/* * int_lin_ne.c * * Created on: 31/12/2017 * Author: Pedro */ #ifndef __OPENCL_VERSION__ #include #include #include #include "int_lin_ne.h" #include "../bitmaps.h" #include "../config.h" #include "../variables.h" #endif #include "../kernels/cl_aux_functions.h" #if CL_D_TYPE == CL_BITMAP #include "../kernels/cl_bitmaps.h" #elif CL_D_TYPE == CL_INTERVAL #include "../kernels/cl_intervals.h" #endif #include "../kernels/cl_constraints.h" #include "../kernels/cl_variables.h" #include "../kernels/cl_ttl.h" #ifndef __OPENCL_VERSION__ /* * Creates a new constraint of the int_lin_ne type and return the constraint ID * K · Y != c * K - constant unsigned integers for this constraint * Y_ids - IDs of the variables constrained by this constraint * n - number of constants (or variables) * c - result of the equation */ unsigned int c_int_lin_ne(int *K, unsigned int *Y_ids, unsigned int n, int c) { unsigned int i; // set to include in kernel compilation USE_CS[INT_LIN_NE] = 1; USE_NON_CS_REIFI[INT_LIN_NE] = 1; unsigned int *c_vs = malloc(n * sizeof(unsigned int)); for (i = 0; i < n; i++) { c_vs[i] = Y_ids[i]; } // creates a new generic constraint unsigned int c_id = c_new(c_vs, n, K, n, -1); // pointers to this type of constraint functions CS[c_id].kind = INT_LIN_NE; CS[c_id].check_sol_f = &int_lin_ne_check; CS[c_id].constant_val = c; free(c_vs); return c_id; } /* * Creates a new reified constraint of the int_lin_ne type and return the constraint ID * K · Y != c * K - constant unsigned integers for this constraint * Y_ids - IDs of the variables constrained by this constraint * n - number of constants (or variables) * c - result of the equation * reif_v_id - ID of the reification variable */ unsigned int c_int_lin_ne_reif(int *K, unsigned int *Y_ids, unsigned int n, int c, int reif_v_id) { unsigned int i; if (VS[reif_v_id].max > 1) { v_del_gt(&VS[reif_v_id], 1); if (VS[reif_v_id].n_vals == 0) { printf("\nConstraint INT_LIN_NE_REIF makes model inconsistent at creation. No solution found.\n"); #if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__) printf("\nPress any key to exit\n"); int a = getchar(); #endif exit(0); } } // set to include in kernel compilation USE_CS[INT_LIN_NE] = 1; USE_CS_REIFI[INT_LIN_NE] = 1; unsigned int *c_vs = malloc(n * sizeof(unsigned int)); for (i = 0; i < n; i++) { c_vs[i] = Y_ids[i]; } // creates a new generic constraint unsigned int c_id = c_new(c_vs, n, K, n, reif_v_id); // pointers to this type of constraint functions CS[c_id].kind = INT_LIN_NE; CS[c_id].check_sol_f = &int_lin_ne_check; CS[c_id].constant_val = c; free(c_vs); return c_id; } /* * Return true if the int_lin_ne constraint is respected or false if not * K · Y != c * c - constraint to check if is respected * explored - if the CSP was already explored, which mean that all the variables must already be singletons * */ bool int_lin_ne_check(constr *c, bool explored) { unsigned int n = c->n_c_consts; // number of constants and variables constrained by this constraint int *K = c->c_consts; // constants constrained by this constraint var **Y = c->c_vs; // variables constrained by this constraint int equat_result = 0; unsigned int i; if (!explored) { for (i = 0; i < c->n_c_vs; i++) { if (c->c_vs[i]->n_vals > 1) { return false; } } } if (c->reified && VS[c->reif_v_id].n_vals > 1) { if (explored) { fprintf(stderr, "\nError: Reification variable of constraint INT_LIN_NE_REIF (%d) has 2 values.\n", c->c_id); return false; } } for (i = 0; i < n; i++) { equat_result += K[i] * Y[i]->min; } if (((!c->reified || (c->reified && VS[c->reif_v_id].min == 1)) && equat_result == c->constant_val) || (c->reified && VS[c->reif_v_id].min == 0 && equat_result != c->constant_val)) { if (explored) { if (c->reified) { fprintf(stderr, "\nError: Constraint INT_LIN_NE_REIF (%d) not respected:\n", c->c_id); fprintf(stderr, "Reif ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->reif_v_id, b_get_min_val(&VS[c->reif_v_id].domain_b), b_get_max_val(&VS[c->reif_v_id].domain_b), b_cnt_vals(&VS[c->reif_v_id].domain_b)); } else { fprintf(stderr, "\nError: Constraint INT_LIN_NE (%d) not respected:\n", c->c_id); } for (i = 0; i < c->n_c_vs; i++) { fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[i]->v_id, b_get_min_val(&c->c_vs[i]->domain_b), b_get_max_val(&c->c_vs[i]->domain_b), b_cnt_vals(&c->c_vs[i]->domain_b)); } } return false; } return true; } #endif #if CS_INT_LIN_NE == 1 /* * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID int_lin_ne constraint * K · Y != c * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * c_consts - constant values used by this constraint * vs_prop_ - all CSP variables with current step values * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate * prop_ok - will be set to 1 or 0 if the constraint is respected or not * terms_mem - auxiliary buffer */ CUDA_FUNC void int_lin_ne_prop( CL_INTS_MEM int *vs_per_c_idx, CL_INTS_MEM int *c_consts, CL_MEMORY VARS_PROP *vs_prop_, CL_CS_MEM cl_constr *current_cs, CL_MEMORY unsigned short *vs_id_to_prop_, bool *prop_ok, __global int *terms_mem CS_IGNORE_FUNC TTL_CTR) { int terms = current_cs->n_c_consts; // number of constants and variables constrained by this constraint CL_INTS_MEM int *K = c_consts; // constants constrained by this constraint int equat_result = current_cs->constant_val; int y_id; __global int *mins = terms_mem; int vl = 0; int vh = 0; int min, max; bool changed = 0; int not_singl = 0; int not_singl_idx = 0; int not_singl_id = -1; int val_to_rem; int sum = 0; int i; min = 0; max = 0; for (i = 0; i < terms; i++) { CHECK_TTL(ttl_ctr, 69) y_id = vs_per_c_idx[i]; if (K[i] > 0) { vl = mins[i] = V_MIN(vs_prop_[y_id]); vh = V_MAX(vs_prop_[y_id]); } else if (K[i] < 0) { vl = V_MAX(vs_prop_[y_id]); vh = mins[i] = V_MIN(vs_prop_[y_id]); } if (K[i] != 0) { if (vl != vh) { not_singl_idx = i; not_singl_id = y_id; not_singl++; } else { sum += K[i] * mins[i]; } } min += K[i] * vl; max += K[i] * vh; } sum -= equat_result; if (min == max && min == equat_result) { *prop_ok = 0; return; } if (min > equat_result || max < equat_result) { #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } // if all but one variable are already singleton, remove the only value from the variable that is not singleton that would lead to equality if (not_singl == 1) { val_to_rem = (-1) * (sum / K[not_singl_idx]); if (sum % K[not_singl_idx] == 0 && val_to_rem >= 0) { cl_v_del_val_m(&changed, &vs_prop_[not_singl_id], val_to_rem TTL_CTR_V); if (changed) { v_add_to_prop(vs_id_to_prop_, vs_prop_, not_singl_id); } } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } } #if CS_R_INT_LIN_NE == 1 /* * Validate int_lin_ne constraint to be normally propagated, when reified * K · Y != c * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * c_consts - constant values used by this constraint * vs_prop_ - all CSP variables with current step values * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate * terms_mem - auxiliary buffer */ CUDA_FUNC void int_lin_ne_reif( CL_INTS_MEM int *vs_per_c_idx, CL_INTS_MEM int *c_consts, CL_MEMORY VARS_PROP *vs_prop_, CL_CS_MEM cl_constr *current_cs, CL_MEMORY unsigned short *vs_id_to_prop_, __global int *terms_mem CS_IGNORE_FUNC TTL_CTR) { int terms = current_cs->n_c_consts; // number of constants and variables constrained by this constraint CL_INTS_MEM int *K = c_consts; // constants constrained by this constraint int equat_result = current_cs->constant_val; int y_id; VARS_PROP y; __global int *mins = terms_mem; int vl = 0; int vh = 0; int min, max; bool changed = 0; int not_singl = 0; int not_singl_idx; int not_singl_id; int val_to_rem; int sum = 0; int i; min = 0; max = 0; for (i = 0; i < terms; i++) { CHECK_TTL(ttl_ctr, 74) y_id = vs_per_c_idx[i]; if (K[i] > 0) { vl = mins[i] = V_MIN(vs_prop_[y_id]); vh = V_MAX(vs_prop_[y_id]); } else if (K[i] < 0) { vl = V_MAX(vs_prop_[y_id]); vh = mins[i] = V_MIN(vs_prop_[y_id]); } if (K[i] != 0) { if (vl != vh) { not_singl_idx = i; not_singl_id = y_id; not_singl++; } else { sum += K[i] * mins[i]; } } min += K[i] * vl; max += K[i] * vh; } sum -= equat_result; if (min > equat_result || max < equat_result) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 0 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int (current_cs->reif_var_id)); #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } if (min == max && min == equat_result) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int (current_cs->reif_var_id)); #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } // if all but one variable are already singleton, remove the only value from the one that is not singleton that would lead to equality if (not_singl == 1) { val_to_rem = (-1) * (sum / K[not_singl_idx]); if (sum % K[not_singl_idx] > 0 || val_to_rem < 0) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 0 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int (current_cs->reif_var_id)); return; } cl_v_copy_pm(&y, &vs_prop_[not_singl_id] TTL_CTR_V); cl_v_del_val_n(&changed, &y, val_to_rem TTL_CTR_V); if (changed) { if (V_IS_EMPTY(y)) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int (current_cs->reif_var_id)); } } } } /* * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID int_lin_ne opposite constraint * K · Y = c * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * c_consts - constant values used by this constraint * vs_prop_ - all CSP variables with current step values * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate * prop_ok - will be set to 1 or 0 if the constraint is respected or not * terms_mem - auxiliary buffer */ CUDA_FUNC void int_lin_ne_prop_opposite( CL_INTS_MEM int *vs_per_c_idx, CL_INTS_MEM int *c_consts, CL_MEMORY VARS_PROP *vs_prop_, CL_CS_MEM cl_constr *current_cs, CL_MEMORY unsigned short *vs_id_to_prop_, bool *prop_ok, __global int *terms_mem CS_IGNORE_FUNC TTL_CTR) { int terms = current_cs->n_c_consts; // number of constants and variables constrained by this constraint CL_INTS_MEM int *K = c_consts; // constants constrained by this constraint int equat_result = current_cs->constant_val; int y_id; __global int *mins = terms_mem; __global int *maxs = &terms_mem[current_cs->n_c_consts]; int vl, vh; int min, max; int xmin, xmax, bound; bool changed = 0; int c; int i; min = 0; max = 0; for (i = 0; i < terms; i++) { CHECK_TTL(ttl_ctr, 69) y_id = vs_per_c_idx[i]; if (K[i] > 0) { vl = mins[i] = V_MIN(vs_prop_[y_id]); vh = maxs[i] = V_MAX(vs_prop_[y_id]); } else if (K[i] < 0) { vl = maxs[i] = V_MAX(vs_prop_[y_id]); vh = mins[i] = V_MIN(vs_prop_[y_id]); } else { vl = 0; vh = 0; } min += K[i] * vl; max += K[i] * vh; } if (min > equat_result || max < equat_result) { *prop_ok = 0; return; } if (min == max) { #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } if (min == equat_result) { for (i = 0; i < terms; i++) { CHECK_TTL(ttl_ctr, 70) y_id = vs_per_c_idx[i]; if (V_N_VALS(vs_prop_[y_id]) > 1) { c = K[i]; if (c > 0) { cl_v_del_all_except_val_m(&changed, &vs_prop_[y_id], mins[i] TTL_CTR_V); if (changed) { v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } } else if (c < 0) { cl_v_del_all_except_val_m(&changed, &vs_prop_[y_id], maxs[i] TTL_CTR_V); if (changed) { v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } } } } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } if (max == equat_result) { for (i = 0; i < terms; i++) { CHECK_TTL(ttl_ctr, 71) y_id = vs_per_c_idx[i]; if (V_N_VALS(vs_prop_[y_id]) > 1) { c = K[i]; if (c > 0) { cl_v_del_all_except_val_m(&changed, &vs_prop_[y_id], maxs[i] TTL_CTR_V); if (changed) { v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } } else if (c < 0) { cl_v_del_all_except_val_m(&changed, &vs_prop_[y_id], mins[i] TTL_CTR_V); if (changed) { v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } } } } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } #if CL_USE_BOOLEAN_VS if (current_cs->boolean == 0) { // not all X are boolean #endif if (max > equat_result) { for (i = 0; i < terms; i++) { CHECK_TTL(ttl_ctr, 72) y_id = vs_per_c_idx[i]; if (V_N_VALS(vs_prop_[y_id]) > 1) { c = K[i]; xmin = mins[i]; xmax = maxs[i]; if (c > 0) { if ((xmax - xmin) * c > equat_result - min) { bound = (equat_result - min) / c + xmin; cl_v_del_gt_m(&changed, &vs_prop_[y_id], bound TTL_CTR_V); if (changed) { if (V_IS_EMPTY(vs_prop_[y_id])) { *prop_ok = 0; return; } v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } } } else if (c < 0) { if ((xmin - xmax) * c > equat_result - min) { bound = convert_int (ceil((equat_result - min * 1.0) / c + xmax)); cl_v_del_lt_m(&changed, &vs_prop_[y_id], bound TTL_CTR_V); if (changed) { if (V_IS_EMPTY(vs_prop_[y_id])) { *prop_ok = 0; return; } v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } } } } } } if (min < equat_result) { for (i = 0; i < terms; i++) { CHECK_TTL(ttl_ctr, 73) y_id = vs_per_c_idx[i]; if (V_N_VALS(vs_prop_[y_id]) > 1) { c = K[i]; xmin = mins[i]; xmax = maxs[i]; if (c > 0) { if ((xmax - xmin) * c > max - equat_result) { bound = convert_int (ceil((equat_result - max * 1.0) / c + xmax)); cl_v_del_lt_m(&changed, &vs_prop_[y_id], bound TTL_CTR_V); if (changed) { if (V_IS_EMPTY(vs_prop_[y_id])) { *prop_ok = 0; return; } v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } } } else if (c < 0) { if ((xmax - xmin) * c < equat_result - max) { bound = (equat_result - max) / c + xmin; cl_v_del_gt_m(&changed, &vs_prop_[y_id], bound TTL_CTR_V); if (changed) { if (V_IS_EMPTY(vs_prop_[y_id])) { *prop_ok = 0; return; } v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } } } } } } #if CL_USE_BOOLEAN_VS } #endif } #endif /* * Decides the propagator to call for this constraint * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * c_consts - constant values used by this constraint * vs_prop_ - all CSP variables with current step values * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate * prop_ok - will be set to 1 or 0 if the constraint is respected or not * terms_mem - auxiliary buffer */ CUDA_FUNC void int_lin_ne_propagate( CL_INTS_MEM int *vs_per_c_idx, CL_INTS_MEM int *c_consts, CL_MEMORY VARS_PROP *vs_prop_, CL_CS_MEM cl_constr *current_cs, CL_MEMORY unsigned short *vs_id_to_prop_, bool *prop_ok, __global int *terms_mem PROPAGATED_FUNC CS_IGNORE_FUNC TTL_CTR) { #if CS_R_INT_LIN_NE == 0 int_lin_ne_prop(vs_per_c_idx, c_consts, vs_prop_, current_cs, vs_id_to_prop_, prop_ok, terms_mem CS_IGNORE_CALL TTL_CTR_V); #if CL_STATS == 1 *propagated = true; #endif #elif CS_R_INT_LIN_NE == 1 if (current_cs->reified == 1) { if (V_N_VALS(vs_prop_[current_cs->reif_var_id]) > 1) { int_lin_ne_reif(vs_per_c_idx, c_consts, vs_prop_, current_cs, vs_id_to_prop_, terms_mem CS_IGNORE_CALL TTL_CTR_V); } else { if (V_MIN(vs_prop_[current_cs->reif_var_id]) == 1) { int_lin_ne_prop(vs_per_c_idx, c_consts, vs_prop_, current_cs, vs_id_to_prop_, prop_ok, terms_mem CS_IGNORE_CALL TTL_CTR_V); } else { int_lin_ne_prop_opposite(vs_per_c_idx, c_consts, vs_prop_, current_cs, vs_id_to_prop_, prop_ok, terms_mem CS_IGNORE_CALL TTL_CTR_V); } #if CL_STATS == 1 *propagated = true; #endif } } else { int_lin_ne_prop(vs_per_c_idx, c_consts, vs_prop_, current_cs, vs_id_to_prop_, prop_ok, terms_mem CS_IGNORE_CALL TTL_CTR_V); #if CL_STATS == 1 *propagated = true; #endif } #endif } #endif