/* * exactly.c * * Created on: 12/03/2017 * Author: pedro */ #ifndef __OPENCL_VERSION__ #include #include #include "exactly.h" #include "../bitmaps.h" #include "../config.h" #include "../variables.h" #endif #include "../kernels/cl_aux_functions.h" #if CL_D_TYPE == CL_BITMAP #include "../kernels/cl_bitmaps.h" #elif CL_D_TYPE == CL_INTERVAL #include "../kernels/cl_intervals.h" #endif #include "../kernels/cl_constraints.h" #include "../kernels/cl_variables.h" #include "../kernels/cl_ttl.h" #ifndef __OPENCL_VERSION__ /* * Creates a new constraint of the exactly type and return the constraint ID * #{i | X[i] = k} = c * X_ids - vector with the ID of the variables that may contain k * n_vs - maximum number of variables in X vector * c - number of variables in X that must contain k * k - Value that should be in X[i] domain */ unsigned int c_exactly(unsigned int* X_ids, unsigned int n_vs, unsigned int c, unsigned int k) { unsigned int i; // set to include in kernel compilation USE_CS[EXACTLY] = 1; USE_NON_CS_REIFI[EXACTLY] = 1; REV = 1; unsigned int* c_vs = malloc(n_vs * sizeof(unsigned int)); for (i = 0; i < n_vs; i++) { c_vs[i] = X_ids[i]; } int consts[2]; consts[0] = (int)k; consts[1] = (int)c; // creates a new generic constraint unsigned int c_id = c_new(c_vs, n_vs, consts, 2, -1); // pointers to this type of constraint functions CS[c_id].kind = EXACTLY; CS[c_id].check_sol_f = &exactly_check; CS[c_id].constant_val = 0; free(c_vs); return c_id; } /* * Creates a new reified constraint of the exactly type and return the constraint ID * #{i | X[i] = k} = c * X_ids - vector with the ID of the variables that may contain k * n_vs - maximum number of variables in X vector * c - number of variables in X that must contain k * k - Value that should be in X[i] domain * reif_v_id - ID of the reification variable */ unsigned int c_exactly_reif(unsigned int* X_ids, unsigned int n_vs, unsigned int c, unsigned int k, int reif_v_id) { unsigned int i; if (VS[reif_v_id].max > 1) { v_del_gt(&VS[reif_v_id], 1); if (VS[reif_v_id].n_vals == 0) { fprintf(stderr, "\nError: Constraint EXACTLY_REIF makes model inconsistent at creation:\n"); exit(-1); } } // set to include in kernel compilation USE_CS[EXACTLY] = 1; USE_CS_REIFI[EXACTLY] = 1; REV = 1; unsigned int* c_vs = malloc(n_vs * sizeof(unsigned int)); for (i = 0; i < n_vs; i++) { c_vs[i] = X_ids[i]; } int consts[2]; consts[0] = (int)k; consts[1] = (int)c; // creates a new generic constraint unsigned int c_id = c_new(c_vs, n_vs, consts, 2, reif_v_id); // pointers to this type of constraint functions CS[c_id].kind = EXACTLY; CS[c_id].check_sol_f = &exactly_check; CS[c_id].constant_val = 0; free(c_vs); return c_id; } /* * Return true if the exactly constraint is respected or false if not * #{i | X[i] = k} = c * c - constraint to check if is respected * explored - if the CSP was already explored, which mean that all the variables must already be singletons * */ bool exactly_check(constr* c, bool explored) { var** X = c->c_vs; var* x; int k = c->c_consts[0]; int co = c->c_consts[1]; int set = 0; unsigned int i; for (i = 0; i < c->n_c_vs; i++) { x = X[i]; #if CHECK_SOL_N_VALS if (x->to_label && x->n_vals != 1) { if (explored) { fprintf(stderr, "\nError: Constraint EXACTLY (%d) not respected:\n", c->c_id); for (i = 0; i < c->n_c_vs; i++) { fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[i]->v_id, b_get_min_val(&c->c_vs[i]->domain_b), b_get_max_val(&c->c_vs[i]->domain_b), b_cnt_vals(&c->c_vs[i]->domain_b)); } } return false; } else #endif if (x->min == k) { set++; } } // if more than c variables are set to k if (set != co) { if (explored) { fprintf(stderr, "\nError: Constraint EXACTLY (%d) not respected:\n", c->c_id); for (i = 0; i < c->n_c_vs; i++) { fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[i]->v_id, b_get_min_val(&c->c_vs[i]->domain_b), b_get_max_val(&c->c_vs[i]->domain_b), b_cnt_vals(&c->c_vs[i]->domain_b)); } } return false; } return true; } #endif #if CS_EXACTLY == 1 /* * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID exactly constraint * #{i | X[i] = k} = c * prop_ok will be set to 1 if success or to 0 if any domain became empty * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * c_consts - vector with all constrained constants per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * prop_v_id - variable ID to propagate * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate */ CUDA_FUNC void exactly_prop(CL_INTS_MEM int* vs_per_c_idx, CL_INTS_MEM int* c_consts, CL_MEMORY VARS_PROP* vs_prop_, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_, bool* prop_ok CS_IGNORE_FUNC TTL_CTR) { int k = c_consts[0]; int c = c_consts[1]; int set = 0; int possible = 0; bool contains; bool changed = 0; int x_id; int i; for (i = 0; i < current_cs->n_c_vs; i++) { CHECK_TTL(ttl_ctr, 57) x_id = vs_per_c_idx[i]; // if more than c variables are already set to k, return 0 if (V_N_VALS(vs_prop_[x_id]) == 1 && V_MIN(vs_prop_[x_id]) == k) { if (++set > c) { *prop_ok = 0; return; } // number of variables that may be set to k } else { cl_v_contains_val_m(&contains, &vs_prop_[x_id], k TTL_CTR_V); if (contains) { possible++; } } } // if there are not enough variables to set to k if (set + possible < c) { *prop_ok = 0; return; } // if the sum of the variables that contain k are c, assign all of them to k if (set + possible == c) { for (i = 0; possible > 0; i++) { CHECK_TTL(ttl_ctr, 58) x_id = vs_per_c_idx[i]; if (V_N_VALS(vs_prop_[x_id]) > 1) { cl_v_contains_val_m(&contains, &vs_prop_[x_id], k TTL_CTR_V); if (contains) { cl_v_del_all_except_val_m(&changed, &vs_prop_[x_id], k TTL_CTR_V); possible--; v_add_to_prop(vs_id_to_prop_, vs_prop_, x_id); } } } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } // if all the variables already assigned to k are c, remove k from the other variables if (set == c) { for (i = 0; possible > 0; i++) { CHECK_TTL(ttl_ctr, 59) x_id = vs_per_c_idx[i]; if (V_N_VALS(vs_prop_[x_id]) > 1) { cl_v_del_val_m(&changed, &vs_prop_[x_id], k TTL_CTR_V); if (changed) { possible--; v_add_to_prop(vs_id_to_prop_, vs_prop_, x_id); } } } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } } #if CS_R_EXACTLY == 1 /* * Validate exactly constraint to be normally propagated, when reified * #{i | X[i] = k} = c * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * c_consts - vector with all constrained constants per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate */ CUDA_FUNC void exactly_reif( CL_INTS_MEM int* vs_per_c_idx, CL_INTS_MEM int* c_consts, CL_MEMORY VARS_PROP* vs_prop_, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_ CS_IGNORE_FUNC TTL_CTR ) { int k = c_consts[0]; int c = c_consts[1]; int set = 0; int possible = 0; bool contains; int x_id; int i; for (i = 0; i < current_cs->n_c_vs; i++) { CHECK_TTL(ttl_ctr, 60) x_id = vs_per_c_idx[i]; // if more than c variables are already set to k if (V_N_VALS(vs_prop_[x_id]) == 1 && V_MIN(vs_prop_[x_id]) == k) { if (++set > c) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } // number of variables that may be set to k } else { cl_v_contains_val_m(&contains, &vs_prop_[x_id], k TTL_CTR_V); if (contains) { possible++; } } } // if there are not enough variables to set to k if (set + possible < c) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } // constraint already fixed if (set == c && possible == 0) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 0 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } } /* * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID exactly opposite constraint * #{i | X[i] = k} != c * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * c_consts - vector with all constrained constants per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * prop_v_id - variable ID to propagate * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate */ CUDA_FUNC void exactly_prop_opposite(CL_INTS_MEM int* vs_per_c_idx, CL_INTS_MEM int* c_consts, CL_MEMORY VARS_PROP* vs_prop_, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_ CS_IGNORE_FUNC TTL_CTR) { int k = c_consts[0]; int c = c_consts[1]; int set = 0; int possible = 0; bool contains; bool changed = 0; int x_id; int i; for (i = 0; i < current_cs->n_c_vs; i++) { CHECK_TTL(ttl_ctr, 57) x_id = vs_per_c_idx[i]; // if more than c variables are already set to k, return 1 if (V_N_VALS(vs_prop_[x_id]) == 1 && V_MIN(vs_prop_[x_id]) == k) { if (++set > c) { return; } // number of variables that may be set to k } else { cl_v_contains_val_m(&contains, &vs_prop_[x_id], k TTL_CTR_V); if (contains) { possible++; } } } // if there are not enough variables to set to k if (set + possible < c) { #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } // if the sum of the variables that are set to c are c and that contain c are c+1, assign it to k if (set == c && possible == 1) { for (i = 0; possible > 0; i++) { CHECK_TTL(ttl_ctr, 58) x_id = vs_per_c_idx[i]; if (V_N_VALS(vs_prop_[x_id]) > 1) { cl_v_contains_val_m(&contains, &vs_prop_[x_id], k TTL_CTR_V); if (contains) { cl_v_del_all_except_val_m(&changed, &vs_prop_[x_id], k TTL_CTR_V); possible--; v_add_to_prop(vs_id_to_prop_, vs_prop_, x_id); } } } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } } #endif CUDA_FUNC void exactly_propagate(CL_INTS_MEM int* vs_per_c_idx, CL_INTS_MEM int* c_consts, CL_MEMORY VARS_PROP* vs_prop_, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_, bool* prop_ok PROPAGATED_FUNC CS_IGNORE_FUNC TTL_CTR) { #if CS_R_EXACTLY == 0 exactly_prop(vs_per_c_idx, c_consts, vs_prop_, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); #if CL_STATS == 1 *propagated = true; #endif #elif CS_R_EXACTLY == 1 if (current_cs->reified == 1) { if (V_N_VALS(vs_prop_[current_cs->reif_var_id]) > 1) { exactly_reif(vs_per_c_idx, c_consts, vs_prop_, current_cs, vs_id_to_prop_ CS_IGNORE_CALL TTL_CTR_V); } else { if (V_MIN(vs_prop_[current_cs->reif_var_id]) == 1) { exactly_prop(vs_per_c_idx, c_consts, vs_prop_, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); } else { exactly_prop_opposite(vs_per_c_idx, c_consts, vs_prop_, current_cs, vs_id_to_prop_ CS_IGNORE_CALL TTL_CTR_V); } #if CL_STATS == 1 *propagated = true; #endif } } else { exactly_prop(vs_per_c_idx, c_consts, vs_prop_, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); #if CL_STATS == 1 *propagated = true; #endif } #endif } #endif