/* * exactly_var.c * * Created on: 13/03/2017 * Author: Pedro */ #ifndef __OPENCL_VERSION__ #include #include #include "exactly_var.h" #include "../bitmaps.h" #include "../config.h" #include "../variables.h" #endif #include "../kernels/cl_aux_functions.h" #if CL_D_TYPE == CL_BITMAP #include "../kernels/cl_bitmaps.h" #elif CL_D_TYPE == CL_INTERVAL #include "../kernels/cl_intervals.h" #endif #include "../kernels/cl_constraints.h" #include "../kernels/cl_variables.h" #include "../kernels/cl_ttl.h" #ifndef __OPENCL_VERSION__ /* * Creates a new constraint of the exactly_var type and return the constraint ID * #{i | X[i] = k} = y * X_ids - vector with the ID of the variables that may contain the value of y * n_vs - maximum number of variables in X vector * c - number of variables in X that must contain the value of y * y_id - variable with the value that should be contained by the variables in X */ unsigned int c_exactly_var(unsigned int *X_ids, unsigned int n_vs, unsigned int c, unsigned int y_id) { unsigned int i; // set to include in kernel compilation USE_CS[EXACTLY_VAR] = 1; USE_NON_CS_REIFI[EXACTLY_VAR] = 1; REV = 1; unsigned int *c_vs = malloc((n_vs + 1) * sizeof(unsigned int)); for (i = 0; i < n_vs; i++) { c_vs[i] = X_ids[i]; } c_vs[n_vs] = y_id; // creates a new generic constraint unsigned int c_id = c_new(c_vs, n_vs + 1, NULL, 0, -1); // pointers to this type of constraint functions CS[c_id].kind = EXACTLY_VAR; CS[c_id].check_sol_f = &exactly_var_check; CS[c_id].constant_val = (int) c; free(c_vs); return c_id; } /* * Creates a new constraint of the exactly_var type and return the constraint ID * #{i | X[i] = k} = y * X_ids - vector with the ID of the variables that may contain the value of y * n_vs - maximum number of variables in X vector * c - number of variables in X that must contain the value of y * y_id - variable with the value that should be contained by the variables in X * reif_v_id - ID of the reification variable */ unsigned int c_exactly_var_reif(unsigned int *X_ids, unsigned int n_vs, unsigned int c, unsigned int y_id, int reif_v_id) { unsigned int i; if (VS[reif_v_id].max > 1) { v_del_gt(&VS[reif_v_id], 1); if (VS[reif_v_id].n_vals == 0) { printf("\nConstraint EXACTLY_VAR_REIF makes model inconsistent at creation. No solution found.\n"); #if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__) printf("\nPress any key to exit\n"); int a = getchar(); #endif exit(0); } } // set to include in kernel compilation USE_CS[EXACTLY_VAR] = 1; USE_CS_REIFI[EXACTLY_VAR] = 1; REV = 1; unsigned int *c_vs = malloc((n_vs + 1) * sizeof(unsigned int)); for (i = 0; i < n_vs; i++) { c_vs[i] = X_ids[i]; } c_vs[n_vs] = y_id; // creates a new generic constraint unsigned int c_id = c_new(c_vs, n_vs + 1, NULL, 0, reif_v_id); // pointers to this type of constraint functions CS[c_id].kind = EXACTLY_VAR; CS[c_id].check_sol_f = &exactly_var_check; CS[c_id].constant_val = (int) c; free(c_vs); return c_id; } /* * Return true if the exactly_var constraint is respected or false if not * #{i | X[i] = k} = y * c - constraint to check if is respected * explored - if the CSP was already explored, which mean that all the variables must already be singletons * */ bool exactly_var_check(constr *c, bool explored) { var **X = c->c_vs; var *x; var *y = c->c_vs[c->n_c_vs - 1]; int k = c->constant_val; unsigned int set = 0; int i; if (!explored) { for (i = 0; i < c->n_c_vs; i++) { if (c->c_vs[i]->n_vals > 1) { return false; } } } if (c->reified && VS[c->reif_v_id].n_vals > 1) { if (explored) { fprintf(stderr, "\nError: Reification variable of constraint EXACTLY_VAR_REIF (%d) has 2 values.\n", c->c_id); return false; } } for (i = 0; i < c->n_c_vs - 1; i++) { x = X[i]; if (x->min == k) { set++; } } if (((!c->reified || (c->reified && VS[c->reif_v_id].min == 1)) && set != y->min) || (c->reified && VS[c->reif_v_id].min == 0 && set == y->min)) { if (explored) { if (c->reified) { fprintf(stderr, "\nError: Constraint EXACTLY_VAR_REIF (%d) not respected:\n", c->c_id); fprintf(stderr, "Reif ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->reif_v_id, b_get_min_val(&VS[c->reif_v_id].domain_b), b_get_max_val(&VS[c->reif_v_id].domain_b), b_cnt_vals(&VS[c->reif_v_id].domain_b)); } else { fprintf(stderr, "\nError: Constraint EXACTLY_VAR (%d) not respected:\n", c->c_id); } for (i = 0; i < c->n_c_vs; i++) { fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[i]->v_id, b_get_min_val(&c->c_vs[i]->domain_b), b_get_max_val(&c->c_vs[i]->domain_b), b_cnt_vals(&c->c_vs[i]->domain_b)); } } return false; } return true; } #endif #if CS_EXACTLY_VAR == 1 /* * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID exactly_var constraint * #{i | X[i] = k} = y * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate * prop_ok - will be set to 1 or 0 if the constraint is respected or not */ CUDA_FUNC void exactly_var_prop(CL_INTS_MEM int *vs_per_c_idx, CL_MEMORY VARS_PROP *vs_prop_, CL_CS_MEM cl_constr *current_cs, CL_MEMORY unsigned short *vs_id_to_prop_, bool *prop_ok CS_IGNORE_FUNC TTL_CTR) { int y_id = vs_per_c_idx[current_cs->n_c_vs - 1]; int k = current_cs->constant_val; int x_id; int set = 0; int possible = 0; bool contains; bool changed = 0; int i; for (i = 0; i < current_cs->n_c_vs - 1; i++) { CHECK_TTL(ttl_ctr, 61) x_id = vs_per_c_idx[i]; // if more than c variables are already set to k, return 0 if (V_N_VALS(vs_prop_[x_id]) == 1 && V_MIN(vs_prop_[x_id]) == k) { if (++set > V_MAX(vs_prop_[y_id])) { *prop_ok = 0; return; } // number of variables that may be set to k } else { cl_v_contains_val_m(&contains, &vs_prop_[x_id], k TTL_CTR_V); if (contains) { possible++; } } } // if there are not enough variables to set to k if (set + possible < V_MIN(vs_prop_[y_id])) { *prop_ok = 0; return; } if (V_N_VALS(vs_prop_[y_id]) == 1) { // if the sum of the variables that contain k are y, assign all of them to k if (set + possible == V_MIN(vs_prop_[y_id])) { for (i = 0; possible > 0; i++) { CHECK_TTL(ttl_ctr, 62) x_id = vs_per_c_idx[i]; if (V_N_VALS(vs_prop_[x_id]) > 1) { cl_v_contains_val_m(&contains, &vs_prop_[x_id], k TTL_CTR_V); if (contains) { cl_v_del_all_except_val_m(&changed, &vs_prop_[x_id], k TTL_CTR_V); possible--; v_add_to_prop(vs_id_to_prop_, vs_prop_, x_id); } } } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } // if all the variables already assigned to k are y, remove k from the other variables if (set == V_MAX(vs_prop_[y_id])) { for (i = 0; possible > 0; i++) { CHECK_TTL(ttl_ctr, 63) x_id = vs_per_c_idx[i]; if (V_N_VALS(vs_prop_[x_id]) > 1) { cl_v_del_all_except_val_m(&changed, &vs_prop_[x_id], k TTL_CTR_V); if (changed) { possible--; v_add_to_prop(vs_id_to_prop_, vs_prop_, x_id); } } } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } return; } // if prop_v_id != y_id or y is not singleton // if the sum of the variables that contain k are min(y), assign all of them to k // and remove all values except min from y if (set + possible == V_MIN(vs_prop_[y_id])) { for (i = 0; possible > 0; i++) { CHECK_TTL(ttl_ctr, 65) x_id = vs_per_c_idx[i]; if (V_N_VALS(vs_prop_[x_id]) > 1) { cl_v_contains_val_m(&contains, &vs_prop_[x_id], k TTL_CTR_V); if (contains) { cl_v_del_all_except_val_m(&changed, &vs_prop_[x_id], k TTL_CTR_V); possible--; v_add_to_prop(vs_id_to_prop_, vs_prop_, x_id); } } } cl_v_del_all_except_val_m(&changed, &vs_prop_[y_id], V_MIN(vs_prop_[y_id]) TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } // if all the variables already assigned to k are y max, remove k from the other variables if (set == V_MAX(vs_prop_[y_id])) { for (i = 0; possible > 0; i++) { CHECK_TTL(ttl_ctr, 66) x_id = vs_per_c_idx[i]; if (V_N_VALS(vs_prop_[x_id]) > 1) { cl_v_del_val_m(&changed, &vs_prop_[x_id], k TTL_CTR_V); if (changed) { possible--; v_add_to_prop(vs_id_to_prop_, vs_prop_, x_id); } } } cl_v_del_all_except_val_m(&changed, &vs_prop_[y_id], V_MAX(vs_prop_[y_id]) TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } // remove from y the value that are not capable of corresponding to the number of x variables that contain k if (set > V_MIN(vs_prop_[y_id])) { cl_v_del_lt_m(&changed, &vs_prop_[y_id], set TTL_CTR_V); if (changed) { v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } } if (set + possible < V_MAX(vs_prop_[y_id])) { cl_v_del_gt_m(&changed, &vs_prop_[y_id], set + possible TTL_CTR_V); if (changed) { v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } } } #if CS_R_EXACTLY_VAR == 1 /* * Validate exactly_var constraint to be normally propagated, when reified * #{i | X[i] = k} = y * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate */ CUDA_FUNC void exactly_var_reif( CL_INTS_MEM int *vs_per_c_idx, CL_MEMORY VARS_PROP *vs_prop_, CL_CS_MEM cl_constr *current_cs, CL_MEMORY unsigned short *vs_id_to_prop_ CS_IGNORE_FUNC TTL_CTR) { int y_id = vs_per_c_idx[current_cs->n_c_vs - 1]; int k = current_cs->constant_val; int x_id; int set = 0; int possible = 0; bool contains; int i; for (i = 0; i < current_cs->n_c_vs - 1; i++) { CHECK_TTL(ttl_ctr, 67) x_id = vs_per_c_idx[i]; // if more than c variables are already set to k, return 0 if (V_N_VALS(vs_prop_[x_id]) == 1 && V_MIN(vs_prop_[x_id]) == k) { if (++set > V_MAX(vs_prop_[y_id])) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int (current_cs->reif_var_id)); #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } // number of variables that may be set to k } else { cl_v_contains_val_m(&contains, &vs_prop_[x_id], k TTL_CTR_V); if (contains) { possible++; } } } // if there are not enough variables to set to k if (set + possible < V_MIN(vs_prop_[y_id])) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int (current_cs->reif_var_id)); #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } // constraint already fixed if (V_N_VALS(vs_prop_[y_id]) == 1 && set == V_MIN(vs_prop_[y_id]) && possible == 0) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 0 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int (current_cs->reif_var_id)); #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } } /* * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID exactly_var opposite constraint * #{i | X[i] = k} != y * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate */ CUDA_FUNC void exactly_var_prop_opposite( CL_INTS_MEM int *vs_per_c_idx, CL_MEMORY VARS_PROP *vs_prop_, CL_CS_MEM cl_constr *current_cs, CL_MEMORY unsigned short *vs_id_to_prop_ CS_IGNORE_FUNC TTL_CTR) { int y_id = vs_per_c_idx[current_cs->n_c_vs - 1]; int k = current_cs->constant_val; int x_id; int set = 0; int possible = 0; bool contains; bool changed = 0; int i; for (i = 0; i < current_cs->n_c_vs - 1; i++) { CHECK_TTL(ttl_ctr, 217) x_id = vs_per_c_idx[i]; // if more than c variables are already set to k, return 0 if (V_N_VALS(vs_prop_[x_id]) == 1 && V_MIN(vs_prop_[x_id]) == k) { if (++set > V_MAX(vs_prop_[y_id])) { return; } // number of variables that may be set to k } else { cl_v_contains_val_m(&contains, &vs_prop_[x_id], k TTL_CTR_V); if (contains) { possible++; } } } // if there are not enough variables to set to k if (set + possible < V_MIN(vs_prop_[y_id])) { #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } if (V_N_VALS(vs_prop_[y_id]) == 1) { // if the sum of the variables that are assigned with k are y, and that contain k are y+1, assign the one to k if (set == V_MIN(vs_prop_[y_id]) && possible == 1) { for (i = 0; possible > 0; i++) { CHECK_TTL(ttl_ctr, 216) x_id = vs_per_c_idx[i]; if (V_N_VALS(vs_prop_[x_id]) > 1) { cl_v_contains_val_m(&contains, &vs_prop_[x_id], k TTL_CTR_V); if (contains) { cl_v_del_all_except_val_m(&changed, &vs_prop_[x_id], k TTL_CTR_V); possible--; v_add_to_prop(vs_id_to_prop_, vs_prop_, x_id); } } } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } } } #endif /* * Decides the propagator to call for this constraint * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate * prop_ok - will be set to 1 or 0 if the constraint is respected or not */ CUDA_FUNC void exactly_var_propagate(CL_INTS_MEM int *vs_per_c_idx, CL_MEMORY VARS_PROP *vs_prop_, CL_CS_MEM cl_constr *current_cs, CL_MEMORY unsigned short *vs_id_to_prop_, bool *prop_ok PROPAGATED_FUNC CS_IGNORE_FUNC TTL_CTR) { #if CS_R_EXACTLY_VAR == 0 exactly_var_prop(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); #if CL_STATS == 1 *propagated = true; #endif #elif CS_R_EXACTLY_VAR == 1 if (current_cs->reified == 1) { if (V_N_VALS(vs_prop_[current_cs->reif_var_id]) > 1) { exactly_var_reif(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_ CS_IGNORE_CALL TTL_CTR_V); } else { if (V_MIN(vs_prop_[current_cs->reif_var_id]) == 1) { exactly_var_prop(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); } else { exactly_var_prop_opposite(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_ CS_IGNORE_CALL TTL_CTR_V); } #if CL_STATS == 1 *propagated = true; #endif } } else { exactly_var_prop(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); #if CL_STATS == 1 *propagated = true; #endif } #endif } #endif