/* * int_mod.c * * Created on: 21/02/2020 * Author: Pedro */ #ifndef __OPENCL_VERSION__ #include #include #include "int_mod.h" #include "../bitmaps.h" #include "../config.h" #include "../variables.h" #endif #include "../kernels/cl_aux_functions.h" #if CL_D_TYPE == CL_BITMAP #include "../kernels/cl_bitmaps.h" #elif CL_D_TYPE == CL_INTERVAL #include "../kernels/cl_intervals.h" #endif #include "../kernels/cl_constraints.h" #include "../kernels/cl_variables.h" #include "../kernels/cl_ttl.h" #ifndef __OPENCL_VERSION__ /* * Creates a new constraint of the int_mod type and return the constraint ID * x = y % z * x_id - ID of variable x * y_id - ID of variable y * z_id - ID of variable z */ unsigned int c_int_mod(unsigned int x_id, unsigned int y_id, unsigned int z_id) { // set to include in kernel compilation USE_CS[INT_MOD] = 1; USE_NON_CS_REIFI[INT_MOD] = 1; REV = 1; unsigned int c_vs[3]; c_vs[0] = x_id; c_vs[1] = y_id; c_vs[2] = z_id; // creates a new generic constraint unsigned int c_id = c_new(c_vs, 3, NULL, 0, -1); // pointers to this type of constraint functions CS[c_id].kind = INT_MOD; CS[c_id].check_sol_f = &int_mod_check; CS[c_id].constant_val = 0; return c_id; } /* * Creates a new reified constraint of the int_mod type and return the constraint ID * x = y % z * x_id - ID of variable x * y_id - ID of variable y * z_id - ID of variable z * reif_v_id - ID of the reification variable */ unsigned int c_int_mod_reif(unsigned int x_id, unsigned int y_id, unsigned int z_id, int reif_v_id) { if (VS[reif_v_id].max > 1) { v_del_gt(&VS[reif_v_id], 1); if (VS[reif_v_id].n_vals == 0) { printf("\nConstraint INT_MOD_REIF makes model inconsistent at creation. No solution found.\n"); #if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__) printf("\nPress any key to exit\n"); int a = getchar(); #endif exit(0); } } // set to include in kernel compilation USE_CS[INT_MOD] = 1; USE_CS_REIFI[INT_MOD] = 1; REV = 1; unsigned int c_vs[3]; c_vs[0] = x_id; c_vs[1] = y_id; c_vs[2] = z_id; // creates a new generic constraint unsigned int c_id = c_new(c_vs, 3, NULL, 0, reif_v_id); // pointers to this type of constraint functions CS[c_id].kind = INT_MOD; CS[c_id].check_sol_f = &int_mod_check; CS[c_id].constant_val = 0; return c_id; } /* * Return true if the int_mod constraint is respected or false if not * x = y % z * c - constraint to check if is respected * explored - if the CSP was already explored, which mean that all the variables must already be singletons * */ bool int_mod_check(constr *c, bool explored) { unsigned int i; if (!explored) { for (i = 0; i < c->n_c_vs; i++) { if (c->c_vs[i]->n_vals > 1) { return false; } } } if (c->reified && VS[c->reif_v_id].n_vals > 1) { if (explored) { fprintf(stderr, "\nError: Reification variable of constraint INT_MOD_REIF (%d) has 2 values.\n", c->c_id); return false; } } if (((!c->reified || (c->reified && VS[c->reif_v_id].min == 1)) && c->c_vs[0]->min != c->c_vs[1]->min % c->c_vs[2]->min) || (c->reified && VS[c->reif_v_id].min == 0 && c->c_vs[0]->min == c->c_vs[1]->min % c->c_vs[2]->min)) { if (explored) { if (c->reified) { fprintf(stderr, "\nError: Constraint INT_MOD_REIF (%d) not respected:\n", c->c_id); fprintf(stderr, "Reif ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->reif_v_id, b_get_min_val(&VS[c->reif_v_id].domain_b), b_get_max_val(&VS[c->reif_v_id].domain_b), b_cnt_vals(&VS[c->reif_v_id].domain_b)); } else { fprintf(stderr, "\nError: Constraint INT_MOD (%d) not respected:\n", c->c_id); } fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[0]->v_id, b_get_min_val(&c->c_vs[0]->domain_b), b_get_max_val(&c->c_vs[0]->domain_b), b_cnt_vals(&c->c_vs[0]->domain_b)); fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[1]->v_id, b_get_min_val(&c->c_vs[1]->domain_b), b_get_max_val(&c->c_vs[1]->domain_b), b_cnt_vals(&c->c_vs[1]->domain_b)); fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[2]->v_id, b_get_min_val(&c->c_vs[2]->domain_b), b_get_max_val(&c->c_vs[2]->domain_b), b_cnt_vals(&c->c_vs[2]->domain_b)); } return false; } return true; } #endif #if CS_INT_MOD == 1 /* * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID int_mod constrain * x = y % z * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate * prop_ok - will be set to 1 or 0 if the constraint is respected or not */ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" CUDA_FUNC void int_mod_prop( CL_INTS_MEM int *vs_per_c_idx, CL_MEMORY VARS_PROP *vs_prop_, CL_CS_MEM cl_constr *current_cs, CL_MEMORY unsigned short *vs_id_to_prop_, bool *prop_ok CS_IGNORE_FUNC TTL_CTR) { int x_id = vs_per_c_idx[0]; int y_id = vs_per_c_idx[1]; int z_id = vs_per_c_idx[2]; bool changed; bool contains; int i; if (V_N_VALS(vs_prop_[y_id]) == 1 && V_N_VALS(vs_prop_[z_id]) == 1) { cl_v_del_all_except_val_m(&changed, &vs_prop_[x_id], V_MIN(vs_prop_[y_id]) % V_MIN(vs_prop_[z_id])TTL_CTR_V); if (changed) { // if the removal of the value resulted in an empty domain return 0 if (V_IS_EMPTY(vs_prop_[x_id])) { *prop_ok = 0; return; } // Add variable to the vector that contains the variables that must be propagated v_add_to_prop(vs_id_to_prop_, vs_prop_, x_id); } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } else if (V_N_VALS(vs_prop_[y_id]) == 1 && V_N_VALS(vs_prop_[x_id]) == 1) { for (i = V_MIN(vs_prop_[z_id]); i <= V_MAX(vs_prop_[z_id]); i++) { CHECK_TTL(ttl_ctr, 53) cl_v_contains_val_m(&contains, &vs_prop_[z_id], i TTL_CTR_V); if (contains && V_MIN(vs_prop_[y_id]) % i != V_MIN(vs_prop_[x_id])) { cl_v_del_val_m(&changed, &vs_prop_[z_id], i TTL_CTR_V); if (V_IS_EMPTY(vs_prop_[z_id])) { *prop_ok = 0; return; } } } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } else if (V_N_VALS(vs_prop_[x_id]) == 1 && V_N_VALS(vs_prop_[z_id]) == 1) { for (i = V_MIN(vs_prop_[y_id]); i <= V_MAX(vs_prop_[y_id]); i++) { CHECK_TTL(ttl_ctr, 53) cl_v_contains_val_m(&contains, &vs_prop_[y_id], i TTL_CTR_V); if (contains && i % V_MIN(vs_prop_[z_id]) != V_MIN(vs_prop_[x_id])) { cl_v_del_val_m(&changed, &vs_prop_[y_id], i TTL_CTR_V); if (V_IS_EMPTY(vs_prop_[y_id])) { *prop_ok = 0; return; } } } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } } #pragma GCC diagnostic pop #if CS_R_INT_MOD == 1 /* * Validate int_mod constraint to be normally propagated, when reified * x = y % z * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate */ CUDA_FUNC void int_mod_reif( CL_INTS_MEM int *vs_per_c_idx, CL_MEMORY VARS_PROP *vs_prop_, CL_CS_MEM cl_constr *current_cs, CL_MEMORY unsigned short *vs_id_to_prop_ CS_IGNORE_FUNC TTL_CTR) { int x_id = vs_per_c_idx[0]; int y_id = vs_per_c_idx[1]; int z_id = vs_per_c_idx[2]; bool contains; int remove = 0; int i; if (V_N_VALS(vs_prop_[y_id]) == 1 && V_N_VALS(vs_prop_[z_id]) == 1 && V_N_VALS(vs_prop_[x_id]) == 1) { if (V_MIN(vs_prop_[x_id]) == V_MIN(vs_prop_[y_id]) % V_MIN(vs_prop_[z_id])) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 0 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int (current_cs->reif_var_id)); } else { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int (current_cs->reif_var_id)); } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } else if (V_N_VALS(vs_prop_[y_id]) == 1 && V_N_VALS(vs_prop_[x_id]) == 1) { for (i = V_MIN(vs_prop_[z_id]); i <= V_MAX(vs_prop_[z_id]); i++) { CHECK_TTL(ttl_ctr, 53) cl_v_contains_val_m(&contains, &vs_prop_[z_id], i TTL_CTR_V); if (contains && V_MIN(vs_prop_[y_id]) % i != V_MIN(vs_prop_[x_id])) { remove++; } } if (remove == V_N_VALS(vs_prop_[z_id])) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int (current_cs->reif_var_id)); #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } else if (remove == 0) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 0 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int (current_cs->reif_var_id)); #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } } else if (V_N_VALS(vs_prop_[x_id]) == 1 && V_N_VALS(vs_prop_[z_id]) == 1) { remove = 0; for (i = V_MIN(vs_prop_[y_id]); i <= V_MAX(vs_prop_[y_id]); i++) { CHECK_TTL(ttl_ctr, 53) cl_v_contains_val_m(&contains, &vs_prop_[y_id], i TTL_CTR_V); if (contains && i % V_MIN(vs_prop_[z_id]) != V_MIN(vs_prop_[x_id])) { remove++; } } if (remove == V_N_VALS(vs_prop_[y_id])) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int (current_cs->reif_var_id)); #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } else if (remove == 0) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 0 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int (current_cs->reif_var_id)); #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } } } /* * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID int_mod opposite constrain * x != y % z * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate * prop_ok - will be set to 1 or 0 if the constraint is respected or not */ #ifndef __OPENCL_VERSION__ #if CS_IGNORE == 0 #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" #endif #endif CUDA_FUNC void int_mod_prop_opposite(CL_INTS_MEM int *vs_per_c_idx, CL_MEMORY VARS_PROP *vs_prop_, CL_CS_MEM cl_constr *current_cs, CL_MEMORY unsigned short *vs_id_to_prop_, bool *prop_ok CS_IGNORE_FUNC TTL_CTR) { int x_id = vs_per_c_idx[0]; int y_id = vs_per_c_idx[1]; int z_id = vs_per_c_idx[2]; bool changed; bool contains; int i; if (V_N_VALS(vs_prop_[y_id]) == 1 && V_N_VALS(vs_prop_[z_id]) == 1) { cl_v_del_val_m(&changed, &vs_prop_[x_id], V_MIN(vs_prop_[y_id]) % V_MIN(vs_prop_[z_id])TTL_CTR_V); if (changed) { // if the removal of the value resulted in an empty domain return 0 if (V_IS_EMPTY(vs_prop_[x_id])) { *prop_ok = 0; return; } // Add variable to the vector that contains the variables that must be propagated v_add_to_prop(vs_id_to_prop_, vs_prop_, x_id); } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } else if (V_N_VALS(vs_prop_[y_id]) == 1 && V_N_VALS(vs_prop_[x_id]) == 1) { for (i = V_MIN(vs_prop_[z_id]); i <= V_MAX(vs_prop_[z_id]); i++) { CHECK_TTL(ttl_ctr, 53) cl_v_contains_val_m(&contains, &vs_prop_[z_id], i TTL_CTR_V); if (contains && V_MIN(vs_prop_[y_id]) % i != V_MIN(vs_prop_[x_id])) { cl_v_del_all_except_val_m(&changed, &vs_prop_[z_id], i TTL_CTR_V); if (V_IS_EMPTY(vs_prop_[z_id])) { *prop_ok = 0; return; } } } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } else if (V_N_VALS(vs_prop_[x_id]) == 1 && V_N_VALS(vs_prop_[z_id]) == 1) { for (i = V_MIN(vs_prop_[y_id]); i <= V_MAX(vs_prop_[y_id]); i++) { CHECK_TTL(ttl_ctr, 53) cl_v_contains_val_m(&contains, &vs_prop_[y_id], i TTL_CTR_V); if (contains && i % V_MIN(vs_prop_[z_id]) != V_MIN(vs_prop_[x_id])) { cl_v_del_all_except_val_m(&changed, &vs_prop_[y_id], i TTL_CTR_V); if (V_IS_EMPTY(vs_prop_[y_id])) { *prop_ok = 0; return; } } } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } } #ifndef __OPENCL_VERSION__ #if CS_IGNORE == 0 #pragma GCC diagnostic pop #endif #endif #endif /* * Decides the propagator to call for this constraint * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate * prop_ok - will be set to 1 or 0 if the constraint is respected or not */ CUDA_FUNC void int_mod_propagate( CL_INTS_MEM int *vs_per_c_idx, CL_MEMORY VARS_PROP *vs_prop_, CL_CS_MEM cl_constr *current_cs, CL_MEMORY unsigned short *vs_id_to_prop_, bool *prop_ok PROPAGATED_FUNC CS_IGNORE_FUNC TTL_CTR) { #if CS_R_INT_MOD == 0 int_mod_prop(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); #if CL_STATS == 1 *propagated = true; #endif #elif CS_R_INT_MOD == 1 if (current_cs->reified == 1) { if (V_N_VALS(vs_prop_[current_cs->reif_var_id]) > 1) { int_mod_reif(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_ CS_IGNORE_CALL TTL_CTR_V); } else { if (V_MIN(vs_prop_[current_cs->reif_var_id]) == 1) { int_mod_prop(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); } else { int_mod_prop_opposite(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); } #if CL_STATS == 1 *propagated = true; #endif } } else { int_mod_prop(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); #if CL_STATS == 1 *propagated = true; #endif } #endif } #endif