/* * linear_var.c * * Created on: 07/12/2016 * Author: pedro */ #ifndef __OPENCL_VERSION__ #include #include #include #include "linear_var.h" #include "../bitmaps.h" #include "../config.h" #include "../variables.h" #endif #include "../kernels/cl_aux_functions.h" #if CL_D_TYPE == CL_BITMAP #include "../kernels/cl_bitmaps.h" #elif CL_D_TYPE == CL_INTERVAL #include "../kernels/cl_intervals.h" #endif #include "../kernels/cl_constraints.h" #include "../kernels/cl_variables.h" #include "../kernels/cl_ttl.h" #ifndef __OPENCL_VERSION__ /* * Creates a new constraint of the linear_var type and return the constraint ID * K · Y = z * K - constant unsigned integers for this constraint * Y_ids - IDs of the variables constrained by this constraint * n - number of constants (or variables) * z_id - ID of variable z */ unsigned int c_linear_var(int* K, unsigned int* Y_ids, unsigned int n, unsigned int z_id) { unsigned int i; // set to include in kernel compilation USE_CS[LINEAR_VAR] = 1; USE_NON_CS_REIFI[LINEAR_VAR] = 1; REV = 1; unsigned int* c_vs = malloc((n + 1) * sizeof(unsigned int)); for (i = 0; i < n; i++) { c_vs[i] = Y_ids[i]; } c_vs[n] = z_id; // creates a new generic constraint unsigned int c_id = c_new(c_vs, n + 1, K, n, -1); // pointers to this type of constraint functions CS[c_id].kind = LINEAR_VAR; CS[c_id].check_sol_f = &linear_var_check; CS[c_id].constant_val = 0; free(c_vs); return c_id; } /* * Creates a new reified constraint of the linear_var type and return the constraint ID * K · Y = z * K - constant unsigned integers for this constraint * Y_ids - IDs of the variables constrained by this constraint * n - number of constants (or variables) * z_id - ID of variable z * reif_v_id - ID of the reification variable */ unsigned int c_linear_var_reif(int* K, unsigned int* Y_ids, unsigned int n, unsigned int z_id, int reif_v_id) { unsigned int i; if (VS[reif_v_id].max > 1) { v_del_gt(&VS[reif_v_id], 1); if (VS[reif_v_id].n_vals == 0) { fprintf(stderr, "\nError: Constraint LINEAR_VAR_REIF makes model inconsistent at creation:\n"); exit(-1); } } // set to include in kernel compilation USE_CS[LINEAR_VAR] = 1; USE_CS_REIFI[LINEAR_VAR] = 1; REV = 1; unsigned int* c_vs = malloc((n + 1) * sizeof(unsigned int)); for (i = 0; i < n; i++) { c_vs[i] = Y_ids[i]; } c_vs[n] = z_id; // creates a new generic constraint unsigned int c_id = c_new(c_vs, n + 1, K, n, reif_v_id); // pointers to this type of constraint functions CS[c_id].kind = LINEAR_VAR; CS[c_id].check_sol_f = &linear_var_check; CS[c_id].constant_val = 0; free(c_vs); return c_id; } /* * Return true if the linear_var constraint is respected or false if not * K · Y = z * c - constraint to check if is respected * explored - if the CSP was already explored, which mean that all the variables must already be singletons * */ bool linear_var_check(constr* c, bool explored) { unsigned int n = c->n_c_consts; // number of constants and variables constrained by this constraint int* K = c->c_consts; // constants constrained by this constraint var** Y = c->c_vs; // variables constrained by this constraint var* z = c->c_vs[n]; // variable that should contain all the values resultant from the equations unsigned int equat_result = 0; bitmap d; unsigned int i; // if variable z has more than one value or is empty #if CHECK_SOL_N_VALS if (z->to_label && z->n_vals != 1) { if (explored) { fprintf(stderr, "\nError: Constraint LINEAR_VAR (%d) not respected:\n", c->c_id); for (i = 0; i < c->n_c_vs; i++) { fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[i]->v_id, b_get_min_val(&c->c_vs[i]->domain_b), b_get_max_val(&c->c_vs[i]->domain_b), b_cnt_vals(&c->c_vs[i]->domain_b)); } } return false; } #endif // if any other variable has more than one value or is empty #if CHECK_SOL_N_VALS for (i = 0; i < n; i++) { if (Y[i]->to_label && Y[i]->n_vals != 1) { if (explored) { fprintf(stderr, "\nError: Constraint LINEAR_VAR (%d) not respected:\n", c->c_id); for (i = 0; i < c->n_c_vs; i++) { fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[i]->v_id, b_get_min_val(&c->c_vs[i]->domain_b), b_get_max_val(&c->c_vs[i]->domain_b), b_cnt_vals(&c->c_vs[i]->domain_b)); } } return false; } } #endif for (i = 0; i < n; i++) { equat_result += (unsigned int)K[i] * Y[i]->min; } b_new_vals(&d, &equat_result, 1); if (!bs_eq(&z->domain_b, &d)) { if (explored) { fprintf(stderr, "\nError: Constraint LINEAR_VAR (%d) not respected:\n", c->c_id); for (i = 0; i < c->n_c_vs; i++) { fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[i]->v_id, b_get_min_val(&c->c_vs[i]->domain_b), b_get_max_val(&c->c_vs[i]->domain_b), b_cnt_vals(&c->c_vs[i]->domain_b)); } } return false; } return true; } #endif #if CS_LINEAR_VAR == 1 /* * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID linear_var constraint * K · Y = z * prop_ok will be set to 1 if success or to 0 if any domain became empty * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * c_consts - vector with all constrained constants per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * prop_v_id - variable ID to propagate * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate */ CUDA_FUNC void linear_var_prop(CL_INTS_MEM int* vs_per_c_idx, CL_INTS_MEM int* c_consts, CL_MEMORY VARS_PROP* vs_prop_, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_, bool* prop_ok, __global int* terms_mem CS_IGNORE_FUNC TTL_CTR) { int terms = current_cs->n_c_consts; // number of constants and variables constrained by this constraint CL_INTS_MEM int* K = c_consts; // constants constrained by this constraint int z_id = vs_per_c_idx[terms]; // variable that should contain all the values resultant from the equations int y_id; __global int* mins = terms_mem; __global int* maxs = &terms_mem[current_cs->n_c_consts]; int lb, ub; int vl, vh; int min, max; int xmin, xmax; bool changed = 0; bool changed1 = 0; int c; int i; min = 0; max = 0; for (i = 0; i < terms; ++i) { CHECK_TTL(ttl_ctr, 23) y_id = vs_per_c_idx[i]; if (K[i] > 0) { vl = mins[i] = V_MIN(vs_prop_[y_id]); vh = maxs[i] = V_MAX(vs_prop_[y_id]); } else { vl = maxs[i] = V_MAX(vs_prop_[y_id]); vh = mins[i] = V_MIN(vs_prop_[y_id]); } min += K[i] * vl; max += K[i] * vh; } lb = V_MIN(vs_prop_[z_id]); ub = V_MAX(vs_prop_[z_id]); if (min > ub || max < lb) { *prop_ok = 0; } else { if (min > lb) { cl_v_del_lt_m(&changed1, &vs_prop_[z_id], min TTL_CTR_V); } else if (max < ub) { cl_v_del_gt_m(&changed, &vs_prop_[z_id], max TTL_CTR_V); } if (changed1 || changed) { if (V_IS_EMPTY(vs_prop_[z_id])) { *prop_ok = 0; } else { v_add_to_prop(vs_id_to_prop_, vs_prop_, z_id); lb = V_MIN(vs_prop_[z_id]); ub = V_MAX(vs_prop_[z_id]); } } if (*prop_ok != 0 && min != max) { // poor man's propagation if (min == ub) { for (i = 0; i < terms; ++i) { CHECK_TTL(ttl_ctr, 24) y_id = vs_per_c_idx[i]; c = K[i]; if (V_N_VALS(vs_prop_[y_id]) > 1) { if (c != 0 && mins[i] != maxs[i]) { if (c > 0) { cl_v_del_gt_m(&changed, &vs_prop_[y_id], mins[i] TTL_CTR_V); if (changed) { if (V_IS_EMPTY(vs_prop_[y_id])) { *prop_ok = 0; } else { v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } } } else { cl_v_del_lt_m(&changed, &vs_prop_[y_id], maxs[i] TTL_CTR_V); if (changed) { if (V_IS_EMPTY(vs_prop_[y_id])) { *prop_ok = 0; } else { v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } } } } } } if (V_N_VALS(vs_prop_[z_id]) > 1) { cl_v_del_all_except_val_m(&changed, &vs_prop_[z_id], ub TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, z_id); } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } else if (max == lb) { for (i = 0; i < terms; ++i) { CHECK_TTL(ttl_ctr, 25) y_id = vs_per_c_idx[i]; c = K[i]; if (V_N_VALS(vs_prop_[y_id]) > 1) { if (c != 0 && mins[i] != maxs[i]) { if (c > 0) { cl_v_del_lt_m(&changed, &vs_prop_[y_id], maxs[i] TTL_CTR_V); if (changed) { if (V_IS_EMPTY(vs_prop_[y_id])) { *prop_ok = 0; } else { v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } } } else { cl_v_del_gt_m(&changed, &vs_prop_[y_id], mins[i] TTL_CTR_V); if (changed) { if (V_IS_EMPTY(vs_prop_[y_id])) { *prop_ok = 0; } else { v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } } } } } } if (V_N_VALS(vs_prop_[z_id]) > 1) { cl_v_del_all_except_val_m(&changed, &vs_prop_[z_id], lb TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, z_id); } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } else if (max > ub) { for (i = 0; i < terms; ++i) { CHECK_TTL(ttl_ctr, 26) y_id = vs_per_c_idx[i]; c = K[i]; xmin = mins[i]; xmax = maxs[i]; if (V_N_VALS(vs_prop_[y_id]) > 1) { if (c > 0) { if ((xmax - xmin) * c > ub - min) { xmax = (ub - min) / c + xmin; cl_v_del_gt_m(&changed, &vs_prop_[y_id], xmax TTL_CTR_V); if (changed) { if (V_IS_EMPTY(vs_prop_[y_id])) { *prop_ok = 0; } else { v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } } } } else if (c < 0) { if ((xmin - xmax) * c > ub - min) { xmin = convert_int(ceil((ub - min * 1.0) / c + xmax)); cl_v_del_lt_m(&changed, &vs_prop_[y_id], xmin TTL_CTR_V); if (changed) { if (V_IS_EMPTY(vs_prop_[y_id])) { *prop_ok = 0; } else { v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } } } } } } } else if (min < lb) { for (i = 0; i < terms; ++i) { CHECK_TTL(ttl_ctr, 27) y_id = vs_per_c_idx[i]; c = K[i]; xmin = mins[i]; xmax = maxs[i]; if (V_N_VALS(vs_prop_[y_id]) > 1) { if (c > 0) { if ((xmax - xmin) * c > max - lb) { xmin = convert_int(ceil((lb - max * 1.0) / c + xmax)); cl_v_del_lt_m(&changed, &vs_prop_[y_id], xmin TTL_CTR_V); if (changed) { if (V_IS_EMPTY(vs_prop_[y_id])) { *prop_ok = 0; } else { v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } } } } if (c < 0) { if ((xmax - xmin) * c < lb - max) { xmax = (lb - max) / c + xmin; cl_v_del_gt_m(&changed, &vs_prop_[y_id], xmax TTL_CTR_V); if (changed) { if (V_IS_EMPTY(vs_prop_[y_id])) { *prop_ok = 0; } else { v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } } } } } } } } } } #if CS_R_LINEAR_VAR == 1 /* * Validate linear_var constraint to be normally propagated, when reified * K · Y = z * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate */ CUDA_FUNC void linear_var_reif( CL_INTS_MEM int* vs_per_c_idx, CL_INTS_MEM int* c_consts, CL_MEMORY VARS_PROP* vs_prop_, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_, __global int* terms_mem CS_IGNORE_FUNC TTL_CTR) { int terms = current_cs->n_c_consts; // number of constants and variables constrained by this constraint CL_INTS_MEM int* K = c_consts; // constants constrained by this constraint int z_id = vs_per_c_idx[terms]; // variable that should contain all the values resultant from the equations VARS_PROP z; int y_id; VARS_PROP y; __global int* mins = terms_mem; __global int* maxs = &terms_mem[current_cs->n_c_consts]; int lb, ub; int vl, vh; int min, max; int xmin, xmax; int c; bool changed = 0; bool changed1 = 0; int i; min = 0; max = 0; for (i = 0; i < terms; ++i) { CHECK_TTL(ttl_ctr, 79) y_id = vs_per_c_idx[i]; if (K[i] > 0) { vl = mins[i] = V_MIN(vs_prop_[y_id]); vh = maxs[i] = V_MAX(vs_prop_[y_id]); } else { vl = maxs[i] = V_MAX(vs_prop_[y_id]); vh = mins[i] = V_MIN(vs_prop_[y_id]); } min += K[i] * vl; max += K[i] * vh; } lb = V_MIN(vs_prop_[z_id]); ub = V_MAX(vs_prop_[z_id]); if (min > ub || max < lb) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } cl_v_copy_pm(&z, &vs_prop_[z_id] TTL_CTR_V); if (min > lb) { cl_v_del_lt_n(&changed, &z, min TTL_CTR_V); } else if (max < ub) { cl_v_del_gt_n(&changed1, &z, max TTL_CTR_V); } if (changed || changed1) { if (V_IS_EMPTY(z)) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); return; } lb = V_MIN(z); ub = V_MAX(z); } // constraint already fixed if (min == max) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 0 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } // poor man's propagation if (min == ub) { for (i = 0; i < terms; ++i) { CHECK_TTL(ttl_ctr, 80) y_id = vs_per_c_idx[i]; cl_v_copy_pm(&y, &vs_prop_[y_id] TTL_CTR_V); c = K[i]; if (V_N_VALS(vs_prop_[y_id]) > 1) { if (c != 0 && mins[i] != maxs[i]) { if (c > 0) { cl_v_del_gt_n(&changed, &y, mins[i] TTL_CTR_V); if (V_IS_EMPTY(y)) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); return; } } else { cl_v_del_lt_n(&changed, &y, maxs[i] TTL_CTR_V); if (V_IS_EMPTY(y)) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); return; } } } } } return; } if (max == lb) { for (i = 0; i < terms; ++i) { CHECK_TTL(ttl_ctr, 81) y_id = vs_per_c_idx[i]; cl_v_copy_pm(&y, &vs_prop_[y_id] TTL_CTR_V); c = K[i]; if (V_N_VALS(vs_prop_[y_id]) > 1) { if (c != 0 && mins[i] != maxs[i]) { if (c > 0) { cl_v_del_lt_n(&changed, &y, maxs[i] TTL_CTR_V); if (V_IS_EMPTY(y)) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); return; } } else { cl_v_del_gt_n(&changed, &y, mins[i] TTL_CTR_V); if (V_IS_EMPTY(y)) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); return; } } } } } return; } if (max > ub) { for (i = 0; i < terms; ++i) { CHECK_TTL(ttl_ctr, 82) y_id = vs_per_c_idx[i]; cl_v_copy_pm(&y, &vs_prop_[y_id] TTL_CTR_V); c = K[i]; xmin = mins[i]; xmax = maxs[i]; if (V_N_VALS(vs_prop_[y_id]) > 1) { if (c > 0) { if ((xmax - xmin) * c > ub - min) { xmax = (ub - min) / c + xmin; cl_v_del_gt_n(&changed, &y, xmax TTL_CTR_V); if (V_IS_EMPTY(y)) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); return; } } } if (c < 0) { if ((xmin - xmax) * c > ub - min) { xmin = convert_int(ceil((ub - min * 1.0) / c + xmax)); cl_v_del_lt_n(&changed, &y, xmin TTL_CTR_V); if (V_IS_EMPTY(y)) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); return; } } } } } } if (min < lb) { for (i = 0; i < terms; ++i) { CHECK_TTL(ttl_ctr, 83) y_id = vs_per_c_idx[i]; cl_v_copy_pm(&y, &vs_prop_[y_id] TTL_CTR_V); c = K[i]; xmin = mins[i]; xmax = maxs[i]; if (V_N_VALS(vs_prop_[y_id]) > 1) { if (c > 0) { if ((xmax - xmin) * c > max - lb) { xmin = convert_int(ceil((lb - max * 1.0) / c + xmax)); cl_v_del_lt_n(&changed, &y, xmin TTL_CTR_V); if (V_IS_EMPTY(y)) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); return; } } } if (c < 0) { if ((xmax - xmin) * c < lb - max) { xmax = (lb - max) / c + xmin; cl_v_del_gt_n(&changed, &y, xmax TTL_CTR_V); if (V_IS_EMPTY(y)) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); return; } } } } } } } /* * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID linear_var opposite constraint * K · Y != z * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * c_consts - vector with all constrained constants per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * prop_v_id - variable ID to propagate * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate */ CUDA_FUNC void linear_var_prop_opposite(CL_INTS_MEM int* vs_per_c_idx, CL_INTS_MEM int* c_consts, CL_MEMORY VARS_PROP* vs_prop_, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_, bool* prop_ok, __global int* terms_mem CS_IGNORE_FUNC TTL_CTR) { int terms = current_cs->n_c_consts; // number of constants and variables constrained by this constraint CL_INTS_MEM int* K = c_consts; // constants constrained by this constraint int z_id = vs_per_c_idx[terms]; // variable that should contain all the values resultant from the equations int equat_result; int y_id; __global int* mins = terms_mem; int vl, vh; int min, max; bool changed = 0; int not_singl = 0; int not_singl_idx; int not_singl_id = -1; int val_to_rem; int sum = 0; int i; if (V_N_VALS(vs_prop_[z_id]) > 1) { return; } equat_result = V_MIN(vs_prop_[z_id]); min = 0; max = 0; for (i = 0; i < terms; ++i) { CHECK_TTL(ttl_ctr, 69) y_id = vs_per_c_idx[i]; if (K[i] > 0) { vl = mins[i] = V_MIN(vs_prop_[y_id]); vh = V_MAX(vs_prop_[y_id]); } else { vl = V_MAX(vs_prop_[y_id]); vh = mins[i] = V_MIN(vs_prop_[y_id]); } if (vl != vh) { not_singl_idx = i; not_singl_id = y_id; not_singl++; } else { sum += K[i] * mins[i]; } min += K[i] * vl; max += K[i] * vh; } sum -= equat_result; if (min > equat_result || max < equat_result) { #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } if (min == max && min == equat_result) { *prop_ok = 0; return; } // if all but one variable are already singleton, remove the only value from the one that is not singleton that would lead to equality if (not_singl == 1) { val_to_rem = (-1) * (sum / K[not_singl_idx]); if (sum % K[not_singl_idx] > 0 || val_to_rem < 0) { *prop_ok = 0; return; } cl_v_del_val_m(&changed, &vs_prop_[not_singl_id], val_to_rem TTL_CTR_V); if (changed) { if (V_IS_EMPTY(vs_prop_[not_singl_id])) { *prop_ok = 0; return; } v_add_to_prop(vs_id_to_prop_, vs_prop_, not_singl_id); } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } } #endif CUDA_FUNC void linear_var_propagate(CL_INTS_MEM int* vs_per_c_idx, CL_INTS_MEM int* c_consts, CL_MEMORY VARS_PROP* vs_prop_, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_, bool* prop_ok, __global int* terms_mem PROPAGATED_FUNC CS_IGNORE_FUNC TTL_CTR) { #if CS_R_LINEAR_VAR == 0 linear_var_prop(vs_per_c_idx, c_consts, vs_prop_, current_cs, vs_id_to_prop_, prop_ok, terms_mem CS_IGNORE_CALL TTL_CTR_V); #if CL_STATS == 1 *propagated = true; #endif #elif CS_R_LINEAR_VAR == 1 if (current_cs->reified == 1) { if (V_N_VALS(vs_prop_[current_cs->reif_var_id]) > 1) { linear_var_reif(vs_per_c_idx, c_consts, vs_prop_, current_cs, vs_id_to_prop_, terms_mem CS_IGNORE_CALL TTL_CTR_V); } if (V_N_VALS(vs_prop_[current_cs->reif_var_id]) == 1) { if (V_MIN(vs_prop_[current_cs->reif_var_id]) == 1) { linear_var_prop(vs_per_c_idx, c_consts, vs_prop_, current_cs, vs_id_to_prop_, prop_ok, terms_mem CS_IGNORE_CALL TTL_CTR_V); } else { linear_var_prop_opposite(vs_per_c_idx, c_consts, vs_prop_, current_cs, vs_id_to_prop_, prop_ok, terms_mem CS_IGNORE_CALL TTL_CTR_V); } #if CL_STATS == 1 *propagated = true; #endif } } else { linear_var_prop(vs_per_c_idx, c_consts, vs_prop_, current_cs, vs_id_to_prop_, prop_ok, terms_mem CS_IGNORE_CALL TTL_CTR_V); #if CL_STATS == 1 *propagated = true; #endif } #endif } #endif