/* * minus_ne.c * * Created on: 26/04/2015 * Author: Pedro */ #ifndef __OPENCL_VERSION__ #include #include #include "minus_ne.h" #include "../bitmaps.h" #include "../config.h" #include "../variables.h" #endif #include "../kernels/cl_aux_functions.h" #if CL_D_TYPE == CL_BITMAP #include "../kernels/cl_bitmaps.h" #elif CL_D_TYPE == CL_INTERVAL #include "../kernels/cl_intervals.h" #endif #include "../kernels/cl_constraints.h" #include "../kernels/cl_variables.h" #include "../kernels/cl_ttl.h" #ifndef __OPENCL_VERSION__ /* * Creates a new constraint of the minus_ne type and return the constraint ID * x − y != k * x_id - ID of variable A * y_id - ID of variable B * c - constant value for this constraint */ unsigned int c_minus_ne(unsigned int x_id, unsigned int y_id, int k) { // set to include in kernel compilation USE_CS[MINUS_NE] = 1; USE_NON_CS_REIFI[MINUS_NE] = 1; unsigned int c_vs[2]; c_vs[0] = x_id; c_vs[1] = y_id; // creates a new generic constraint unsigned int c_id = c_new(c_vs, 2, NULL, 0, -1); // pointers to this type of constraint functions CS[c_id].kind = MINUS_NE; CS[c_id].check_sol_f = &minus_ne_check; CS[c_id].constant_val = k; return c_id; } /* * Creates a new reified constraint of the minus_ne type and return the constraint ID * x − y != k * x_id - ID of variable A * y_id - ID of variable B * k - constant value for this constraint * reif_v_id - ID of the reification variable */ unsigned int c_minus_ne_reif(unsigned int x_id, unsigned int y_id, int k, int reif_v_id) { if (VS[reif_v_id].max > 1) { v_del_gt(&VS[reif_v_id], 1); if (VS[reif_v_id].n_vals == 0) { printf("\nConstraint MINUS_NE_REIF makes model inconsistent at creation. No solution found.\n"); #if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__) printf("\nPress any key to exit\n"); int a = getchar(); #endif exit(0); } } // set to include in kernel compilation USE_CS[MINUS_NE] = 1; USE_CS_REIFI[MINUS_NE] = 1; unsigned int c_vs[2]; c_vs[0] = x_id; c_vs[1] = y_id; // creates a new generic constraint unsigned int c_id = c_new(c_vs, 2, NULL, 0, reif_v_id); // pointers to this type of constraint functions CS[c_id].kind = MINUS_NE; CS[c_id].check_sol_f = &minus_ne_check; CS[c_id].constant_val = k; return c_id; } /* * Return true if the minus_ne constraint is respected or false if not * x − y != k * c - constraint to check if is respected * explored - if the CSP was already explored, which mean that all the variables must already be singletons * */ bool minus_ne_check(constr *c, bool explored) { unsigned int i; if (!explored) { for (i = 0; i < c->n_c_vs; i++) { if (c->c_vs[i]->n_vals > 1) { return false; } } } if (c->reified && VS[c->reif_v_id].n_vals > 1) { if (explored) { fprintf(stderr, "\nError: Reification variable of constraint MINUS_NE_REIF (%d) has 2 values.\n", c->c_id); return false; } } if (((!c->reified || (c->reified && VS[c->reif_v_id].min == 1)) && c->c_vs[0]->min - c->c_vs[1]->min == c->constant_val) || (c->reified && VS[c->reif_v_id].min == 0 && c->c_vs[0]->min - c->c_vs[1]->min != c->constant_val)) { if (explored) { if (c->reified) { fprintf(stderr, "\nError: Constraint MINUS_NE_REIF (%d) not respected:\n", c->c_id); fprintf(stderr, "Reif ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->reif_v_id, b_get_min_val(&VS[c->reif_v_id].domain_b), b_get_max_val(&VS[c->reif_v_id].domain_b), b_cnt_vals(&VS[c->reif_v_id].domain_b)); } else { fprintf(stderr, "\nError: Constraint MINUS_NE (%d) not respected:\n", c->c_id); } fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[0]->v_id, b_get_min_val(&c->c_vs[0]->domain_b), b_get_max_val(&c->c_vs[0]->domain_b), b_cnt_vals(&c->c_vs[0]->domain_b)); fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[1]->v_id, b_get_min_val(&c->c_vs[1]->domain_b), b_get_max_val(&c->c_vs[1]->domain_b), b_cnt_vals(&c->c_vs[1]->domain_b)); } return false; } return true; } #endif #if CS_MINUS_NE == 1 /* * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID minus_ne constraint * x − y != k * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate * prop_ok - will be set to 1 or 0 if the constraint is respected or not */ CUDA_FUNC void minus_ne_prop(CL_INTS_MEM int *vs_per_c_idx, CL_MEMORY VARS_PROP *vs_prop_, CL_CS_MEM cl_constr *current_cs, CL_MEMORY unsigned short *vs_id_to_prop_, bool *prop_ok CS_IGNORE_FUNC TTL_CTR) { int x_id = vs_per_c_idx[0]; int y_id = vs_per_c_idx[1]; int k = current_cs->constant_val; bool changed = 0; if (V_MIN(vs_prop_[x_id]) - V_MAX(vs_prop_[y_id]) > k || V_MAX(vs_prop_[x_id]) - V_MIN(vs_prop_[y_id]) < k) { #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } if (V_N_VALS(vs_prop_[x_id]) == 1) { // prune domain cl_v_del_val_m(&changed, &vs_prop_[y_id], V_MIN(vs_prop_[x_id]) - k TTL_CTR_V); if (changed) { // if the removal of the value resulted in an empty domain return 0 if (V_IS_EMPTY(vs_prop_[y_id])) { *prop_ok = 0; return; } // Add variable to the vector that contains the variables that must be propagated v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 0; #endif return; } if (V_N_VALS(vs_prop_[y_id]) == 1) { cl_v_del_val_m(&changed, &vs_prop_[x_id], V_MIN(vs_prop_[y_id]) + k TTL_CTR_V); if (changed) { // if the removal of the value resulted in an empty domain return 0 if (V_IS_EMPTY(vs_prop_[x_id])) { *prop_ok = 0; return; } // Add variable to the vector that contains the variables that must be propagated v_add_to_prop(vs_id_to_prop_, vs_prop_, x_id); } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 0; #endif } } #if CS_R_MINUS_NE == 1 /* * Validate minus_ne constraint to be normally propagated, when reified * x − y != k * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate */ CUDA_FUNC void minus_ne_reif( CL_INTS_MEM int *vs_per_c_idx, CL_MEMORY VARS_PROP *vs_prop_, CL_CS_MEM cl_constr *current_cs, CL_MEMORY unsigned short *vs_id_to_prop_ CS_IGNORE_FUNC TTL_CTR) { int x_id = vs_per_c_idx[0]; VARS_PROP x; int y_id = vs_per_c_idx[1]; VARS_PROP y; bool changed = 0; // constraint already fixed if (V_N_VALS(vs_prop_[x_id]) == 1 && V_N_VALS(vs_prop_[y_id]) == 1 && V_MIN(vs_prop_[x_id]) - V_MIN(vs_prop_[y_id]) != current_cs->constant_val) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 0 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int (current_cs->reif_var_id)); #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } if (V_N_VALS(vs_prop_[x_id]) == 1) { cl_v_copy_pm(&y, &vs_prop_[y_id] TTL_CTR_V); // prune domain cl_v_del_val_n(&changed, &y, V_MIN(vs_prop_[x_id]) - current_cs->constant_val TTL_CTR_V); // if the removal of the value resulted in an empty domain return 0 if (V_IS_EMPTY(y)) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int (current_cs->reif_var_id)); } return; } if (V_N_VALS(vs_prop_[y_id]) == 1) { cl_v_copy_pm(&x, &vs_prop_[x_id] TTL_CTR_V); cl_v_del_val_n(&changed, &x, V_MIN(vs_prop_[y_id]) + current_cs->constant_val TTL_CTR_V); // if the removal of the value resulted in an empty domain return 0 if (V_IS_EMPTY(x)) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int (current_cs->reif_var_id)); } } } /* * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID minus_ne opposite constraint * x − y = k * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate * prop_ok - will be set to 1 or 0 if the constraint is respected or not */ CUDA_FUNC void minus_ne_prop_opposite( CL_INTS_MEM int *vs_per_c_idx, CL_MEMORY VARS_PROP *vs_prop_, CL_CS_MEM cl_constr *current_cs, CL_MEMORY unsigned short *vs_id_to_prop_, bool *prop_ok TTL_CTR) { int x_id = vs_per_c_idx[0]; int y_id = vs_per_c_idx[1]; int k = current_cs->constant_val; bool changed1 = 0; bool changed2 = 0; cl_v_del_lt_m(&changed1, &vs_prop_[y_id], V_MIN(vs_prop_[x_id]) - k TTL_CTR_V); if (changed1) { if (V_IS_EMPTY(vs_prop_[y_id])) { *prop_ok = 0; return; } } cl_v_del_gt_m(&changed2, &vs_prop_[y_id], V_MAX(vs_prop_[x_id]) - k TTL_CTR_V); if (changed2) { if (V_IS_EMPTY(vs_prop_[y_id])) { *prop_ok = 0; return; } } if (changed1 || changed2) { v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } cl_v_del_lt_m(&changed1, &vs_prop_[x_id], V_MIN(vs_prop_[y_id]) + k TTL_CTR_V); if (changed1) { if (V_IS_EMPTY(vs_prop_[x_id])) { *prop_ok = 0; return; } } cl_v_del_gt_m(&changed2, &vs_prop_[x_id], V_MAX(vs_prop_[y_id]) + k TTL_CTR_V); if (changed2) { if (V_IS_EMPTY(vs_prop_[x_id])) { *prop_ok = 0; return; } } if (changed1 || changed2) { v_add_to_prop(vs_id_to_prop_, vs_prop_, x_id); } } #endif /* * Decides the propagator to call for this constraint * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate * prop_ok - will be set to 1 or 0 if the constraint is respected or not */ CUDA_FUNC void minus_ne_propagate(CL_INTS_MEM int *vs_per_c_idx, CL_MEMORY VARS_PROP *vs_prop_, CL_CS_MEM cl_constr *current_cs, CL_MEMORY unsigned short *vs_id_to_prop_, bool *prop_ok PROPAGATED_FUNC CS_IGNORE_FUNC TTL_CTR) { #if CS_R_MINUS_NE == 0 minus_ne_prop(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); #if CL_STATS == 1 *propagated = true; #endif #elif CS_R_MINUS_NE == 1 if (current_cs->reified == 1) { if (V_N_VALS(vs_prop_[current_cs->reif_var_id]) > 1) { minus_ne_reif(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_ CS_IGNORE_CALL TTL_CTR_V); } else { if (V_MIN(vs_prop_[current_cs->reif_var_id]) == 1) { minus_ne_prop(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); } else { minus_ne_prop_opposite(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok TTL_CTR_V); } #if CL_STATS == 1 *propagated = true; #endif } } else { minus_ne_prop(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); #if CL_STATS == 1 *propagated = true; #endif } #endif } #endif