/* * max.c * * Created on: 08/02/2018 * Author: pedro */ #ifndef __OPENCL_VERSION__ #include #include #include "max.h" #include "../bitmaps.h" #include "../config.h" #include "../variables.h" #endif #include "../kernels/cl_aux_functions.h" #if CL_D_TYPE == CL_BITMAP #include "../kernels/cl_bitmaps.h" #elif CL_D_TYPE == CL_INTERVAL #include "../kernels/cl_intervals.h" #endif #include "../kernels/cl_constraints.h" #include "../kernels/cl_variables.h" #include "../kernels/cl_ttl.h" #ifndef __OPENCL_VERSION__ /* * Creates a new constraint of the max type and return the constraint ID * max(x, y) = z * x_id - ID of the x variable * y_id - ID of the y variable * z_id - ID of the z variable */ unsigned int c_max(unsigned int x_id, unsigned int y_id, unsigned int z_id) { // set to include in kernel compilation USE_CS[MAX] = 1; USE_NON_CS_REIFI[MAX] = 1; REV = 1; unsigned int c_vs[3]; c_vs[0] = x_id; c_vs[1] = y_id; c_vs[2] = z_id; // creates a new generic constraint unsigned int c_id = c_new(c_vs, 3, NULL, 0, -1); // pointers to this type of constraint functions CS[c_id].kind = MAX; CS[c_id].check_sol_f = &max_check; CS[c_id].constant_val = 0; return c_id; } /* * Creates a new reified constraint of the max type and return the constraint ID * max(x, y) = z * x_id - ID of the x variable * y_id - ID of the y variable * z_id - ID of the z variable * reif_v_id - ID of the reification variable */ unsigned int c_max_reif(unsigned int x_id, unsigned int y_id, unsigned int z_id, int reif_v_id) { if (VS[reif_v_id].max > 1) { v_del_gt(&VS[reif_v_id], 1); if (VS[reif_v_id].n_vals == 0) { fprintf(stderr, "\nError: Constraint MAX_REIF makes model inconsistent at creation:\n"); exit(-1); } } // set to include in kernel compilation USE_CS[MAX] = 1; USE_CS_REIFI[MAX] = 1; REV = 1; unsigned int c_vs[3]; c_vs[0] = x_id; c_vs[1] = y_id; c_vs[2] = z_id; // creates a new generic constraint unsigned int c_id = c_new(c_vs, 3, NULL, 0, reif_v_id); // pointers to this type of constraint functions CS[c_id].kind = MAX; CS[c_id].check_sol_f = &max_check; CS[c_id].constant_val = 0; return c_id; } /* * Return true if the max constraint is respected or false if not * max(x, y) = z * c - constraint to check if is respected * explored - if the CSP was already explored, which mean that all the variables must already be singletons * */ bool max_check(constr* c, bool explored) { // check if any variable inside same a_eq_b_minus_c constraint has domain 0, more than one value // or if the MAX is not correct. If so, return false. Else return true. if ( #if CHECK_SOL_N_VALS (c->c_vs[0]->to_label && c->c_vs[0]->n_vals != 1) || (c->c_vs[1]->to_label && c->c_vs[1]->n_vals != 1) || (c->c_vs[2]->to_label && c->c_vs[2]->n_vals != 1) || #endif (MAX_(c->c_vs[0]->min, c->c_vs[1]->min) != c->c_vs[2]->min)) { if (explored) { fprintf(stderr, "\nError: Constraint MAX (%d) not respected:\n", c->c_id); fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[0]->v_id, b_get_min_val(&c->c_vs[0]->domain_b), b_get_max_val(&c->c_vs[0]->domain_b), b_cnt_vals(&c->c_vs[0]->domain_b)); fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[1]->v_id, b_get_min_val(&c->c_vs[1]->domain_b), b_get_max_val(&c->c_vs[1]->domain_b), b_cnt_vals(&c->c_vs[1]->domain_b)); fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[2]->v_id, b_get_min_val(&c->c_vs[2]->domain_b), b_get_max_val(&c->c_vs[2]->domain_b), b_cnt_vals(&c->c_vs[2]->domain_b)); } return false; } return true; } #endif #if CS_MAX == 1 /* * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID max constraint * prop_ok will be set to 1 if success or to 0 if any domain became empty * max(x, y) = z * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * prop_v_id - variable ID to propagate * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate * global value to optimize */ #if CS_IGNORE == 0 #ifndef __OPENCL_VERSION__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" #endif #endif CUDA_FUNC void max_prop(CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, unsigned int prop_v_id, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_, bool* prop_ok CS_IGNORE_FUNC TTL_CTR) { int x_id = vs_per_c_idx[0]; int y_id = vs_per_c_idx[1]; int z_id = vs_per_c_idx[2]; bool contains1; bool contains2; bool changed; if (prop_v_id != (unsigned int)z_id) { int min1 = V_MIN(vs_prop_[x_id]); int min2 = V_MIN(vs_prop_[y_id]); int max = MAX_(min1,min2); cl_v_del_lt_m(&changed, &vs_prop_[z_id], max TTL_CTR_V); if (changed) { if (V_IS_EMPTY(vs_prop_[z_id])) { *prop_ok = 0; return; } v_add_to_prop(vs_id_to_prop_, vs_prop_, z_id); } cl_v_del_gt_m(&changed, &vs_prop_[z_id], MAX_(V_MAX(vs_prop_[x_id]),V_MAX(vs_prop_[y_id])) TTL_CTR_V); if (changed) { if (V_IS_EMPTY(vs_prop_[z_id])) { *prop_ok = 0; return; } v_add_to_prop(vs_id_to_prop_, vs_prop_, z_id); } } if (V_N_VALS(vs_prop_[x_id]) == 1 && V_N_VALS(vs_prop_[y_id]) == 1 && V_N_VALS(vs_prop_[z_id]) == 1) { if (MAX_(V_MAX(vs_prop_[x_id]),V_MAX(vs_prop_[y_id])) != V_MIN(vs_prop_[z_id])) { *prop_ok = 0; } return; } if (prop_v_id == (unsigned int)x_id || prop_v_id == (unsigned int)y_id) { if (V_N_VALS(vs_prop_[x_id]) == 1 && V_N_VALS(vs_prop_[y_id]) == 1) { cl_v_del_all_except_val_m(&changed, &vs_prop_[z_id], MAX_(V_MAX(vs_prop_[x_id]),V_MAX(vs_prop_[y_id])) TTL_CTR_V); if (changed) { if (V_IS_EMPTY(vs_prop_[z_id])) { *prop_ok = 0; return; } v_add_to_prop(vs_id_to_prop_, vs_prop_, z_id); } return; } VARS_PROP v_aux; cl_v_copy_pm(&v_aux, &vs_prop_[x_id] TTL_CTR_V); cl_v_union_v_pm(&changed, &v_aux, &vs_prop_[y_id] TTL_CTR_V); cl_v_intersect_v_mp(&changed, &vs_prop_[z_id], &v_aux TTL_CTR_V); if (changed) { if (V_IS_EMPTY(vs_prop_[z_id])) { *prop_ok = 0; return; } v_add_to_prop(vs_id_to_prop_, vs_prop_, z_id); } } if (V_N_VALS(vs_prop_[z_id]) == 1) { cl_v_contains_val_m(&contains1, &vs_prop_[x_id], V_MIN(vs_prop_[z_id]) TTL_CTR_V); cl_v_contains_val_m(&contains2, &vs_prop_[y_id], V_MIN(vs_prop_[z_id]) TTL_CTR_V); if (!contains1 && !contains2) { *prop_ok = 0; return; } if (contains1 && !contains2) { if (V_N_VALS(vs_prop_[x_id]) != 1) { cl_v_del_all_except_val_m(&changed, &vs_prop_[x_id], V_MIN(vs_prop_[z_id]) TTL_CTR_V); } cl_v_del_gt_m(&changed, &vs_prop_[y_id], V_MIN(vs_prop_[z_id]) TTL_CTR_V); if (changed) { if (V_IS_EMPTY(vs_prop_[y_id])) { *prop_ok = 0; return; } v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } else if (!contains1 && contains2) { if (V_N_VALS(vs_prop_[y_id]) != 1) { cl_v_del_all_except_val_m(&changed, &vs_prop_[y_id], V_MIN(vs_prop_[z_id]) TTL_CTR_V); } cl_v_del_gt_m(&changed, &vs_prop_[x_id], V_MIN(vs_prop_[z_id]) TTL_CTR_V); if (changed) { if (V_IS_EMPTY(vs_prop_[x_id])) { *prop_ok = 0; return; } v_add_to_prop(vs_id_to_prop_, vs_prop_, x_id); } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } } cl_v_del_gt_m(&changed, &vs_prop_[x_id], V_MAX(vs_prop_[z_id]) TTL_CTR_V); if (changed) { if (V_IS_EMPTY(vs_prop_[x_id])) { *prop_ok = 0; return; } v_add_to_prop(vs_id_to_prop_, vs_prop_, x_id); } cl_v_del_gt_m(&changed, &vs_prop_[y_id], V_MAX(vs_prop_[z_id]) TTL_CTR_V); if (changed) { if (V_IS_EMPTY(vs_prop_[y_id])) { *prop_ok = 0; return; } v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } } #ifndef __OPENCL_VERSION__ #if CS_IGNORE == 0 #pragma GCC diagnostic pop #endif #endif #if CS_R_MAX == 1 /* * Validate max constraint to be normally propagated, when reified * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate */ CUDA_FUNC void max_reif( CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_ TTL_CTR) { int x_id = vs_per_c_idx[0]; int y_id = vs_per_c_idx[1]; int z_id = vs_per_c_idx[2]; bool changed1 = 0; bool changed2 = 0; if (V_N_VALS(vs_prop_[x_id]) == 1 && V_N_VALS(vs_prop_[y_id]) == 1 && V_N_VALS(vs_prop_[z_id]) == 1 && MAX_(V_MIN(vs_prop_[x_id]),V_MIN(vs_prop_[y_id])) == V_MIN(vs_prop_[z_id])) { cl_v_del_val_m(&changed1, &vs_prop_[current_cs->reif_var_id], 0 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); return; } VARS_PROP z; cl_v_copy_pm(&z, &vs_prop_[z_id] TTL_CTR_V); cl_v_del_lt_n(&changed1, &z, MAX_(V_MIN(vs_prop_[x_id]),V_MIN(vs_prop_[y_id])) TTL_CTR_V); cl_v_del_gt_n(&changed2, &z, MAX_(V_MAX(vs_prop_[x_id]),V_MAX(vs_prop_[y_id])) TTL_CTR_V); if (changed1 || changed2) { if (V_IS_EMPTY(z)) { cl_v_del_val_m(&changed1, &vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); return; } } if (V_MAX(vs_prop_[x_id]) > V_MAX(vs_prop_[y_id]) && V_N_VALS(vs_prop_[x_id]) == 1) { cl_v_del_all_except_val_n(&changed1, &z, V_MAX(vs_prop_[x_id]) TTL_CTR_V); if (changed1) { if (V_IS_EMPTY(z)) { cl_v_del_val_m(&changed1, &vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); return; } } return; } if (V_MAX(vs_prop_[y_id]) > V_MAX(vs_prop_[x_id]) && V_N_VALS(vs_prop_[y_id]) == 1) { cl_v_del_all_except_val_n(&changed1, &z, V_MAX(vs_prop_[y_id]) TTL_CTR_V); if (changed1) { if (V_IS_EMPTY(z)) { cl_v_del_val_m(&changed1, &vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); } } } } /* * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID max opposite constraint * max(x, y) != z * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * prop_v_id - variable ID to propagate * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate * global value to optimize */ CUDA_FUNC void max_prop_opposite(CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, bool* prop_ok) { int x_id = vs_per_c_idx[0]; int y_id = vs_per_c_idx[1]; int z_id = vs_per_c_idx[2]; if (V_N_VALS(vs_prop_[x_id]) == 1 && V_N_VALS(vs_prop_[y_id]) == 1 && V_N_VALS(vs_prop_[z_id]) == 1 && MAX_(V_MIN(vs_prop_[x_id]),V_MIN(vs_prop_[y_id])) == V_MIN(vs_prop_[z_id])) { *prop_ok = 0; } } #endif CUDA_FUNC void max_propagate(CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, unsigned int prop_v_id, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_, bool* prop_ok PROPAGATED_FUNC CS_IGNORE_FUNC TTL_CTR) { #if CS_R_MAX == 0 max_prop(vs_per_c_idx, vs_prop_, prop_v_id, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); #if CL_STATS == 1 *propagated = true; #endif #elif CS_R_MAX == 1 if (current_cs->reified == 1) { if (prop_v_id != current_cs->reif_var_id) { if (V_N_VALS(vs_prop_[current_cs->reif_var_id]) > 1) { max_reif(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_ TTL_CTR_V); } if (V_N_VALS(vs_prop_[current_cs->reif_var_id]) == 1) { if (V_MIN(vs_prop_[current_cs->reif_var_id]) == 1) { max_prop(vs_per_c_idx, vs_prop_, prop_v_id, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); } else { max_prop_opposite(vs_per_c_idx, vs_prop_, prop_ok); } #if CL_STATS == 1 *propagated = true; #endif } } } else { max_prop(vs_per_c_idx, vs_prop_, prop_v_id, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); #if CL_STATS == 1 *propagated = true; #endif } #endif } #endif