_[y_id], maxs[i] TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } #if CL_USE_BOOLEAN_VS if (current_cs->boolean == 0) { // not all X are boolean #endif if (max > equat_result) { for (i = 0; i < terms; i++) { CHECK_TTL(ttl_ctr, 72) y_id = vs_per_c_idx[i]; if (V_N_VALS(vs_prop_[y_id]) > 1) { xmin = mins[i]; xmax = maxs[i]; if (xmax - xmin > equat_result - min) { bound = equat_result - min + xmin; cl_v_del_gt_m(&changed, &vs_prop_[y_id], bound TTL_CTR_V); if (changed) { if (V_IS_EMPTY(vs_prop_[y_id])) { *prop_ok = 0; return; } v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } } } } } if (min < equat_result) { for (i = 0; i < terms; i++) { CHECK_TTL(ttl_ctr, 73) y_id = vs_per_c_idx[i]; if (V_N_VALS(vs_prop_[y_id]) > 1) { xmin = mins[i]; xmax = maxs[i]; if (xmax - xmin > max - equat_result) { bound = equat_result - max + xmax; cl_v_del_lt_m(&changed, &vs_prop_[y_id], bound TTL_CTR_V); if (changed) { if (V_IS_EMPTY(vs_prop_[y_id])) { *prop_ok = 0; return; } v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } } } } } #if CL_USE_BOOLEAN_VS } #endif } #if CS_R_SUM == 1 /* * Validate sum constraint to be normally propagated, when reified * sum(X, k) * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate */ CUDA_FUNC void sum_reif( CL_INTS_MEM int *vs_per_c_idx, CL_MEMORY VARS_PROP *vs_prop_, CL_CS_MEM cl_constr *current_cs, CL_MEMORY unsigned short *vs_id_to_prop_ CS_IGNORE_FUNC TTL_CTR) { int terms = current_cs->n_c_vs; // number of constants and variables constrained by this constraint int equat_result = current_cs->constant_val; int y_id; int min, max; int i; min = 0; max = 0; for (i = 0; i < terms; i++) { CHECK_TTL(ttl_ctr, 74) y_id = vs_per_c_idx[i]; min += V_MIN(vs_prop_[y_id]); max += V_MAX(vs_prop_[y_id]); } if (min > equat_result || max < equat_result) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int (current_cs->reif_var_id)); #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } // constraint already fixed if (min == max && min == equat_result) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 0 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int (current_cs->reif_var_id)); #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } } /* * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID sum opposite constraint * !sum(X, k) * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate * prop_ok - will be set to 1 or 0 if the constraint is respected or not */ CUDA_FUNC void sum_prop_opposite(CL_INTS_MEM int *vs_per_c_idx, CL_MEMORY VARS_PROP *vs_prop_, CL_CS_MEM cl_constr *current_cs, CL_MEMORY unsigned short *vs_id_to_prop_, bool *prop_ok CS_IGNORE_FUNC TTL_CTR) { int terms = current_cs->n_c_vs; // number of constants and variables constrained by this constraint int equat_result = current_cs->constant_val; int y_id; int min, max; bool changed = 0; int not_singl = 0; int not_singl_id = -1; int val_to_rem; int sum = 0; int i; min = 0; max = 0; for (i = 0; i < terms; i++) { CHECK_TTL(ttl_ctr, 69) y_id = vs_per_c_idx[i]; min += V_MIN(vs_prop_[y_id]); max += V_MAX(vs_prop_[y_id]); if (V_N_VALS(vs_prop_[y_id]) != 1) { not_singl_id = y_id; not_singl++; } else { sum += V_MIN(vs_prop_[y_id]); } } sum -= equat_result; if (min == max && min == equat_result) { *prop_ok = 0; return; } if (min > equat_result || max < equat_result) { #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } // if all but one variable are already singleton, remove the only value from the one that is not singleton that would lead to equality if (not_singl == 1) { val_to_rem = (-1) * sum; if (val_to_rem >= 0) { cl_v_del_val_m(&changed, &vs_prop_[not_singl_id], val_to_rem TTL_CTR_V); if (changed) { v_add_to_prop(vs_id_to_prop_, vs_prop_, not_singl_id); } } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } } #endif /* * Decides the propagator to call for this constraint * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate * prop_ok - will be set to 1 or 0 if the constraint is respected or not * terms_mem - auxiliary buffer */ CUDA_FUNC void sum_propagate(CL_INTS_MEM int *vs_per_c_idx, CL_MEMORY VARS_PROP *vs_prop_, CL_CS_MEM cl_constr *current_cs, CL_MEMORY unsigned short *vs_id_to_prop_, bool *prop_ok, __global int *terms_mem PROPAGATED_FUNC CS_IGNORE_FUNC TTL_CTR) { #if CS_R_SUM == 0 sum_prop(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok, terms_mem CS_IGNORE_CALL TTL_CTR_V); #if CL_STATS == 1 *propagated = true; #endif #elif CS_R_SUM == 1 if (current_cs->reified == 1) { if (V_N_VALS(vs_prop_[current_cs->reif_var_id]) > 1) { sum_reif(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_ CS_IGNORE_CALL TTL_CTR_V); } else { if (V_MIN(vs_prop_[current_cs->reif_var_id]) == 1) { sum_prop(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok, terms_mem CS_IGNORE_CALL TTL_CTR_V); } else { sum_prop_opposite(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); } #if CL_STATS == 1 *propagated = true; #endif } } else { sum_prop(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok, terms_mem CS_IGNORE_CALL TTL_CTR_V); #if CL_STATS == 1 *propagated = true; #endif } #endif } #endif