94b2b13d
Pedro Roque
PHACT source
|
1
2
3
4
|
/*
* langford.c
*
* Created on: 24/03/2017
|
4d26a735
Pedro Roque
Increased recogni...
|
5
|
* Author: pedro
|
94b2b13d
Pedro Roque
PHACT source
|
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
*
* http://www.csplib.org/Problems/prob024/
* https://github.com/MiniZinc/minizinc-benchmarks/tree/master/langford
* https://www.cril.univ-artois.fr/~lecoutre/benchmarks.html#
*
* Langford's number problem:
* Arrange 2 sets of positive integers 1..k to a sequence, such that, following the first occurrence of an integer i,
* each subsequent occurrence of i, appears i+1 indices later than the last.
* For example, for k=4, a solution would be 41312432
*/
#define LANGFORD 0
#include "langford.h"
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include "../config.h"
#include "../constraints/fake_all_different.h"
#include "../constraints/element.h"
|
4d26a735
Pedro Roque
Increased recogni...
|
28
|
#include "../constraints/lt.h"
|
94b2b13d
Pedro Roque
PHACT source
|
29
30
31
32
33
34
35
36
|
#include "../constraints/minus_eq.h"
#include "../split.h"
#include "../variables.h"
#if LANGFORD == 0
/*
* Solve the Langford number problem with N values
*/
|
4d26a735
Pedro Roque
Increased recogni...
|
37
|
void run_langford(int* csp_dims) {
|
94b2b13d
Pedro Roque
PHACT source
|
38
39
|
int n = csp_dims[0];
unsigned long result;
|
4d26a735
Pedro Roque
Increased recogni...
|
40
41
|
unsigned int* position = malloc((unsigned int)n * 2 * sizeof(unsigned int));
unsigned int* solution = malloc((unsigned int)n * 2 * sizeof(unsigned int));
|
94b2b13d
Pedro Roque
PHACT source
|
42
43
44
|
int i;
for (i = 0; i < n * 2; i++) {
|
4d26a735
Pedro Roque
Increased recogni...
|
45
|
position[i] = v_new_range(1, 2 * (unsigned int)n, true);
|
94b2b13d
Pedro Roque
PHACT source
|
46
47
|
}
for (i = 0; i < n * 2; i++) {
|
4d26a735
Pedro Roque
Increased recogni...
|
48
|
solution[i] = v_new_range(0, (unsigned int)n - 1, false);
|
94b2b13d
Pedro Roque
PHACT source
|
49
50
51
52
|
}
for (i = 0; i < n; i++) {
c_minus_eq(position[i + n], position[i], i + 2);
|
4d26a735
Pedro Roque
Increased recogni...
|
53
54
|
c_element(solution, 2 * (unsigned int)n, position[i], (unsigned int)i);
c_element(solution, 2 * (unsigned int)n, position[(unsigned int)n + (unsigned int)i], (unsigned int)i);
|
94b2b13d
Pedro Roque
PHACT source
|
55
56
|
}
|
4d26a735
Pedro Roque
Increased recogni...
|
57
58
|
c_fake_all_different(position, (unsigned int)n * 2);
c_lt(solution[0], solution[2 * (unsigned int)n - 1]);
|
94b2b13d
Pedro Roque
PHACT source
|
59
60
61
62
63
64
65
66
67
68
69
70
71
|
if (FINDING_ONE_SOLUTION) {
printf("\nFinding one solution for Langford's number with %u numbers on:\n", n);
} else {
printf("\nCounting all the solutions for Langford's number with %u numbers on:\n", n);
}
// Solve the CSP
result = solve_CSP();
if (FINDING_ONE_SOLUTION && result == 1) {
printf("Solution:\n");
|
4d26a735
Pedro Roque
Increased recogni...
|
72
|
vs_print_single_val(solution, (unsigned int)n * 2, 0);
|
94b2b13d
Pedro Roque
PHACT source
|
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
|
printf("\n");
} else {
printf("%lu solution(s) found\n", result);
}
free(position);
free(solution);
}
#elif LANGFORD == 1
/*
* Solve the Langford number problem with K sets and N values
*/
void run_langford(int* csp_dims) {
int k = csp_dims[0];
int n = csp_dims[1];
unsigned long result;
unsigned int* numbers = malloc(k * n * sizeof(unsigned int));
unsigned int* ordered = malloc(k * n * sizeof(unsigned int));
unsigned int i, j;
for (i = 0; i < k * n; i++) {
numbers[i] = v_new_range(0, k * n - 1, true);
}
c_fake_all_different(numbers, k * n);
// don't generate solutions which correspond to exchanging the
// positions of a number (and are, therefore, identical)
for (i = 0; i < n; i++) {
for (j = 0; j < k - 1; j++) {
c_minus_eq(numbers[i * k + j + 1], numbers[i * k + j], i + 2);
}
}
// don't generate symmetrical solutions
unsigned int first = v_new_range(1, k * n, true);
unsigned int last = v_new_range(1, k * n, true);
c_element(numbers, k * n, first, 0);
c_element(numbers, k * n, last, k * n - 1);
|
4d26a735
Pedro Roque
Increased recogni...
|
115
|
c_lt(first, last);
|
94b2b13d
Pedro Roque
PHACT source
|
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
|
if (FINDING_ONE_SOLUTION) {
printf("\nFinding one solution for Langford's number with N=%u and K=%u.\n", n, k);
} else {
printf("\nCounting all the solutions for Langford's number with N=%u and K=%u.\n", n, k);
}
// Solve the CSP
result = solve_CSP();
if (FINDING_ONE_SOLUTION && result == 1) {
printf("Solution:\n");
vs_print_single_val(numbers, k * n, 0);
for (i = 0; i < k * n; i++) {
ordered[v_get_value(i)] = i / k + 1;
}
for (i = 0; i < k * n; i++) {
printf("%d, ", ordered[i]);
}
printf("\n");
} else {
printf("%lu solution(s) found\n", result);
}
free(numbers);
free(ordered);
}
#endif
|