/* * sum_prod.c * * Created on: 14/03/2017 * Author: pedro */ #ifndef __OPENCL_VERSION__ #include #include #include "sum_prod.h" #include "../bitmaps.h" #include "../config.h" #include "../variables.h" #endif #include "../kernels/cl_aux_functions.h" #if CL_D_TYPE == CL_BITMAP #include "../kernels/cl_bitmaps.h" #elif CL_D_TYPE == CL_INTERVAL #include "../kernels/cl_intervals.h" #endif #include "../kernels/cl_constraints.h" #include "../kernels/cl_variables.h" #include "../kernels/cl_ttl.h" #ifndef __OPENCL_VERSION__ /* * Creates a new constraint of the sum type and return the constraint ID * X . Y = k * X_ids - vector with the ID of the X variables * n_vs - maximum number of variables in X (equal to y) vector * Y_ids - vector with the ID of the Y variables * k - value of the product */ unsigned int c_sum_prod(unsigned int* X_ids, unsigned int* Y_ids, unsigned int n_vs, unsigned int k) { unsigned int i; // set to include in kernel compilation USE_CS[SUM_PROD] = 1; USE_NON_CS_REIFI[SUM_PROD] = 1; REV = 1; unsigned int* c_vs = malloc((n_vs * 2) * sizeof(unsigned int)); for (i = 0; i < n_vs; i++) { c_vs[i] = X_ids[i]; } for (; i < n_vs * 2; i++) { c_vs[i] = Y_ids[i - n_vs]; } // creates a new generic constraint unsigned int c_id = c_new(c_vs, n_vs * 2, NULL, 0, -1); // pointers to this type of constraint functions CS[c_id].kind = SUM_PROD; CS[c_id].check_sol_f = &sum_prod_check; CS[c_id].constant_val = (int)k; free(c_vs); return c_id; } /* * Creates a new reified constraint of the sum type and return the constraint ID * X . Y = k * X_ids - vector with the ID of the X variables * n_vs - maximum number of variables in X (equal to y) vector * Y_ids - vector with the ID of the Y variables * k - value of the product * reif_v_id - ID of the reification variable */ unsigned int c_sum_prod_reif(unsigned int* X_ids, unsigned int* Y_ids, unsigned int n_vs, unsigned int k, int reif_v_id) { unsigned int i; if (VS[reif_v_id].max > 1) { v_del_gt(&VS[reif_v_id], 1); if (VS[reif_v_id].n_vals == 0) { fprintf(stderr, "\nError: Constraint SUM_PROD_REIF makes model inconsistent at creation:\n"); exit(-1); } } // set to include in kernel compilation USE_CS[SUM_PROD] = 1; USE_CS_REIFI[SUM_PROD] = 1; REV = 1; unsigned int* c_vs = malloc((n_vs * 2) * sizeof(unsigned int)); for (i = 0; i < n_vs; i++) { c_vs[i] = X_ids[i]; } for (; i < n_vs * 2; i++) { c_vs[i] = Y_ids[i - n_vs]; } // creates a new generic constraint unsigned int c_id = c_new(c_vs, n_vs * 2, NULL, 0, reif_v_id); // pointers to this type of constraint functions CS[c_id].kind = SUM_PROD; CS[c_id].check_sol_f = &sum_prod_check; CS[c_id].constant_val = (int)k; free(c_vs); return c_id; } /* * Return true if the sum constraint is respected or false if not * X . Y = k * c - constraint to check if is respected * explored - if the CSP was already explored, which mean that all the variables must already be singletons * */ bool sum_prod_check(constr* c, bool explored) { var** X = c->c_vs; var* x; int terms = c->n_c_vs / 2; var** Y = c->c_vs + terms; var* y; int k = c->constant_val; int sum = 0; int i; for (i = 0; i < terms; i++) { x = X[i]; y = Y[i]; #if CHECK_SOL_N_VALS if ((x->to_label && x->n_vals == 1) || (y->to_label && y->n_vals == 1)) { if (explored) { fprintf(stderr, "\nError: Constraint SUM_PROD (%d) not respected:\n", c->c_id); for (i = 0; i < c->n_c_vs; i++) { fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[i]->v_id, b_get_min_val(&c->c_vs[i]->domain_b), b_get_max_val(&c->c_vs[i]->domain_b), b_cnt_vals(&c->c_vs[i]->domain_b)); } } return false; } #endif sum += x->min * y->min; } if (sum != k) { if (explored) { fprintf(stderr, "\nError: Constraint SUM_PROD (%d) not respected:\n", c->c_id); for (i = 0; i < c->n_c_vs; i++) { fprintf(stderr, "Variable ID=%u -> minimum=%u, maximum=%u, number of values=%u\n\n", c->c_vs[i]->v_id, b_get_min_val(&c->c_vs[i]->domain_b), b_get_max_val(&c->c_vs[i]->domain_b), b_cnt_vals(&c->c_vs[i]->domain_b)); } } return false; } return true; } #endif #if CS_SUM_PROD == 1 /* * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID sum_prod constraint * X . Y = k * prop_ok will be set to 1 if success or to 0 if any domain became empty * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * prop_v_id - variable ID to propagate * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate */ CUDA_FUNC void sum_prod_prop(CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_, bool* prop_ok CS_IGNORE_FUNC TTL_CTR) { int terms = current_cs->n_c_vs / 2; int k = current_cs->constant_val; int x_id; int y_id; int min, max; bool changed = 0; int i; // if the sum of the minimum of the products is greater than k min = 0; for (i = 0; i < terms; i++) { CHECK_TTL(ttl_ctr, 90) x_id = vs_per_c_idx[i]; y_id = vs_per_c_idx[terms + i]; min += V_MIN(vs_prop_[x_id]) * V_MIN(vs_prop_[y_id]); if (min > k) { *prop_ok = 0; return; } } // if the sum of the maximum of the products is lesser than k max = 0; for (i = 0; i < terms; i++) { CHECK_TTL(ttl_ctr, 91) x_id = vs_per_c_idx[i]; y_id = vs_per_c_idx[terms + i]; max += V_MAX(vs_prop_[x_id]) * V_MAX(vs_prop_[y_id]); } if (max < k) { *prop_ok = 0; return; } // poor man's propagation if (min == k) { for (i = 0; i < terms; i++) { CHECK_TTL(ttl_ctr, 92) x_id = vs_per_c_idx[i]; y_id = vs_per_c_idx[terms + i]; if (V_N_VALS(vs_prop_[x_id]) > 1) { if (V_MIN(vs_prop_[y_id]) != 0) { cl_v_del_gt_m(&changed, &vs_prop_[x_id], V_MIN(vs_prop_[x_id]) TTL_CTR_V); if (changed) { v_add_to_prop(vs_id_to_prop_, vs_prop_, x_id); } } if (V_MIN(vs_prop_[x_id]) != 0) { cl_v_del_gt_m(&changed, &vs_prop_[y_id], V_MIN(vs_prop_[y_id]) TTL_CTR_V); if (changed) { v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } } } } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } if (max == k) { for (i = 0; i < terms; i++) { CHECK_TTL(ttl_ctr, 93) x_id = vs_per_c_idx[i]; y_id = vs_per_c_idx[terms + i]; if (V_N_VALS(vs_prop_[x_id]) > 1) { if (V_MAX(vs_prop_[x_id]) != 0 && V_MAX(vs_prop_[y_id]) != 0) { cl_v_del_lt_m(&changed, &vs_prop_[x_id], V_MAX(vs_prop_[x_id]) TTL_CTR_V); if (changed) { v_add_to_prop(vs_id_to_prop_, vs_prop_, x_id); } cl_v_del_lt_m(&changed, &vs_prop_[y_id], V_MAX(vs_prop_[y_id]) TTL_CTR_V); if (changed) { v_add_to_prop(vs_id_to_prop_, vs_prop_, y_id); } } } } #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } } #if CS_R_SUM_PROD == 1 /* * Validate sum_prod constraint to be normally propagated, when reified * X . Y = k * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate */ CUDA_FUNC void sum_prod_reif( CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_ CS_IGNORE_FUNC TTL_CTR) { int terms = current_cs->n_c_vs / 2; int k = current_cs->constant_val; int x_id; int y_id; int min, max; bool all_singl = true; int i; // if the sum of the minimum of the products is greater than k min = 0; for (i = 0; i < terms; i++) { CHECK_TTL(ttl_ctr, 94) x_id = vs_per_c_idx[i]; y_id = vs_per_c_idx[terms + i]; min += V_MIN(vs_prop_[x_id]) * V_MIN(vs_prop_[y_id]); if (V_N_VALS(vs_prop_[x_id]) != 1) { all_singl = false; } if (min > k) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } } if (all_singl && min == k) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 0 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif return; } // if the sum of the maximum of the products is lesser than k max = 0; for (i = 0; i < terms; i++) { CHECK_TTL(ttl_ctr, 95) x_id = vs_per_c_idx[i]; y_id = vs_per_c_idx[terms + i]; max += V_MAX(vs_prop_[x_id]) * V_MAX(vs_prop_[y_id]); } if (max < k) { cl_v_bool_del_val_m(&vs_prop_[current_cs->reif_var_id], 1 TTL_CTR_V); v_add_to_prop(vs_id_to_prop_, vs_prop_, convert_int(current_cs->reif_var_id)); #if CL_CS_IGNORE cs_ignore[current_cs->c_id] = 1; #endif } } /* * Propagate the domain of the variable with the ID prop_v_id through all the other variables on the same c_numb ID sum_prod constraint * X . Y != k * vs_per_c_idx - vector with all constrained variables ID per constraint, per constraint ID order * vs_prop_ - all CSP variables with current step values * prop_v_id - variable ID to propagate * current_cs - constraint that should be propagated for the variable with prop_v_id ID * vs_id_to_prop_ - circular vector with the ids of the variables to propagate */ CUDA_FUNC void sum_prod_prop_opposite(CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, CL_CS_MEM cl_constr* current_cs, bool* prop_ok TTL_CTR) { int terms = current_cs->n_c_vs / 2; int k = current_cs->constant_val; int x_id; int y_id; int min, max; int i; // if the sum of the minimum of the products is equal to k min = 0; max = 0; for (i = 0; i < terms; i++) { CHECK_TTL(ttl_ctr, 228) x_id = vs_per_c_idx[i]; y_id = vs_per_c_idx[terms + i]; min += V_MIN(vs_prop_[x_id]) * V_MIN(vs_prop_[y_id]); max += V_MAX(vs_prop_[x_id]) * V_MAX(vs_prop_[y_id]); } if (min == max && max == k) { *prop_ok = 0; return; } } #endif CUDA_FUNC void sum_prod_propagate(CL_INTS_MEM int* vs_per_c_idx, CL_MEMORY VARS_PROP* vs_prop_, CL_CS_MEM cl_constr* current_cs, CL_MEMORY unsigned short* vs_id_to_prop_, bool* prop_ok PROPAGATED_FUNC CS_IGNORE_FUNC TTL_CTR) { #if CS_R_SUM_PROD == 0 sum_prod_prop(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); #if CL_STATS == 1 *propagated = true; #endif #elif CS_R_SUM_PROD == 1 if (current_cs->reified == 1) { if (V_N_VALS(vs_prop_[current_cs->reif_var_id]) > 1) { sum_prod_reif(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_ CS_IGNORE_CALL TTL_CTR_V); } else { if (V_MIN(vs_prop_[current_cs->reif_var_id]) == 1) { sum_prod_prop(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); } else { sum_prod_prop_opposite(vs_per_c_idx, vs_prop_, current_cs, prop_ok TTL_CTR_V); } #if CL_STATS == 1 *propagated = true; #endif } } else { sum_prod_prop(vs_per_c_idx, vs_prop_, current_cs, vs_id_to_prop_, prop_ok CS_IGNORE_CALL TTL_CTR_V); #if CL_STATS == 1 *propagated = true; #endif } #endif } #endif