/* * array_bool_xor.c * * Created on: 09/02/2020 * Author: Pedro */ #ifndef __OPENCL_VERSION__ #include #include #include "array_bool_xor.h" #include "../bitmaps.h" #include "../config.h" #include "../variables.h" #endif #include "../kernels/cl_aux_functions.h" #if CL_D_TYPE == CL_BITMAP #include "../kernels/cl_bitmaps.h" #elif CL_D_TYPE == CL_INTERVAL #include "../kernels/cl_intervals.h" #endif #include "../kernels/cl_constraints.h" #include "../kernels/cl_variables.h" #include "../kernels/cl_ttl.h" #ifndef __OPENCL_VERSION__ /* * Creates a new constraint of the type array_bool_xor and return the constraint ID * (∃ i ∈ 1..n : X[i]) ↔ y * X_ids - vector with the ID of the boolean variables that may be assigned with 1 (true) * n_vs - maximum number of boolean variables in X vector */ unsigned int c_array_bool_xor(unsigned int *X_ids, unsigned int n_vs) { unsigned int i; for (i = 0; i < n_vs; i++) { if (VS[X_ids[i]].max > 1) { v_del_gt(&VS[X_ids[i]], 1); if (VS[X_ids[i]].n_vals == 0) { printf("\nConstraint ARRAY_BOOL_XOR makes model inconsistent at creation. No solution found.\n"); #if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__) printf("\nPress any key to exit\n"); int a = getchar(); #endif exit(0); } } } // set to include in kernel compilation USE_CS[ARRAY_BOOL_XOR] = 1; USE_NON_CS_REIFI[ARRAY_BOOL_XOR] = 1; REV = 1; unsigned int *c_vs = malloc(n_vs * sizeof(unsigned int)); for (i = 0; i < n_vs; i++) { c_vs[i] = X_ids[i]; } // creates a new generic constraint unsigned int c_id = c_new(c_vs, n_vs, NULL, 0, -1); // pointers to this type of constraint functions CS[c_id].kind = ARRAY_BOOL_XOR; CS[c_id].check_sol_f = &array_bool_xor_check; CS[c_id].constant_val = 0; free(c_vs); return c_id; } /* * Creates a new reified constraint of the array_bool_xor type * (∃ i ∈ 1..n : X[i]) ↔ y * X_ids - vector with the ID of the boolean variables that may be assigned with 1 (true) * n_vs - maximum number of boolean variables in X vector * reif_v_id - ID of the reification variable */ unsigned int c_array_bool_xor_reif(unsigned int *X_ids, unsigned int n_vs, int reif_v_id) { unsigned int i; if (VS[reif_v_id].max > 1) { v_del_gt(&VS[reif_v_id], 1); if (VS[reif_v_id].n_vals == 0) { printf("\nConstraint ARRAY_BOOL_XOR_REIF makes model inconsistent at creation. No solution found.\n"); #if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__) printf("\nPress any key to exit\n"); int a = getchar(); #endif exit(0); } } for (i = 0; i < n_vs; i++) { if (VS[X_ids[i]].max > 1) { v_del_gt(&VS[X_ids[i]], 1); if (VS[X_ids[i]].n_vals == 0) { printf("\nConstraint ARRAY_BOOL_XOR_REIF makes model inconsistent at creation. No solution found.\n"); #if defined(WIN32) || defined(_WIN32) || defined(__WIN32) && !defined(__CYGWIN__) printf("\nPress any key to exit\n"); int a = getchar(); #endif exit(0); } } } // set to include in kernel compilation USE_CS[ARRAY_BOOL_XOR] = 1; USE_CS_REIFI[ARRAY_BOOL_XOR] = 1; REV = 1; unsigned int *c_vs = malloc(n_vs * sizeof(unsigned int)); for (i = 0; i < n_vs; i++) { c_vs[i] = X_ids[i]; } // creates a new generic constraint unsigned int c_id = c_new(c_vs, n_vs, NULL, 0, reif_v_id); // pointers to this type of constraint functions CS[c_id].kind = ARRAY_BOOL_XOR; CS[c_id].check_sol_f = &array_bool_xor_check; CS[c_id].constant_val = 0; free(c_vs); return c_id; } /* * Return true if the array_bool_xor constraint is respected or false if not * (∃ i ∈ 1..n : X[i]) ↔ y * c - constraint to check if is respected * explored - if the CSP was already explored, which mean that all the variables must already be singletons * */ bool array_bool_xor_check(constr *c, bool explored) { var **X = c->c_vs; int sum = 0; int i; if (!explored) { for (i = 0; i < c->n_c_vs; i++) { if (c->c_vs[i]->n_vals > 1) { return false; } } } if (c->reified && VS[c->reif_v_id].n_vals > 1) { if (explored) { fprintf(stderr, "\nError: Reification variable of constraint ARRAY_BOOL_XOR_REIF (%d) has 2 values.\n", c->c_id); return false; } } for (i = 0; i < c->n_c_vs; i++) { sum += X[i]->min; } if (((!c->reified || (c->reified && VS[c->reif_v_id].min == 1)) && sum % 2 != 1) || (c->reified && VS[c->reif_v_id].min == 0 && sum % 2 == 1)) { if (explored) { if (c->reified) { fprintf(stderr, "\nError: Constraint ARRAY_BOOL_XOR_REIF (%d) not respected:\n", c->c_id); fprintf(stderr, "Reif ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->reif_v_id, b_get_min_val(&VS[c->reif_v_id].domain_b), b_get_max_val(&VS[c->reif_v_id].domain_b), b_cnt_vals(&VS[c->reif_v_id].domain_b)); } else { fprintf(stderr, "\nError: Constraint ARRAY_BOOL_XOR (%d) not respected:\n", c->c_id); } for (i = 0; i < c->n_c_vs; i++) { fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[i]->v_id, b_get_min_val(&c->c_vs[i]->domain_b), b_get_max_val(&c->c_vs[i]->domain_b), b_cnt_vals(&c->c_vs[i]->domain_b)); } } return false; } return true; } #endif #if CS_ARRAY_BOOL_XOR == 1 /* * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID array_bool_xor constraint * (∃ i ∈ 1..n : X[i]) ↔ y * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate * prop_ok - will be set to 1 or 0 if the constraint is respected or not */ CUDA_FUNC void array_bool_xor_prop(CL_INTS_MEM int *vs_per_c_idx, CL_MEMORY VARS_PROP *vs_prop_, CL_CS_MEM cl_constr *current_cs, CL_MEMORY unsigned short *vs_id_to_prop_, bool *prop_ok CS_IGNORE_FUNC TTL_CTR) { int x_id; int not_singl = 0; int not_singl_id; int sum = 0; int i; for (i = 0; i < current_cs->n_c_vs; i++) { x_id = vs_per_c_idx[i]; if (V_N_VALS(vs_prop_[x_id]) > 1) { not_singl++; not_singl_id = x_id; } else { sum += V_MIN(vs_prop_[x_id]); } if (not_singl > 1) { return; } } // already set if (not_singl == 0) { if (sum % 2 != 1) { *prop_ok = 0; return; } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } // 1 boolean variable to set if (sum % 2 == 1) { cl_v_bool_del_val_m(&vs_prop_[not_singl_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, not_singl_id); #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } else if ((sum + 1) % 2 == 1) { cl_v_bool_del_val_m(&vs_prop_[not_singl_id], 0 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, not_singl_id); #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } else { *prop_ok = 0; } } #if CS_R_ARRAY_BOOL_XOR == 1 /* * Validate array_bool_xor constraint to be normally propagated, when reified * (∃ i ∈ 1..n : X[i]) ↔ y * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate */ CUDA_FUNC void array_bool_xor_reif( CL_INTS_MEM int *vs_per_c_idx, CL_MEMORY VARS_PROP *vs_prop_, CL_CS_MEM cl_constr *current_cs, CL_MEMORY unsigned short *vs_id_to_prop_ CS_IGNORE_FUNC TTL_CTR) { int x_id; int not_singl = 0; int sum = 0; int i; for (i = 0; i < current_cs->n_c_vs; i++) { x_id = vs_per_c_idx[i]; if (V_N_VALS(vs_prop_[x_id]) > 1) { not_singl++; } else { sum += V_MIN(vs_prop_[x_id]); } if (not_singl > 1) { return; } } // already set if (not_singl == 0) { if (sum % 2 != 1) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int (current_cs->reif_var_id)); #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 0 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int (current_cs->reif_var_id)); #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } // 1 boolean variable to set if (sum % 2 != 1 && (sum + 1) % 2 != 1) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int (current_cs->reif_var_id)); #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } } /* * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID array_bool_xor opposite constraint * (∃ i !∈ 1..n : X[i]) ↔ y * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate * prop_ok - will be set to 1 or 0 if the constraint is respected or not */ CUDA_FUNC void array_bool_xor_prop_opposite(CL_INTS_MEM int *vs_per_c_idx, CL_MEMORY VARS_PROP *vs_prop_, CL_CS_MEM cl_constr *current_cs, CL_MEMORY unsigned short *vs_id_to_prop_, bool *prop_ok CS_IGNORE_FUNC TTL_CTR) { int x_id; int not_singl = 0; int not_singl_id; int sum = 0; int i; for (i = 0; i < current_cs->n_c_vs; i++) { x_id = vs_per_c_idx[i]; if (V_N_VALS(vs_prop_[x_id]) > 1) { not_singl++; not_singl_id = x_id; } else { sum += V_MIN(vs_prop_[x_id]); } if (not_singl > 1) { return; } } // already set if (not_singl == 0) { if (sum % 2 == 1) { *prop_ok = 0; return; } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } // 1 boolean variable to set if (sum % 2 == 1) { cl_v_bool_del_val_m(&vs_prop_[not_singl_id], 0 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, not_singl_id); #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } else if ((sum + 1) % 2 == 1) { cl_v_bool_del_val_m(&vs_prop_[not_singl_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, not_singl_id); #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } #if CL_CS_IGNORE else if (sum % 2 != 1 && (sum + 1) % 2 != 1) { cs_ignore[current_cs->c_id] = 1; } #endif } #endif /* * Decides the propagator to call for this constraint * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate * prop_ok - will be set to 1 or 0 if the constraint is respected or not */ CUDA_FUNC void array_bool_xor_propagate(CL_INTS_MEM int *vs_per_c_idx, CL_MEMORY VARS_PROP *vs_prop_, CL_CS_MEM cl_constr *current_cs, CL_MEMORY unsigned short *vs_id_to_prop_, bool *prop_ok PROPAGATED_FUNC CS_IGNORE_FUNC TTL_CTR) { #if CS_R_ARRAY_BOOL_XOR == 0 array_bool_xor_prop(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); #if CL_STATS == 1 *propagated = true; #endif #elif CS_R_ARRAY_BOOL_XOR == 1 if (current_cs->reified == 1) { if (V_N_VALS(vs_prop_[current_cs->reif_var_id]) > 1) { array_bool_xor_reif(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_ CS_IGNORE_CALL TTL_CTR_V); } else { if (V_MIN(vs_prop_[current_cs->reif_var_id]) == 1) { array_bool_xor_prop(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); } else { array_bool_xor_prop_opposite(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); } #if CL_STATS == 1 *propagated = true; #endif } } else { array_bool_xor_prop(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); #if CL_STATS == 1 *propagated = true; #endif } #endif } #endif