/* * var_eq_minus.c * * Created on: 16/12/2014 * Author: pedro */ #ifndef __OPENCL_VERSION__ #include #include #include "var_eq_minus.h" #include "../bitmaps.h" #include "../config.h" #include "../variables.h" #endif #include "../kernels/cl_aux_functions.h" #if CL_D_TYPE == CL_BITMAP #include "../kernels/cl_bitmaps.h" #elif CL_D_TYPE == CL_INTERVAL #include "../kernels/cl_intervals.h" #endif #include "../kernels/cl_constraints.h" #include "../kernels/cl_variables.h" #include "../kernels/cl_ttl.h" #ifndef __OPENCL_VERSION__ /* * Creates a new constraint of the var_eq_minus type and return the constraint ID * x = y − z * x_id - ID of variable x * y_id - ID of variable y * z_id - ID of variable z */ unsigned int c_var_eq_minus(unsigned int x_id, unsigned int y_id, unsigned int z_id) { // set to include in kernel compilation USE_CS[VAR_EQ_MINUS] = 1; USE_NON_CS_REIFI[VAR_EQ_MINUS] = 1; REV = 1; unsigned int c_vs[3]; c_vs[0] = x_id; c_vs[1] = y_id; c_vs[2] = z_id; // creates a new generic constraint unsigned int c_id = c_new(c_vs, 3, NULL, 0, -1); // pointers to this type of constraint functions CS[c_id].kind = VAR_EQ_MINUS; CS[c_id].check_sol_f = &var_eq_minus_check; CS[c_id].constant_val = 0; return c_id; } /* * Creates a new reified constraint of the var_eq_minus type and return the constraint ID * x = y − z * x_id - ID of variable x * y_id - ID of variable y * z_id - ID of variable z * reif_v_id - ID of the reification variable */ unsigned int c_var_eq_minus_reif(unsigned int x_id, unsigned int y_id, unsigned int z_id, int reif_v_id) { if (VS[reif_v_id].max > 1) { v_del_gt(&VS[reif_v_id], 1); if (VS[reif_v_id].n_vals == 0) { fprintf(stderr, "\nError: Constraint VAR_EQ_MINUS_REIF makes model inconsistent at creation:\n"); exit(-1); } } // set to include in kernel compilation USE_CS[VAR_EQ_MINUS] = 1; USE_CS_REIFI[VAR_EQ_MINUS] = 1; REV = 1; unsigned int c_vs[3]; c_vs[0] = x_id; c_vs[1] = y_id; c_vs[2] = z_id; // creates a new generic constraint unsigned int c_id = c_new(c_vs, 3, NULL, 0, reif_v_id); // pointers to this type of constraint functions CS[c_id].kind = VAR_EQ_MINUS; CS[c_id].check_sol_f = &var_eq_minus_check; CS[c_id].constant_val = 0; return c_id; } /* * Return true if the var_eq_minus constraint is respected or false if not * x = y − z * c - constraint to check if is respected * explored - if the CSP was already explored, which mean that all the variables must already be singletons * */ bool var_eq_minus_check(constr* c, bool explored) { // check if any variable inside same a_eq_b_minus_c constraint has domain 0, more than one value // or if the sum is not correct. If so, return false. Else return true. if ( #if CHECK_SOL_N_VALS (c->c_vs[0]->to_label && c->c_vs[0]->n_vals != 1) || (c->c_vs[1]->to_label && c->c_vs[1]->n_vals != 1) || (c->c_vs[2]->to_label && c->c_vs[2]->n_vals != 1) || #endif (c->c_vs[0]->min != c->c_vs[1]->min - c->c_vs[2]->min)) { if (explored) { fprintf(stderr, "\nError: Constraint VAR_EQ_MINUS (%d) not respected:\n", c->c_id); fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[0]->v_id, b_get_min_val(&c->c_vs[0]->domain_b), b_get_max_val(&c->c_vs[0]->domain_b), b_cnt_vals(&c->c_vs[0]->domain_b)); fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[1]->v_id, b_get_min_val(&c->c_vs[1]->domain_b), b_get_max_val(&c->c_vs[1]->domain_b), b_cnt_vals(&c->c_vs[1]->domain_b)); fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[2]->v_id, b_get_min_val(&c->c_vs[2]->domain_b), b_get_max_val(&c->c_vs[2]->domain_b), b_cnt_vals(&c->c_vs[2]->domain_b)); } return false; } return true; } #endif #if CS_VAR_EQ_MINUS == 1 /* * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID var_eq_minus constraint * x = y − z * prop_ok will be set to 1 if success or to 0 if any domain became empty * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * prop_v_id - variable ID to propagate * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate */ CUDA_FUNC void var_eq_minus_prop(CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, unsigned int prop_v_id, CL_MEMORY unsigned short* vs_id_to_prop_, bool* prop_ok TTL_CTR) { int x_id = vs_per_c_idx[0]; int y_id = vs_per_c_idx[1]; int z_id = vs_per_c_idx[2]; bool changed_x1; bool changed_y1; bool changed_z1; bool changed_x2; bool changed_y2; bool changed_z2; if (prop_v_id == (unsigned int)x_id) { cl_v_del_lt_m(&changed_y1, &vs_prop_[y_id], V_MIN(vs_prop_[x_id]) + V_MIN(vs_prop_[z_id]) TTL_CTR_V); if (changed_y1) { if (V_IS_EMPTY(vs_prop_[y_id])) { *prop_ok = 0; return; } } cl_v_del_gt_m(&changed_y2, &vs_prop_[y_id], V_MAX(vs_prop_[x_id]) + V_MAX(vs_prop_[z_id]) TTL_CTR_V); if (changed_y2) { if (V_IS_EMPTY(vs_prop_[y_id])) { *prop_ok = 0; return; } } cl_v_del_lt_m(&changed_z1, &vs_prop_[z_id], V_MIN(vs_prop_[y_id]) - V_MAX(vs_prop_[x_id]) TTL_CTR_V); if (changed_z1) { if (V_IS_EMPTY(vs_prop_[z_id])) { *prop_ok = 0; return; } } cl_v_del_gt_m(&changed_z2, &vs_prop_[z_id], V_MAX(vs_prop_[y_id]) - V_MIN(vs_prop_[x_id]) TTL_CTR_V); if (changed_z2) { if (V_IS_EMPTY(vs_prop_[z_id])) { *prop_ok = 0; return; } } if (changed_y1 || changed_y2) { v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } if (changed_z1 || changed_z2) { v_add_to_prop(vs_id_to_prop_, vs_prop_, z_id); } return; } if (prop_v_id == (unsigned int)y_id) { cl_v_del_lt_m(&changed_x1, &vs_prop_[x_id], V_MIN(vs_prop_[y_id]) - V_MAX(vs_prop_[z_id]) TTL_CTR_V); if (changed_x1) { if (V_IS_EMPTY(vs_prop_[x_id])) { *prop_ok = 0; return; } } cl_v_del_gt_m(&changed_x2, &vs_prop_[x_id], V_MAX(vs_prop_[y_id]) - V_MIN(vs_prop_[z_id]) TTL_CTR_V); if (changed_x2) { if (V_IS_EMPTY(vs_prop_[x_id])) { *prop_ok = 0; return; } } cl_v_del_lt_m(&changed_z1, &vs_prop_[z_id], V_MIN(vs_prop_[y_id]) - V_MAX(vs_prop_[x_id]) TTL_CTR_V); if (changed_z1) { if (V_IS_EMPTY(vs_prop_[z_id])) { *prop_ok = 0; return; } } cl_v_del_gt_m(&changed_z2, &vs_prop_[z_id], V_MAX(vs_prop_[y_id]) - V_MIN(vs_prop_[x_id]) TTL_CTR_V); if (changed_z2) { if (V_IS_EMPTY(vs_prop_[z_id])) { *prop_ok = 0; return; } } if (changed_x1 || changed_x2) { v_add_to_prop(vs_id_to_prop_, vs_prop_, x_id); } if (changed_z1 || changed_z2) { v_add_to_prop(vs_id_to_prop_, vs_prop_, z_id); } return; } // prop_v_id == z_id cl_v_del_lt_m(&changed_x1, &vs_prop_[x_id], V_MIN(vs_prop_[y_id]) - V_MAX(vs_prop_[z_id]) TTL_CTR_V); if (changed_x1) { if (V_IS_EMPTY(vs_prop_[x_id])) { *prop_ok = 0; return; } } cl_v_del_gt_m(&changed_x2, &vs_prop_[x_id], V_MAX(vs_prop_[y_id]) - V_MIN(vs_prop_[z_id]) TTL_CTR_V); if (changed_x2) { if (V_IS_EMPTY(vs_prop_[x_id])) { *prop_ok = 0; return; } } cl_v_del_lt_m(&changed_y1, &vs_prop_[y_id], V_MIN(vs_prop_[x_id]) + V_MIN(vs_prop_[z_id]) TTL_CTR_V); if (changed_y1) { if (V_IS_EMPTY(vs_prop_[y_id])) { *prop_ok = 0; return; } } cl_v_del_gt_m(&changed_y2, &vs_prop_[y_id], V_MAX(vs_prop_[x_id]) + V_MAX(vs_prop_[z_id]) TTL_CTR_V); if (changed_y2) { if (V_IS_EMPTY(vs_prop_[y_id])) { *prop_ok = 0; return; } } if (changed_x1 || changed_x2) { v_add_to_prop(vs_id_to_prop_, vs_prop_, x_id); } if (changed_y1 || changed_y2) { v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } } #if CS_R_VAR_EQ_MINUS == 1 /* * Validate var_eq_minus constraint to be normally propagated, when reified * x = y − z * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate */ CUDA_FUNC void var_eq_minus_reif( CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, unsigned int prop_v_id, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_ CS_IGNORE_FUNC TTL_CTR) { int x_id = vs_per_c_idx[0]; int y_id = vs_per_c_idx[1]; int z_id = vs_per_c_idx[2]; bool changed = 0; if (V_N_VALS(vs_prop_[x_id]) == 1 && V_N_VALS(vs_prop_[y_id]) == 1 && V_N_VALS(vs_prop_[z_id]) == 1 && V_MIN(vs_prop_[x_id]) == V_MIN(vs_prop_[y_id]) - V_MIN(vs_prop_[z_id])) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 0 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } if (prop_v_id == (unsigned int)x_id) { VARS_PROP y; cl_v_copy_pm(&y, &vs_prop_[y_id] TTL_CTR_V); cl_v_del_lt_n(&changed, &y, V_MIN(vs_prop_[x_id]) + V_MIN(vs_prop_[z_id]) TTL_CTR_V); if (V_IS_EMPTY(y)) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); return; } cl_v_del_gt_n(&changed, &y, V_MAX(vs_prop_[x_id]) + V_MAX(vs_prop_[z_id]) TTL_CTR_V); if (V_IS_EMPTY(y)) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); return; } VARS_PROP z; cl_v_copy_pm(&z, &vs_prop_[z_id] TTL_CTR_V); cl_v_del_lt_n(&changed, &z, V_MIN(y) - V_MAX(vs_prop_[x_id]) TTL_CTR_V); if (V_IS_EMPTY(z)) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); return; } cl_v_del_gt_n(&changed, &z, V_MAX(y) - V_MIN(vs_prop_[x_id]) TTL_CTR_V); if (V_IS_EMPTY(z)) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); return; } return; } if (prop_v_id == (unsigned int)y_id) { VARS_PROP x; cl_v_copy_pm(&x, &vs_prop_[x_id] TTL_CTR_V); cl_v_del_lt_n(&changed, &x, V_MIN(vs_prop_[y_id]) - V_MAX(vs_prop_[z_id]) TTL_CTR_V); if (V_IS_EMPTY(x)) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); return; } cl_v_del_gt_n(&changed, &x, V_MAX(vs_prop_[y_id]) - V_MIN(vs_prop_[z_id]) TTL_CTR_V); if (V_IS_EMPTY(x)) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); return; } VARS_PROP z; cl_v_copy_pm(&z, &vs_prop_[z_id] TTL_CTR_V); cl_v_del_lt_n(&changed, &z, V_MIN(vs_prop_[y_id]) - V_MAX(x) TTL_CTR_V); if (V_IS_EMPTY(z)) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); return; } cl_v_del_gt_n(&changed, &z, V_MAX(vs_prop_[y_id]) - V_MIN(x) TTL_CTR_V); if (V_IS_EMPTY(z)) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); return; } return; } // if prop_v_id == z_id VARS_PROP x; cl_v_copy_pm(&x, &vs_prop_[x_id] TTL_CTR_V); cl_v_del_lt_n(&changed, &x, V_MIN(vs_prop_[y_id]) - V_MAX(vs_prop_[z_id]) TTL_CTR_V); if (V_IS_EMPTY(x)) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); return; } cl_v_del_gt_n(&changed, &x, V_MAX(vs_prop_[y_id]) - V_MIN(vs_prop_[z_id]) TTL_CTR_V); if (V_IS_EMPTY(x)) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); return; } VARS_PROP y; cl_v_copy_pm(&y, &vs_prop_[y_id] TTL_CTR_V); cl_v_del_lt_n(&changed, &y, V_MIN(x) + V_MIN(vs_prop_[z_id]) TTL_CTR_V); if (V_IS_EMPTY(y)) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); return; } cl_v_del_gt_n(&changed, &y, V_MAX(x) + V_MAX(vs_prop_[z_id]) TTL_CTR_V); if (V_IS_EMPTY(y)) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); } } /* * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID var_eq_minus opposite constraint * x != y − z * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * prop_v_id - variable ID to propagate * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate */ #ifndef __OPENCL_VERSION__ #if CS_IGNORE == 0 #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" #endif #endif CUDA_FUNC void var_eq_minus_prop_opposite(CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, CL_CS_MEM cl_constr* current_cs, bool* prop_ok CS_IGNORE_FUNC TTL_CTR) { int x_id = vs_per_c_idx[0]; int y_id = vs_per_c_idx[1]; int z_id = vs_per_c_idx[2]; bool changed; if (V_N_VALS(vs_prop_[x_id]) == 1 && V_N_VALS(vs_prop_[y_id]) == 1) { cl_v_del_val_m(&changed, &vs_prop_[z_id], V_MIN(vs_prop_[y_id]) - V_MIN(vs_prop_[x_id]) TTL_CTR_V); if (changed) { if (V_IS_EMPTY(vs_prop_[z_id])) { *prop_ok = 0; return; } } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } if (V_N_VALS(vs_prop_[x_id]) == 1 && V_N_VALS(vs_prop_[z_id]) == 1) { cl_v_del_val_m(&changed, &vs_prop_[y_id], V_MIN(vs_prop_[x_id]) + V_MIN(vs_prop_[z_id]) TTL_CTR_V); if (changed) { if (V_IS_EMPTY(vs_prop_[y_id])) { *prop_ok = 0; return; } } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } if (V_N_VALS(vs_prop_[y_id]) == 1 && V_N_VALS(vs_prop_[z_id]) == 1) { cl_v_del_lt_m(&changed, &vs_prop_[x_id], V_MIN(vs_prop_[y_id]) - V_MIN(vs_prop_[z_id]) TTL_CTR_V); if (changed) { if (V_IS_EMPTY(vs_prop_[x_id])) { *prop_ok = 0; return; } } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } } #ifndef __OPENCL_VERSION__ #if CS_IGNORE == 0 #pragma GCC diagnostic pop #endif #endif #endif CUDA_FUNC void var_eq_minus_propagate(CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, unsigned int prop_v_id, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_, bool* prop_ok PROPAGATED_FUNC CS_IGNORE_FUNC TTL_CTR) { #if CS_R_VAR_EQ_MINUS == 0 var_eq_minus_prop(vs_per_c_idx, vs_prop_, prop_v_id, vs_id_to_prop_, prop_ok TTL_CTR_V); #if CL_STATS == 1 *propagated = true; #endif #elif CS_R_VAR_EQ_MINUS == 1 if (current_cs->reified == 1) { if (prop_v_id != current_cs->reif_var_id) { if (V_N_VALS(vs_prop_[current_cs->reif_var_id]) > 1) { var_eq_minus_reif(vs_per_c_idx, vs_prop_, prop_v_id, current_cs, vs_id_to_prop_ CS_IGNORE_CALL TTL_CTR_V); } if (V_N_VALS(vs_prop_[current_cs->reif_var_id]) == 1) { if (V_MIN(vs_prop_[current_cs->reif_var_id]) == 1) { var_eq_minus_prop(vs_per_c_idx, vs_prop_, prop_v_id, vs_id_to_prop_, prop_ok TTL_CTR_V); } else { var_eq_minus_prop_opposite(vs_per_c_idx, vs_prop_, current_cs, prop_ok CS_IGNORE_CALL TTL_CTR_V); } #if CL_STATS == 1 *propagated = true; #endif } } } else { var_eq_minus_prop(vs_per_c_idx, vs_prop_, prop_v_id, vs_id_to_prop_, prop_ok TTL_CTR_V); #if CL_STATS == 1 *propagated = true; #endif } #endif } #endif