/* * maximize.c * * Created on: 30/01/2017 * Author: Pedro */ #ifndef __OPENCL_VERSION__ #include #include #include #include "maximize.h" #include "../bitmaps.h" #include "../config.h" #include "../variables.h" #endif #include "../kernels/cl_aux_functions.h" #if CL_D_TYPE == CL_BITMAP #include "../kernels/cl_bitmaps.h" #elif CL_D_TYPE == CL_INTERVAL #include "../kernels/cl_intervals.h" #endif #include "../kernels/cl_constraints.h" #include "../kernels/cl_variables.h" #include "../kernels/cl_ttl.h" #ifndef __OPENCL_VERSION__ /* * Creates a new constraint of the max type and return the constraint ID. For optimization * Maximize the value of var_to_opt variable * var_to_opt_id - ID of variable to optimize */ unsigned int c_maximize(unsigned int var_to_opt_id) { if (WORK != OPT) { return 0; } if (USE_CS[MAXIMIZE] == 1 || USE_CS[MINIMIZE] == 1) { fprintf(stderr, "\nError: PHACT can only use one optimization constraint per problem. Please use only one MINIMIZE or MAXIMIZE constraint.\n"); #if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__) printf("\nPress any key to exit\n"); int a = getchar(); #endif exit(0); } // set to include in kernel compilation USE_CS[MAXIMIZE] = 1; USE_NON_CS_REIFI[MAXIMIZE] = 1; OPT_MODE = INCREASE; REV = 1; // current value to maximize VAL_TO_OPT = VS[var_to_opt_id].min; VAR_ID_TO_OPT = var_to_opt_id; // creates a new generic constraint unsigned int c_id = c_new(&var_to_opt_id, 1, NULL, 0, -1); // pointers to this type of constraint functions CS[c_id].kind = MAXIMIZE; CS[c_id].check_sol_f = &maximize_check; CS[c_id].constant_val = 0; return c_id; } /* * Creates a new reified constraint of the max type and return the constraint ID. For optimization * Maximize the value of var_to_opt variable * var_to_opt_id - ID of variable to optimize * reif_v_id - ID of the reification variable */ unsigned int c_maximize_reif(unsigned int var_to_opt_id, int reif_v_id) { if (VS[reif_v_id].max > 1) { v_del_gt(&VS[reif_v_id], 1); if (VS[reif_v_id].n_vals == 0) { printf("\nConstraint MAXIMIZE_REIF makes model inconsistent at creation. No solution found.\n"); #if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__) printf("\nPress any key to exit\n"); int a = getchar(); #endif exit(0); } } if (WORK != OPT) { return 0; } if (USE_CS[MAXIMIZE] == 1 || USE_CS[MINIMIZE] == 1) { fprintf(stderr, "\nError: PHACT can only use one optimization constraint per problem. Please use only one MINIMIZE or MAXIMIZE constraint.\n"); #if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__) printf("\nPress any key to exit\n"); int a = getchar(); #endif exit(0); } // set to include in kernel compilation USE_CS[MAXIMIZE] = 1; USE_CS_REIFI[MAXIMIZE] = 1; OPT_MODE = INCREASE; REV = 1; // current value to maximize VAL_TO_OPT = VS[var_to_opt_id].min; VAR_ID_TO_OPT = var_to_opt_id; // creates a new generic constraint unsigned int c_id = c_new(&var_to_opt_id, 1, NULL, 0, reif_v_id); // pointers to this type of constraint functions CS[c_id].kind = MAXIMIZE; CS[c_id].check_sol_f = &maximize_check; CS[c_id].constant_val = 0; return c_id; } /* * Return true if the max constraint is respected or false if not * c - constraint to check if is respected * explored - if the CSP was already explored, which mean that all the variables must already be singletons * */ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" bool maximize_check(constr *c, bool explored) { unsigned int i; if (!explored) { for (i = 0; i < c->n_c_vs; i++) { if (c->c_vs[i]->n_vals > 1) { return false; } } } if (c->reified && VS[c->reif_v_id].n_vals > 1) { if (explored) { fprintf(stderr, "\nError: Reification variable of constraint MAXIMIZE_REIF (%d) has 2 values.\n", c->c_id); return false; } } if (((!c->reified || (c->reified && VS[c->reif_v_id].min == 1)) && VS[VAR_ID_TO_OPT].min < VAL_TO_OPT - 1) || (c->reified && VS[c->reif_v_id].min == 0 && VS[VAR_ID_TO_OPT].min >= VAL_TO_OPT - 1)) { if (explored) { if (c->reified) { fprintf(stderr, "\nError: Constraint MAXIMIZE_REIF (%d) not respected:\n", c->c_id); fprintf(stderr, "Reif ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->reif_v_id, b_get_min_val(&VS[c->reif_v_id].domain_b), b_get_max_val(&VS[c->reif_v_id].domain_b), b_cnt_vals(&VS[c->reif_v_id].domain_b)); } else { fprintf(stderr, "\nError: Constraint MAXIMIZE (%d) not respected:\n", c->c_id); } fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u, cost=%u\n\n", VS[VAR_ID_TO_OPT].v_id, b_get_min_val(&VS[VAR_ID_TO_OPT].domain_b), b_get_max_val(&VS[VAR_ID_TO_OPT].domain_b), b_cnt_vals(&VS[VAR_ID_TO_OPT].domain_b), VAL_TO_OPT - 1); } return false; } return true; } #pragma GCC diagnostic pop #endif #if CS_MAXIMIZE == 1 /* * Update the values of the variable to maximize * vs_prop_ - all CSP variables with current step values * vs_id_to_prop_ - circular vector with the ids of the variables to propagate * val_to_opt - value to optimize * prop_ok - will be set to 1 or 0 if the constraint is respected or not */ CUDA_FUNC void maximize_prop(CL_MEMORY VARS_PROP *vs_prop_, CL_MEMORY unsigned short *vs_id_to_prop_, __global unsigned int *val_to_opt, bool *prop_ok TTL_CTR) { unsigned int val_to_opt_aux = atomic_add(val_to_opt, 0); bool changed = 0; cl_v_del_lt_m(&changed, &vs_prop_[CL_VAR_ID_TO_OPT], convert_int (val_to_opt_aux) TTL_CTR_V); if (changed) { // if the removal of the value resulted in an empty domain return 0 if (V_IS_EMPTY(vs_prop_[CL_VAR_ID_TO_OPT])) { *prop_ok = 0; return; } // Add variable to the vector that contains the variables that must be propagated v_add_to_prop(vs_id_to_prop_, vs_prop_, CL_VAR_ID_TO_OPT); } #if CL_FILTERING else { *val_to_opt = V_MIN(vs_prop_[CL_VAR_ID_TO_OPT]); } #endif } #if CS_R_MAXIMIZE == 1 /* * Update the values of the variable to maximize * vs_prop_ - all CSP variables with current step values * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate * val_to_opt - value to optimize */ CUDA_FUNC void maximize_reif(CL_MEMORY VARS_PROP *vs_prop_, CL_CS_MEM cl_constr *current_cs, CL_MEMORY unsigned short *vs_id_to_prop_, __global unsigned int *val_to_opt TTL_CTR) { VARS_PROP v_to_opt; bool changed = 0; // constraint already fixed if (V_N_VALS(vs_prop_[CL_VAR_ID_TO_OPT]) == 1 && V_MIN(vs_prop_[CL_VAR_ID_TO_OPT]) > atomic_add(val_to_opt, 0)) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 0 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int (current_cs->reif_var_id)); v_add_to_prop(vs_id_to_prop_, vs_prop_, CL_VAR_ID_TO_OPT); return; } cl_v_copy_pm(&v_to_opt, &vs_prop_[CL_VAR_ID_TO_OPT] TTL_CTR_V); cl_v_del_lt_n(&changed, &v_to_opt, convert_int (atomic_add(val_to_opt, 0)) TTL_CTR_V); // if the removal of the value resulted in an empty domain return 0 if (V_IS_EMPTY(v_to_opt)) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int (current_cs->reif_var_id)); v_add_to_prop(vs_id_to_prop_, vs_prop_, CL_VAR_ID_TO_OPT); } } /* * Update the values of the variable to maximize * vs_prop_ - all CSP variables with current step values * vs_id_to_prop_ - circular vector with the ids of the variables to propagate * val_to_opt - value to optimize * prop_ok - will be set to 1 or 0 if the constraint is respected or not */ CUDA_FUNC void maximize_prop_opposite(CL_MEMORY VARS_PROP *vs_prop_, CL_MEMORY unsigned short *vs_id_to_prop_, __global unsigned int *val_to_opt, bool *prop_ok TTL_CTR) { unsigned int val_to_opt_aux = atomic_add(val_to_opt, 0); bool changed = 0; cl_v_del_gt_m(&changed, &vs_prop_[CL_VAR_ID_TO_OPT], convert_int (val_to_opt_aux) TTL_CTR_V); if (changed) { // if the removal of the value resulted in an empty domain return 0 if (V_IS_EMPTY(vs_prop_[CL_VAR_ID_TO_OPT])) { *prop_ok = 0; return; } // Add variable to the vector that contains the variables that must be propagated v_add_to_prop(vs_id_to_prop_, vs_prop_, CL_VAR_ID_TO_OPT); } } #endif /* * Decides the propagator to call for this constraint * vs_prop_ - all CSP variables with current step values * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate * val_to_opt_g - value to optimize * prop_ok - will be set to 1 or 0 if the constraint is respected or not */ CUDA_FUNC void maximize_propagate(CL_MEMORY VARS_PROP *vs_prop_, CL_CS_MEM cl_constr *current_cs, CL_MEMORY unsigned short *vs_id_to_prop_, __global unsigned int *val_to_opt_g, bool *prop_ok PROPAGATED_FUNC TTL_CTR) { #if CS_R_MAXIMIZE == 0 maximize_prop(vs_prop_, vs_id_to_prop_, val_to_opt_g, prop_ok TTL_CTR_V); #if CL_STATS == 1 *propagated = true; #endif #elif CS_R_MAXIMIZE == 1 if (current_cs->reified == 1) { if (V_N_VALS(vs_prop_[current_cs->reif_var_id]) > 1) { maximize_reif(vs_prop_, current_cs, vs_id_to_prop_, val_to_opt_g TTL_CTR_V); } else { if (V_MIN(vs_prop_[current_cs->reif_var_id]) == 1) { maximize_prop(vs_prop_, vs_id_to_prop_, val_to_opt_g, prop_ok TTL_CTR_V); } else { maximize_prop_opposite(vs_prop_, vs_id_to_prop_, val_to_opt_g, prop_ok TTL_CTR_V); } #if CL_STATS == 1 *propagated = true; #endif } } else { maximize_prop(vs_prop_, vs_id_to_prop_, val_to_opt_g, prop_ok TTL_CTR_V); #if CL_STATS == 1 *propagated = true; #endif } #endif } #endif