/* * element_int_var.c * * Created on: 17/04/2018 * Author: pedro */ #ifndef __OPENCL_VERSION__ #include #include #include "element_int_var.h" #include "../bitmaps.h" #include "../config.h" #include "../variables.h" #endif #include "../kernels/cl_aux_functions.h" #if CL_D_TYPE == CL_BITMAP #include "../kernels/cl_bitmaps.h" #elif CL_D_TYPE == CL_INTERVAL #include "../kernels/cl_intervals.h" #endif #include "../kernels/cl_constraints.h" #include "../kernels/cl_variables.h" #include "../kernels/cl_ttl.h" #ifndef __OPENCL_VERSION__ /* * Creates a new constraint of the element_int_var type and return the constraint ID * 1 ≤ y <= n ∧ K[y] = z * K - vector with the integers whose index may be in the domain of y variable * n_consts - number of integers in K vector * y_id - ID of the variable whose domain are the index of the variables in elements vector * z_id - ID of the variable that should contain all the values in K[y] */ unsigned int c_element_int_var(int* K, unsigned int n_consts, unsigned int y_id, unsigned int z_id) { var* y = &VS[y_id]; if (y->max > n_consts) { v_del_gt(y, (int)n_consts); if (y->n_vals == 0) { fprintf(stderr, "\nError: Constraint ELEMENT_INT_VAR makes model inconsistent at creation:\n"); exit(-1); } } if (y->min == 0) { v_del_val(y, 0); if (y->n_vals == 0) { fprintf(stderr, "\nError: Constraint ELEMENT_INT_VAR makes model inconsistent at creation:\n"); exit(-1); } } // set to include in kernel compilation USE_CS[ELEMENT_INT_VAR] = 1; USE_NON_CS_REIFI[ELEMENT_INT_VAR] = 1; REV = 1; unsigned int c_vs[2]; c_vs[0] = y_id; c_vs[1] = z_id; // creates a new generic constraint unsigned int c_id = c_new(c_vs, 2, K, n_consts, -1); // pointers to this type of constraint functions CS[c_id].kind = ELEMENT_INT_VAR; CS[c_id].check_sol_f = &element_int_var_check; CS[c_id].constant_val = 0; return c_id; } /* * Creates a new reified constraint of the element_int_var type and return the constraint ID * 1 ≤ y <= n ∧ K[y] = z * K - vector with the integers whose index may be in the domain of y variable * n_consts - number of integers in K vector * y_id - ID of the variable whose domain are the index of the variables in elements vector * z_id - ID of the variable that should contain all the values in K[y] */ unsigned int c_element_int_var_reif(int* K, unsigned int n_consts, unsigned int y_id, unsigned int z_id, int reif_v_id) { var* y = &VS[y_id]; if (VS[reif_v_id].max > 1) { v_del_gt(&VS[reif_v_id], 1); if (VS[reif_v_id].n_vals == 0) { fprintf(stderr, "\nError: Constraint ELEMENT_INT_VAR_REIF makes model inconsistent at creation:\n"); exit(-1); } } if (y->max > n_consts) { v_del_gt(y, (int)n_consts); if (y->n_vals == 0) { fprintf(stderr, "\nError: Constraint ELEMENT_INT_VAR makes model inconsistent at creation:\n"); exit(-1); } } if (y->min == 0) { v_del_val(y, 0); if (y->n_vals == 0) { fprintf(stderr, "\nError: Constraint ELEMENT_INT_VAR makes model inconsistent at creation:\n"); exit(-1); } } // set to include in kernel compilation USE_CS[ELEMENT_INT_VAR] = 1; USE_CS_REIFI[ELEMENT_INT_VAR] = 1; REV = 1; unsigned int c_vs[2]; c_vs[0] = y_id; c_vs[1] = z_id; // creates a new generic constraint unsigned int c_id = c_new(c_vs, 2, K, n_consts, reif_v_id); // pointers to this type of constraint functions CS[c_id].kind = ELEMENT_INT_VAR; CS[c_id].check_sol_f = &element_int_var_check; CS[c_id].constant_val = 0; return c_id; } /* * Return true if the element_int_var constraint is respected or false if not * 1 ≤ y <= n ∧ K[y] = z * c - constraint to check if is respected * explored - if the CSP was already explored, which mean that all the variables must already be singletons * */ bool element_int_var_check(constr* c, bool explored) { int* K = c->c_consts; var* y = c->c_vs[0]; var* z = c->c_vs[1]; if ( #if CHECK_SOL_N_VALS (y->to_label && y->n_vals != 1) || (z->to_label && z->n_vals != 1) || #endif K[y->min - 1] != z->min) { if (explored) { fprintf(stderr, "\nError: Constraint ELEMENT_INT_VAR (%u) not respected:\n", c->c_id); fprintf(stderr, "Constant value=%u\n\n", K[y->min - 1]); fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", y->v_id_print, b_get_min_val(&y->domain_b), b_get_max_val(&y->domain_b), b_cnt_vals(&y->domain_b)); fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", z->v_id_print, b_get_min_val(&z->domain_b), b_get_max_val(&z->domain_b), b_cnt_vals(&z->domain_b)); } return false; } return true; } #endif #if CS_ELEMENT_INT_VAR == 1 /* * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID element_int_var constraint * 1 ≤ y <= n ∧ K[y] = z * prop_ok will be set to 1 if success or to 0 if any domain became empty * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * prop_v_id - variable ID to propagate * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate */ #if CS_IGNORE == 0 #ifndef __OPENCL_VERSION__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" #endif #endif CUDA_FUNC void element_int_var_prop(CL_INTS_MEM int* vs_per_c_idx, CL_INTS_MEM int* c_consts, CL_MEMORY VARS_PROP* vs_prop_, unsigned int prop_v_id, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_, bool* prop_ok, __global int* terms_mem CS_IGNORE_FUNC TTL_CTR) { int y_id = vs_per_c_idx[0]; // ID of the variable whose domain are the index of the constants vector int z_id = vs_per_c_idx[1]; // ID of the variable that should contain all the values in all the K[y] CL_INTS_MEM int* K = c_consts; // constants constrained by this constraint int k_id_min, k_id_max; int z_n_vals; __global int* consts_y = terms_mem; __global int* consts_z = &terms_mem[CL_D_MAX + 1]; int val; DOMAIN_ d; bool empty; bool contains; bool changed; int i, j, k; // y to prop if (V_N_VALS(vs_prop_[y_id]) == 1) { cl_v_del_all_except_val_m(&changed, &vs_prop_[z_id], K[V_MIN(vs_prop_[y_id]) - 1] TTL_CTR_V); if (changed) { if (V_N_VALS(vs_prop_[z_id]) == 0) { *prop_ok = 0; return; } v_add_to_prop(vs_id_to_prop_, vs_prop_, z_id); } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } k_id_min = V_MIN(vs_prop_[y_id]) - 1; // minimum ID of the constant included in K k_id_max = V_MAX(vs_prop_[y_id]) - 1; // maximum ID of the constant included in K // if z is to prop and is singleton (and y is not), remove from y all the indexes of constants that are not in z domain if (V_N_VALS(vs_prop_[z_id]) == 1) { val = V_MIN(vs_prop_[z_id]); j = 0; for (i = k_id_min; i <= k_id_max; i++) { if (val == K[i]) { consts_y[j++] = i + 1; } } if (j == 0) { *prop_ok = 0; return; } cl_d_new_vals_pg(&d, consts_y, j TTL_CTR_V); cl_d_intersect_d_mp(&changed, &vs_prop_[y_id].prop_d, &d TTL_CTR_V); if (changed) { // if the intersection between the domains of K[y] and z is empty cl_d_is_empty_m(&empty, &vs_prop_[y_id].prop_d TTL_CTR_V); if (empty) { *prop_ok = 0; return; } cl_v_calc_min_val_m(&vs_prop_[y_id] TTL_CTR_V); cl_v_calc_max_val_m(&vs_prop_[y_id] TTL_CTR_V); cl_v_cnt_vals_m(&vs_prop_[y_id] TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } //y and z are not singleton j = 0; for (i = k_id_min; i <= k_id_max; i++) { CHECK_TTL(ttl_ctr, 55) cl_v_contains_val_m(&contains, &vs_prop_[y_id], i + 1 TTL_CTR_V); if (contains) { consts_y[j++] = K[i]; } } if (j == 0) { *prop_ok = 0; return; } cl_d_new_vals_pg(&d, consts_y, j TTL_CTR_V); bool equal; cl_ds_equal_pm(&equal, &d, &vs_prop_[z_id].prop_d TTL_CTR_V); if (!equal) { // prop_v_id = y_id if (prop_v_id == (unsigned int)y_id) { cl_d_intersect_d_mp(&changed, &vs_prop_[z_id].prop_d, &d TTL_CTR_V); if (changed) { // if the intersection between the domains of K[y] and z is empty cl_d_is_empty_m(&empty, &vs_prop_[z_id].prop_d TTL_CTR_V); if (empty) { *prop_ok = 0; return; } cl_v_calc_min_val_m(&vs_prop_[z_id] TTL_CTR_V); cl_v_calc_max_val_m(&vs_prop_[z_id] TTL_CTR_V); cl_v_cnt_vals_m(&vs_prop_[z_id] TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, z_id); } return; } // prop_v_id = z_id cl_d_intersect_d_pm(&changed, &d, &vs_prop_[z_id].prop_d TTL_CTR_V); if (changed) { cl_d_is_empty_n(&empty, &d TTL_CTR_V); if (empty) { *prop_ok = 0; return; } z_n_vals = V_N_VALS(vs_prop_[z_id]); cl_d_get_nth_vals_m3(&vs_prop_[z_id].prop_d, 1, z_n_vals, consts_z TTL_CTR_V); for (i = k_id_min; i <= k_id_max; i++) { CHECK_TTL(ttl_ctr, 55) for (k = 0; k < z_n_vals; k++) { if (consts_z[k] == K[i]) { break; } } if (k == z_n_vals) { cl_v_del_val_m(&changed, &vs_prop_[y_id], i + 1 TTL_CTR_V); if (changed) { if (V_N_VALS(vs_prop_[y_id]) == 0) { *prop_ok = 0; return; } v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } } } } } } #ifndef __OPENCL_VERSION__ #if CS_IGNORE == 0 #pragma GCC diagnostic pop #endif #endif #if CS_R_ELEMENT_INT_VAR == 1 /* * Validate element_int_var constraint to be normally propagated, when reified * 1 ≤ y <= n ∧ K[y] = z * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate */ CUDA_FUNC void element_int_var_reif( CL_INTS_MEM int* vs_per_c_idx, CL_INTS_MEM int* c_consts, CL_MEMORY VARS_PROP* vs_prop_, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_ CS_IGNORE_FUNC TTL_CTR) { int y_id = vs_per_c_idx[0]; // ID of the variable whose domain are the index of the constants vector int z_id = vs_per_c_idx[1]; // ID of the variable that should contain all the values in all the K[y] CL_INTS_MEM int* K = c_consts; // constants constrained by this constraint if (V_N_VALS(vs_prop_[y_id]) == 1 && V_N_VALS(vs_prop_[z_id]) == 1) { if (V_MIN(vs_prop_[z_id]) == K[V_MIN(vs_prop_[y_id]) - 1]) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 0 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); } else { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } } /* * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID element_int_var opposite constraint * 1 ≤ y <= n ∧ K[y] = z * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * prop_v_id - variable ID to propagate * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate */ #if CS_IGNORE == 0 #ifndef __OPENCL_VERSION__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" #endif #endif CUDA_FUNC void element_int_var_prop_opposite(CL_INTS_MEM int* vs_per_c_idx, CL_INTS_MEM int* c_consts, CL_MEMORY VARS_PROP* vs_prop_, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_, bool* prop_ok CS_IGNORE_FUNC TTL_CTR) { int y_id = vs_per_c_idx[0]; // ID of the variable whose domain are the index of the constants vector int z_id = vs_per_c_idx[1]; // ID of the variable that should contain all the values in all the K[y] CL_INTS_MEM int* K = c_consts; // constants constrained by this constraint bool changed; if (V_N_VALS(vs_prop_[y_id]) == 1) { cl_v_del_val_m(&changed, &vs_prop_[z_id], K[V_MIN(vs_prop_[y_id]) - 1] TTL_CTR_V); if (changed) { // if the intersection between the domains of K[y] and z is empty if (V_IS_EMPTY(vs_prop_[z_id])) { *prop_ok = 0; return; } v_add_to_prop(vs_id_to_prop_, vs_prop_, z_id); } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } } #if CS_IGNORE == 0 #ifndef __OPENCL_VERSION__ #pragma GCC diagnostic pop #endif #endif #endif CUDA_FUNC void element_int_var_propagate(CL_INTS_MEM int* vs_per_c_idx, CL_INTS_MEM int* c_consts, CL_MEMORY VARS_PROP* vs_prop_, unsigned int prop_v_id, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_, bool* prop_ok, __global int* terms_mem PROPAGATED_FUNC CS_IGNORE_FUNC TTL_CTR) { #if CS_R_ELEMENT_INT_VAR == 0 element_int_var_prop(vs_per_c_idx, c_consts, vs_prop_, prop_v_id, current_cs, vs_id_to_prop_, prop_ok, terms_mem CS_IGNORE_CALL TTL_CTR_V); #if CL_STATS == 1 *propagated = true; #endif #elif CS_R_ELEMENT_INT_VAR == 1 if (current_cs->reified == 1) { if (prop_v_id != current_cs->reif_var_id) { if (V_N_VALS(vs_prop_[current_cs->reif_var_id]) > 1) { element_int_var_reif(vs_per_c_idx, c_consts, vs_prop_, current_cs, vs_id_to_prop_ CS_IGNORE_CALL TTL_CTR_V); } else { if (V_MIN(vs_prop_[current_cs->reif_var_id]) == 1) { element_int_var_prop(vs_per_c_idx, c_consts, vs_prop_, prop_v_id, current_cs, vs_id_to_prop_, prop_ok, terms_mem CS_IGNORE_CALL TTL_CTR_V); } else { element_int_var_prop_opposite(vs_per_c_idx, c_consts, vs_prop_, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); } #if CL_STATS == 1 *propagated = true; #endif } } } else { element_int_var_prop(vs_per_c_idx, c_consts, vs_prop_, prop_v_id, current_cs, vs_id_to_prop_, prop_ok, terms_mem CS_IGNORE_CALL TTL_CTR_V); #if CL_STATS == 1 *propagated = true; #endif } #endif } #endif