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Probability theory is mathematically the best understood paradigm for modeling and manip-
ulating uncertain information. Probabilities of complex events can be computed from those of
basic events on which they depend, using any of a number of strategies. Which strategy is
appropriate depends very much on the known interdependencies among the events involved.
Previous work on probabilistic databases has assumed a fixed and restrictive combination
strategy (e.g., assuming all events are pairwise independent). In this article, we characterize,
using postulates, whole classes of strategies for conjunction, disjunction, and negation,
meaningful from the viewpoint of probability theory. (1) We propose a probabilistic relational
data model and a generic probabilistic relational algebra that neatly captures various
strategies satisfying the postulates, within a single unified framework. (2) We show that as
long as the chosen strategies can be computed in polynomial time, queries in the positive
fragment of the probabilistic relational algebra have essentially the same data complexity as
classical relational algebra. (3) We establish various containments and equivalences between
algebraic expressions, similar in spirit to those in classical algebra. (4) We develop algorithms
for maintaining materialized probabilistic views. (5) Based on these ideas, we have developed
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a prototype probabilistic database system called ProbView on top of Dbase V.0. We validate
our complexity results with experiments and show that rewriting certain types of queries to
other equivalent forms often yields substantial savings.

Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Design—data
models; H.2.3 [Database Management]: Languages—query languages; H.2.4 [Database
Management]: Systems

General Terms: Algorithms, Languages, Performance, Theory

Additional Key Words and Phrases: Algebra, data complexity, performance evaluation, proba-
bilistic databases, view maintenance, query optimization, view maintenance

1. INTRODUCTION

Although it is now four years since Silberschatz et al. [1991, pp. 116–117]
stated that one of the important unsolved problems in databases is the
ability to smoothly and efficiently integrate models of uncertainty, progress
in this area has been surprisingly slow. Uncertainties occur in relational
databases in many ways, four of which we list in the following four sections
(1.1–1.4).

1.1 Uncertainty in Image Databases

In most image databases, image processing (IP) algorithms process surveil-
lance images and feed the results into a relational database. Consider, for
instance, a face database. In this case, given an image im1.gif, IP
algorithms do two things: they attempt to locate faces in the image file
im1.gif—this process is called segmentation—and they attempt to match
the faces segmented in the previous step to images in a mugshot database.
The result is placed in a relation:

face(Filename,LeftCorner_X,LeftCorner_

Y,RtCorner_X,RtCorner_Y,Person_Prob).

Tuples in this relation are allowed to have multiple person-probability
triples in the last argument. Three example tuples, tp

1, tp
2 and tp

3 are found in
Table I.

Tuple tp
1 says that a face occurs in the image file im1.gif and that the

rectangular box having the bottom-left corner at (5, 10) and top right
corner at (35, 40) contains a face (these coordinates are relative to the
bottom-left corner of the image file im1.gif according to a fixed pixel
numbering scheme); the person whose face appears in this box is John
(with 20–25% probability), Jim (with 35–40% probability), or Tom (with
40–45% probability).

The reason probabilities are not stated as points but rather as intervals
is because they are computed as follows: the image processing package
assigns a point probability p to the faces it identifies, but there is also a
degree of error e possible in the image processing package itself; thus the
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actual probability lies within the interval [max(0, p � e), min(1, p � e)]. In
the preceding example, assuming e � 0.025 (i.e., 2.5%), this means that the
face recognition package said the face in the specified rectangle is John
with 22.5% certainty. In addition, as stated in Silberschatz et al. [1991, p.
117], satellite image databases may contain uncertain data describing
image features.

1.2 Sensor Data

In addition, there are a vast number of applications where analogue sensor
data are digitized, and the resulting digitized information needs to be
stored in a database. However, this task requires several steps. First,
multiple sensors are often used to study the same phenomenon and the
(analogue) results from these sensors are fused to provide an estimate of
the probability pO that the sensors have detected object Obj. For example,
thermal sensors may be used to detect underground nuclear activity,
airborne early warning (AWACS) systems are used by military agencies to
monitor enemy air-defenses, and analogue image data may be digitized and
subject to further analysis to pinpoint camouflaged enemy offensive and
defensive missile sites. In all these cases, sensor data are processed as
follows: analogue data from multiple sources are “fused” (the field is called
sensor fusion, cf. Iyengar et al. [1995]), and the resulting fusion leads to a
number of possible alternatives, each of which has an associated probabil-
ity. For example, two alternatives may be: “The radar system used at Basra
location (X1, Y1) is 999 KHz wideband radar,” and a second possibility is
“The radar system used at Basra location (X1, Y1) is 750 KHz wideband
radar.” The probability associated with these alternatives is the probability
predicated by the sensors. However, in many cases, especially in cases
concerning sensor data, the reliability of the sensors is often well studied as
a result of exhaustive testing and validation procedures. Consequently,
each of the preceding alternatives must be “adjusted” to reflect the margin
of error e. Thus, if sensors predict alternative A is true with probability p,
then the actual estimate is adjusted to be [max(0, p � e), min(1, p � e)].

1.3 Temporal Indeterminacy

Dyreson and Snodgrass [1993] have noted that in many cases, when a tuple
in a relation is time-stamped (this is called valid-time), the “stamp” is in

Table I. Three example tuples

tp
1 im1.gif 5 10 35 40 john 0.2 0.25

jim 0.35 0.4
tom 0.4 0.45

tp
2 im1.gif 35 40 60 40 john 0.6 0.65

jim 0.2 0.25
ed 0.1 0.15

tp
3 im2.gif 10 10 25 25 john 0.3 0.35

ed 0.6 0.65
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fact a temporal interval TI. For example, if a tuple t in such a relation is
time-stamped with the interval TI0, then this is interpreted as “tuple t
holds at some point in interval TI0.” For instance, suppose we have a tuple
saying that “John Smith became Chairman of ABC Corp. sometime in Jan.
1996.” Also, we may know that no new appointments start on weekends.
Thus, given any weekday d in Jan. 1996, there is a probability of 1/23 that
John Smith became (i.e., started as) Chairman on that day. Also, if there
are k weekdays in January before and including day d, then the probability
that John Smith was playing the role of Chairman on that day is k/23.
Dyreson and Snodgrass study the handling of probabilistic temporal inde-
terminacy, assuming event independence.

1.4 Information Retrieval

The information retrieval community has long used probabilistic tech-
niques for retrieval of document data based on “concepts.” As database
techniques expand to include document databases, we expect to see rela-
tional databases being extended to include relations with schemas such as
(DocId, Concept, Prob) saying that a given document addresses a given
topic with probability p. This is the basis of the well-known technique of
latent semantic indexing [Dumais 1993].

This provides practical justification for the use of interval probabilities.
Later in this article, it is shown that in any case, point probabilities cannot
be used unless independence assumptions are made.

In general, probabilistic reasoning is notoriously tricky. To see this,
consider two events A and B. Examples of these events are given in the
following. Suppose we know that Prob(A) � 0.8 and Prob(B) � 0.7. What
can we say about the probability of the complex event (A Ù B)?

(1) Prob(A Ù B) could be Prob(A) � Prob(B) if A and B are independent
events. For example, suppose A is the event, “The face occurring in
im1.gif in the rectangle with (5, 10) and (35, 40) as its lower-left
corner and top-right corner, respectively, is John.” Suppose B is the
event, “The face occurring in im2.gif in the rectangle with (10, 10) and
(25, 25) as its lower-left corner and top-right corner, respectively, is
John.” In this case, Events A and B are independent, so we would be
justified in multiplying their probabilities in order to compute the
probability of the compound event (A Ù B). In general, however, there
could be dependencies in databases that sometimes invalidate this
assumption.

(2) On the other hand, suppose B is the event: “The face occurring in
im1.gif in the rectangle with (35, 40) and (60, 40) as its lower-left
corner and top-right corner, respectively, is John.” Suppose further,
that these are surveillance photos, so two faces in one photograph
cannot be the same person. In this case, events A and B are NOT
independent; in fact, in this case, they are mutually exclusive, and the
probability of the compound event (A Ù B) is 0.
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(3) The previous examples show two completely different extremes—one
where the events are independent, and another where they are mutu-
ally exclusive. However, the reality of life is that in the vast majority of
cases, we are ignorant of the precise dependencies between events A and
B. In such cases, Prob(A Ù B) may not even be uniquely expressible by
a number. For example, as shown by Ng and Subrahmanian [1993,
1995] (based on results of Fenstad [1980], which are in turn derived
from Boole [1854] many years ago), if Prob(A) � � and Prob(B) � �,
then in the case of complete ignorance of events A, B, the best we can
say about Prob(A Ù B) is that its probability is in the interval [min(1,
� � � � 1), min(�, �)].

(4) A fourth possibility is that events A and B are such that one implies the
other; this is called positive correlation and it can be shown [Lak-
shmanan and Sadri 1994a] that in this case again, the probability
Prob(A Ù B) is equal to min(�, �).

(5) By now, we hope the reader is convinced that there are many other
possible dependencies (e.g., negative correlation � A implies ØB, condi-
tional correlation � A implies B when �condition�, etc.) between A and
B that could lead to other expressions that accurately capture the
desired probability of (A Ù B).

The reader will not be surprised to know that exactly the same situation
occurs when we consider computing Prob(A Ú B) from Prob(A) and
Prob(B), or Prob(ØA) from Prob(A), respectively.

We refer to the different ways of computing the probabilities of compound
events from those of basic events as combination strategies (associated with
the connectives Ù, Ú, Ø). As the preceding examples show, the effective
incorporation of probabilities in databases requires the ability to smoothly
switch from one probabilistic combination strategy to another, depending
upon the relationship among the events involved. Past work on extending
relational DBMSs to handle probabilities have lacked this flexibility and
hence, their results hinge critically upon strong assumptions about the
dependencies between events—a factor that cannot be ignored if a truly
useful probabilistic relational data model is to be designed.

The key contributions of this article are as follows.

(1) First, although associating probabilities with individual domain ele-
ments (as in the face example of Section 1) is natural and is close to
the way probabilistic data are derived from sensors or image processing
algorithms, they are not convenient for algebraic manipulation. We
show that probabilistic data obtained from appropriate sources using
an element level interface, can be converted into a representation that
(i) associates probabilities with whole tuples, making them amenable to
algebraic manipulation, (ii) “faithfully” represents the original probabi-
listic information, and (iii) can be computed from the original informa-
tion in polynomial time.

ProbView • 423

ACM Transactions on Database Systems, Vol. 22, No. 3, September 1997.



(2) We propose postulates that any probabilistic conjunction and disjunc-
tion strategy must satisfy, in order to be considered “reasonable.” In
addition, we present various example strategies that satisfy these
postulates and show that they capture intuitions such as “probabilistic
independence,” “positive correlation,” and “ignorance.” We show that
once a strategy for conjunction and a strategy for disjunction are
picked, these two jointly induce a notion of difference.

(3) Our intention is that each and every strategy characterized by the
postulates mentioned in item 2 will be available to the user of a
probabilistic DBMS. We propose a generic probabilistic relational alge-
bra that allows the user to choose any strategy appropriate for his or
her application as long the postulates are satisfied. Consequently, our
approach applies to a wide variety of probabilistic reasoning systems.
In particular, it captures as special cases, the probabilistic frameworks
of Barbara et al. [1992], Dubois and Prade [1988], and Cavallo and
Pitarelli [1987]. The reason is that each of these frameworks uses a
specific way of combining probabilities that applies only under certain
assumptions.

(4) We prove various query equivalence and containment results that apply
to any choice of probabilistic conjunction (resp., disjunction, negation)
strategies satisfying our postulates.

(5) We show (Theorem 3.1) that as long as negation is absent, the complex-
ity of answering probabilistic queries remains essentially the same as
that for standard relational algebra queries, provided that the probabi-
listic strategies chosen can be computed in polynomial time. (This is a
valid assumption, since all well-known strategies based on assumptions
such as independence, positive correlation, negative correlation, and
ignorance, can be computed in constant time.)

(6) We show that the problem of view maintenance raises some unique
challenges in the case of probabilistic databases. We develop incremen-
tal algorithms for view maintenance involving insertion and deletion
both with and without modification of probabilities.

(7) Based on these ideas, we have built a prototype probabilistic database
system called ProbView that supports querying in probabilistic data-
bases. ProbView is built on top of Dbase V.0 and runs on the
PC/Windows platform. It implements all the strategies described in this
article. Building the implementation “on top” of Dbase allows us to use
all the indexing and optimization schemes already present in Dbase. In
addition, we have used ProbView to experiment with the equivalences
referred to in item 4 for computational efficiency. In particular, the
experiments seem to indicate, more or less conclusively, that certain
ways of rewriting queries always leads to substantial savings in time.
We have a special operation called compaction which is essentially a
generalization of duplicate elimination for probabilistic databases. Our
experiments shed light on optimization opportunities that exist for this
normally expensive operation.
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For lack of space, we suppress the proofs of some of our theorems. The
interested reader may consult the technical report [Lakshmanan et al.
1996], available online.

2. BASIC DEFINITIONS

We use � to denote the unit interval [0, 1] and �[0, 1] to denote the set of
closed subintervals of the unit interval. Let � be a nonempty set of symbols
called attributes. Associated with each attribute A � �, there is a non-
empty set, dom(A), of values, called the domain of A. A relation scheme is
any subset of �. Let R � {A1, . . . , An} � � be a relation scheme. In this
article, we deal with three kinds of tuples over R: data-tuples (Definition
2.1) denoted s, t, . . . , probabilistic tuples (Definition 2.2) denoted tp, sp, . . . ,
and annotated tuples (Definition 2.4) denoted ta, sa, . . . .

Definition 2.1 (Data tuples and relations). A data tuple over the relation
scheme R � {A1, . . . , An} is any n-tuple t � (a1, . . . , an), where each ai �
dom(Ai). A data relation over R is a finite set of data tuples over R. (Thus, a
data relation is just a classical relation.)

Our notion of a probabilistic tuple is a simple adaptation of the notion
proposed by Barbara et al. [1992]. In their model, they make the restrictive
assumption that the tuples in a probabilistic database are pairwise inde-
pendent. When such restrictive assumptions are not made, however, as
Fenstad [1980] has shown, the probabilities of compound events can only be
evaluated to within certain bounds. This suggests working with probability
intervals associated with tuples. Several works have followed this ap-
proach.1 Accordingly, for an event e, we let Prob(e) denote the probability
interval associated with that event.

Definition 2.2 (Probabilistic tuples and relations). A probabilistic tuple
over the relation scheme R � {A1, . . . , An} is an n-tuple (v1, . . . , vn), where
each vi is of the form �Vi, hi�, with Vi � dom(Ai) a finite set of values from
Ai’s domain, and hi: Vi 3 �[0, 1] a function that maps each value in Vi to a
probability range. A probabilistic relation over the scheme R is a finite set of
probabilistic tuples over R. A probabilistic database is a finite set of
probabilistic relations with associated schemes.

Consider a probabilistic tuple tp � ((V1, h1), . . . , (Vn, hn)). The events
associated with this tuple are equalities of the form tp.Ai � c, where Ai is
one of the attributes and c � Vi. Such an event says that the value of the
tuple corresponding to attribute Ai is c. Indeed, the preceding probabilistic
tuple tp says that:

Prob�tp. Ai � c� � � hi�c� if c � Vi

�0,0� otherwise�i.e., if c � dom� Ai� � Vi�.

1See, for example, Ng and Subrahmanian [1993, 1995], Lakshmanan and Sadri [1994b,
1994a], Lakshmanan [1994].
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It is now easy to see that a conventional (classical) tuple is a probabilistic
tuple where Vi is always required to be a singleton, say {di}, and hi(di) � [1,
1], i � 1, . . . , n. Notice that the definition of probabilistic tuples allows for
any combination of deterministic and probabilistic domains, in the sense of
Barbara et al. [1992].

Suppose the available knowledge about a relationship r̂ in some domain
is incomplete and uncertain. A clean and concise way to model this
knowledge is as a probabilistic relation, say r. We henceforth refer to r̂ as
the (unknown) underlying (classical) data relation modeled by r, or simply
as the underlying relation associated with r.

Example 2.1 Table II gives a simple example of a probabilistic relation
called target with three attributes LOC, OBJ, and BAND. In the table, we
have explicitly shown the functions h for all attributes. A more concise
notation can be obtained by adopting the convention that whenever tp.A �
(V, h) is such that V � {v} is a singleton, and h(v) � [1, 1], we simply denote
tp.A � v. For example, the fact that the location in the second tuple is
“site2,” can be simply represented by entering the constant “site2” in that
cell.

Let r be a probabilistic relation and let r̂ be the underlying relation
associated with r. Suppose tp � ((V1, h1), . . . , (Vn, hn)) � r. Then this tuple
says at most one of the data tuples in V1 � . . . � Vn belongs to r̂. We can
regard each of the data tuples in V1 � . . . � Vn as a world and so, any of
these data tuples is a possible world. A tuple interpretation can be viewed
as an assignment of probabilities to the various worlds associated with a
tuple. This intuition is formalized in the next definition.

Definition 2.3 (Tuple worlds and interpretations). Suppose R �
{A1, . . . , An} is a relation scheme and r is a probabilistic relation over
scheme R. We can associate worlds and interpretations with each probabi-
listic tuple in r as follows. Let tp � ((V1, h1), . . . , (Vn, hn)) be any
probabilistic tuple in r.

—A tp-world is any member w of V1 � V2 � . . . � Vn. Intuitively, a tp-world
is a data tuple that represents a possible “state” of the probabilistic tuple
tp. We let W(tp) denote the set of all worlds associated with tp.

Table II. target with three attributes.

LOC OBJ BAND

site1 radar_type1 {750, 800}
h1(site1) � [1, 1] h2(radar_type1) � [1, 1] h3(750) � [0.4,0.7]

h3(800) � [0.5,0.9]
site2 {radar_type1,radar_type2} 700
h4(site2) � [1, 1] h5(radar_type1) � [0.8, 0.9] h6(700) � [1,1]

h5(radar_type2) � [0.8, 0.3]

site3 {radar_type1,radar_type2} {700, 750}
h7(site3) � [1, 1] h8(radar_type1) � [0.4, 0.7] h9(700) � [0.6,0.9]

h8(radar_type2) � [0.5, 0.6] h9(750) � [0,0.4]
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—A tp-interpretation is a map, �tp
:W(tp) 3 [0, 1] such that �w�W(tp

) (�tp
(w))

� 1. Notice that when �w�W(tp
) (�tp

(w)) � 1, �tp
admits the possibility

that none of the tp-worlds is true with respect to the underlying relation r̂
modeled by r. When the probabilistic tuple tp is clear from context we
may drop the subscript tp in �tp

.
—�tp

satisfies tuple tp iff for all 1 � i � n, and all v � Vi,

� �
w�W�tp�&w. Ai�v

�tp�w�� � hi�v�.

—An interpretation for a probabilistic relation r is a map I that associates,
with each probabilistic tuple tp � r, a tp-interpretation, I(tp), such that for
any two tuples tp

1, tp
2 � r, and for each w � W(tp

1) � W(tp
2), I(tp

1)(w) �
I(tp

2)(w).
—I satisfies a probabilistic tuple tp provided I(tp) satisfies tp.
—I satisfies a probabilistic relation r iff for every probabilistic tuple tp � r,

I satisfies tp.

Although the meaning of the classical relations is self-evident, the seman-
tics of probabilistic relations is not straightforward. The inherent meaning
behind such relations is captured by the preceding definition.

Example 2.2 Let us return to Example 2.1. Let us refer to the three
probabilistic tuples2 there as t1, t2, t3, respectively. There are two t1-worlds
(w1, w2), two t2-worlds (w3, w4), and four t3-worlds (w5, . . . , w8):

w1 � (site1, radar_type1, 750). w5 � (site3, radar_type1, 700).
w2 � (site1, radar_type1, 800). w6 � (site3, radar_type1, 750).
w3 � (site2, radar_type1, 700). w7 � (site3, radar_type2, 700).
w4 � (site2, radar_type2, 700). w8 � (site3, radar_type2, 750).

Consider the following two t1-interpretations �1, �2,

�1�w1� � 0.5; �1�w2� � 0.5; �2�w1� � 0.7; �2�w2� � 0.3.

�1 satisfies tuple t1, but �2 does not because

� �
wj.BAND�800

�2�wj�� � 0.3 �/ h3�800� � �0.5,0.9�.

Example 2.3. A slightly more complex situation occurs when we con-
sider the probabilistic tuple t3. Recall the four t3-worlds w5, . . . , w8 from

2Strictly speaking, we should use a notation such as tp1
, . . . . We abuse the notation here for

simplicity.
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Example 2.2. Consider the t3-interpretation � defined as:

��w5� � 0.35; ��w6� � 0.15; ��w7� � 0.35; ��w8� � 0.15.

� satisfies tuple t3. To see this, consider first the case when we look at the
LOC field of t3. The only value is site3, which thus appears in all t3-worlds
w5, . . . , w8. The probability interval h7(site3) of site3 is [1, 1], and the
criterion

��w5� � ��w6� � ��w7� � ��w8� � 0.35 � 0.15 � 0.35 � 0.15 � 1 � �1,1�

is satisfied. Consider now the case when we look at the OBJ field of t3 and
consider the value radar_type1. The criterion

��w5� � ��w6� � 0.35 � 0.15 � 0.5 � �0.4,0.7�

is satisfied. Similarly, consider the same field and the value radar_type2.
In this case, the criterion

��w7� � ��w8� � 0.35 � 0.15 � 0.5 � �0.5,0.6�

is also satisfied. When we consider the field BAND and the value 700, we see
that

��w5� � ��w7� � 0.35 � 0.35 � 0.7 � �0.7,0.9�.

The final case arises when we wish to check the field BAND and the value
750. Here we need to ensure that

��w6� � ��w8� � 0.15 � 0.15 � 0.3 � �0,0.4�,

which happens to be true.
Unlike classical relations, probabilistic relations can be inconsistent. For

example, the tuple ({a, b}, h) with h(a) � [1, 1] and h(b) � [1, 1] is
inconsistent, due to incorrect probability assignment. A more subtle sce-
nario is suggested by the following example. Consider the tuples ({a, b}, h),
with h(a) � [0.1, 0.2] and h(b) � [0.6, 0.7], and ({a, b}, h�), with h�(a) � [0.3,
0.4] and h�(b) � [0.4, 0.5]. The same worlds w1 � (a), w2 � (b) are
associated with both probabilistic tuples. Intuitively, the first tuple con-
strains the probability of w1 to be in the range [0.1, 0.2] which is disjoint
with the range [0.3, 0.4] imposed on w1 by the second tuple. A similar
remark applies w.r.t. w2. This shows it is improbable that either of the
worlds w1, w2 holds in reality.

Testing consistency of probabilistic relations can be done efficiently, as
established by the following theorem.

THEOREM 2.1 (Complexity of consistency). Let R � {A1, . . . , An} be a
relation scheme. Checking whether a given probabilistic relation r over R is
consistent can be done in polynomial time.
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PROOF. A probabilistic relation is consistent iff the set of constraints
imposed by the various tuples on the tuple-worlds is consistent. The idea is
then to construct the linear program associated with the probabilistic
relation and solve it. Define the size of r as the total number of symbol
occurrences in r. The linear program LP(r) associated with the relation r
can be constructed in time polynomial in the size of r, and the size of LP(r)
is also polynomially bounded in the size of r. LP(r) is generated as follows.
The set of worlds associated with the whole relation is W(r) � �tp�r W(tp).
Note, in particular, that if two different tuples tp

1, tp
2 have a common world,

then that world appears only once in W(r). With each world w � W(r),
associate a linear programming variable zw (which ranges over the real
numbers). For each tuple tp � r, we have the following set of constraints.

Let tp � ((V1, h1), . . . , (Vn, hn)).

1. For all 1 � i � n and for all v � Vi, LP(r) contains the constraint:

lb�hi�v�� � � �
w�W�tp�&w. Ai�v

zw� � ub�hi�v��,

where hi(v) � [lb(hi(v)), ub(hi(v))]. This constraint is said to be induced
by v and Vi.

2. For each w � W(tp), the constraint

0 � zw � 1

is present in LP(r).

We refer to the set of constraints corresponding to a tuple tp � r, as LP(tp).
Finally, add the constraint (�w�W(r) zw) � 1 to LP(r).

Observe that the total number of inequalities in LP(tp) is 4 � card(W(tp))
� 4 � card(V1 � . . . � Vn), and the size of LP(tp) is polynomial in the size of
tp. It follows that the size of LP(r) is also a polynomial in the size of r.

Now it is easy to see that there is a one-to-one correspondence between
the admissible solutions of the linear program LP(r) and the interpretations
of r that satisfy r. Therefore, r is consistent (i.e., there exists an interpre-
tation I such that I satisfies r) if and only if the linear program LP(r)
admits a (real) solution. Since linear programming is tractable (and the
size of LP(r) is polynomial in the size of r), checking the consistency of r can
be done in polynomial time as well.

Probabilistic relations are a convenient and expressive device for model-
ing uncertainty and incompleteness. However, probabilistic relations are
not in “first normal form” and they are not directly amenable for algebraic
manipulation. Also, it is unclear how a generic algebra not dependent on
any specific probabilistic strategy can be defined based on probabilistic
relations as defined in Definition 2.2. Thus, we need a representation for
probabilistic tuples and hence relations and databases, that avoids these
drawbacks. We propose a notion of path-annotated (or simply annotated)
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tuples to represent probabilistic tuples. Intuitively, given a data tuple t�,
and probability bounds �, u, a path p is a Boolean expression; (t�, �, u, p)
says that tuple t� is in relation R with probability between � and u
(inclusive) if the Boolean condition encoded in p is satisfied. Basically, the
Boolean conditions assume that each world has an associated world id
(wid) wi (which can easily be automatically generated by the database). A
path in general is a Boolean expression over such world ids. The algebra
defined in the next section manipulates annotated relations rather than
the probabilistic relations that they represent. The idea is that probabilis-
tic relations are only meant as an “interface” for “raw” probabilistic data
coming from sources. Once the raw data are converted to the annotated
representation, the database processes queries and presents answers to
uses only in the form of annotated relations. Our operators manipulate
data and probabilistic bounds, as well as paths, thus keeping track of the
derivation history. We henceforth assume any fixed standard enumeration
w1, w2, . . . of all the worlds associated with all the tuples in a given
probabilistic database.

Definition 2.4 (Paths and annotated tuples). A path is a Boolean expres-
sion over wids. For a given database D, we use �D to denote the set of all
distinct paths over D. When the database is clear from the context, we drop
the subscript D. A path-annotated tuple (or just annotated tuple, for short)
over {A1, . . . , An} is an element of dom(A1) � . . . � dom(An) � � � � � �.
The definition of annotated relations and databases is an obvious extension
of the preceding notion. The relation scheme associated with an annotated
relation contains all the attributes A1, . . . , An and three special attributes
LB, UB, and PATH, corresponding to the domains �, �, and �.

A path-annotated tuple (a1, . . . , a�, u, p) is consistent provided � � u, and
p is a consistent Boolean expression over world-ids. We only consider
consistent tuples in the following, unless otherwise specified. Such a tuple
intuitively says the probability that (a1, . . . , an) belongs to the underlying
classical relation lies in the range [�, u], and the justification for this belief
is the path p associated with the tuple. Two path-annotated tuples (a1, . . . ,
a�, u, p) and (a�1, . . . , a��, u�, p�) are said to be data-identical iff for all 1 �
i � n, ai � a�i.

We first formalize the notion of an annotated representation of probabi-
listic relations and databases. We next show (Theorem 2.2) that annotated
relations can be used to “faithfully” represent probabilistic relations. This
has the advantage that we can start with probabilistic relations as a
natural model of uncertain knowledge and convert them into their corre-
sponding annotated representations, which can then be manipulated by our
algebra (defined in the next section).

When probabilistic tuples are converted to path-annotated tuples, the
resulting tuples only have wids in their path field. No complex Boolean
expressions occur in the path fields. However, when views are defined and
materialized, the annotated relations representing these views may contain
complex Boolean expressions in their path field. The following definition
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specifies what it means for an interpretation to satisfy a path-annotated
tuple. As interpretations contain no path information, paths do not influ-
ence the definition of satisfaction for now. Later, in Section 3, we see how
paths play an important role in manipulating path-annotated relations.

Definition 2.5 Suppose (a1, . . . , an, �, u, p) is a path-annotated tuple.
Suppose tp is any probabilistic tuple. A tp-interpretation �tp

satisfies (a1,
. . . , an, �, u, p) iff:

(1) (a1, . . . , an) is a data tuple associated with one of the tp-worlds, with
world id, say w, and

(2) � � �tp
(w) � u.

A tp-interpretation satisfies a set of annotated tuples exactly when it
satisfies each tuple in the set.

For a given tp-world w � (a1, . . . , an), �tp
(w) gives the probability that the

data-tuple (a1, . . . , an) is in the underlying classical relation. We say �tp

satisfies the annotated tuple ta � (a1, . . . , an, �, u, p) exactly when �tp

(w) � [�, u]. The next definition formalizes the notion of annotated
representations of probabilistic tuples.

Definition 2.6 Let tp � ((V1, h1), . . . , (Vn, hn)) be a probabilistic tuple
and S be a set of annotated tuples such that (1) the projection of S on its
data attributes coincides with W(tp) and (2) if (a1, . . . , an, �, u, p) � S, then
p is the wid of the world (a1, . . . , an). In such a case, we say that S
represents tp provided every tp-interpretation satisfying tp also satisfies S.

In general, more than one set of annotated tuples can represent a
probabilistic tuple. For example, consider the probabilistic tuple t1 in
Example 2.1. The sets

S1 � ��site1,radar_type1,750,0,1,w1�, �site1,radar_type1,800,0,1,w2�� and

S2 � ��site1,radar_type1,750,0.4,0.7,w1�, �site1,radar_type1,800,0.5,0.9,w2��

both represent t1. However, notice that the probability intervals in S2 are
sharper than those in S1 indicating that S2 is a more accurate representa-
tion of t1. Indeed, every probabilistic tuple tp � ((V1, h1), . . . , (Vn, hn)) has
a trivial representation S0 � {(a1, . . . , an, 0, 1, w)�(a1, . . . , an) � V1 � . . .
Vn is a tp-world with wid w}. Let S1, S2 be any two representations of a
tuple tp. We say that S1 is no less accurate than S2, S1 � S2, provided for
every tp-world (a1, . . . , an) with wid w, Si contains the annotated tuple (a1,
. . . , an, �i, ui, w), i � 1, 2 with [�1, u1] � [�2, u2]. Intuitively, this says that
for each tp-world, S1 associates a probability interval sharper than that
associated by S2. The following theorem shows that there is a maximally
accurate representation for every probabilistic tuple and establishes its
properties.

ProbView • 431

ACM Transactions on Database Systems, Vol. 22, No. 3, September 1997.



THEOREM 2.2 (Representation theorem). Every consistent probabilistic
tuple has a unique maximally accurate representation. More precisely, if tp
is a probabilistic tuple, then there is a unique set of annotated tuples,
denoted AS(tp), satisfying the following properties:

(1) AS(tp) represents tp.
(2) For any set S of annotated tuples that represents tp, AS(tp) � S; that is,

AS(tp) is the maximally accurate representation of tp.

PROOF. We can generate a linear program LP(tp) with the property that
there is a one-to-one correspondence between the solutions to LP(tp) and
tuple-interpretations satisfying tp. It can then be shown that AS(tp) can be
generated by extremizing certain variables, and that every tuple-interpre-
tation satisfying tp necessarily satisfies AS(tp). Uniqueness of AS(tp) trivi-
ally follows from this argument. The construction of AS(tp) is given in the
following.

Given a probabilistic tuple tp � ((V1, h1), . . . , (Vn, hn)), let LP(tp) be the
linear program constructed in the proof of Theorem 2.1. For each tp-world
w � W(tp), set

�w � minimize zw subject to LP�tp�.

uw � maximize zw subject to LP�tp�.

(Observe that �w and uw are well-defined, as LP(tp) always admits solutions
under the hypothesis that probabilistic tuple tp is consistent.)

Finally, set

AS�tp� � ��a1, . . . , an,�w, uw, id�w�� �w � W�tp�& w

� �a1, . . . , an� and id(w) is the wid of w�.

It is not hard to show that AS(tp) satisfies condition (1) in the theorem. We
next prove that it also satisfies condition (2).

Now let S be any set of annotated tuples representing tp. We show that
AS(tp) � S. Suppose not. This implies there are annotated tuples (a� , �1, u1,
p) � S and (a� , �2, u2, p) � AS(tp) such that [�2, u2] � [�1, u1]; that is, either
�2 � �1 or u1 � u2. Consider the first case, as the other one is symmetric.
For this case, let � be any tp-interpretation that satisfies tp such that
�(a� ) � �2. Such an interpretation must exist, because there is at least one
solution of LP(tp) in which the tuple-world a� obtains the value �2 and
because, as stated in the proof of Theorem 2.1, there is a one-to-one
correspondence between solutions of LP(tp) and interpretations that satisfy
tp. However, this interpretation � does not satisfy the annotated tuple (a� ,
�1, u1, p) � S because �2 � �1; this contradicts the assumption that S
represents tp as � satisfies tp but not S. e

It follows from Theorem 2.2, by a simple extension, that every probabilis-
tic relation and hence database has a unique maximally accurate annotated
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representation satisfying the conditions in the theorem. Furthermore, the
set of interpretations that satisfy the original probabilistic tuple tp coin-
cides with the set of interpretations that satisfy the set AS(tp) of annotated
tuples representing tp. In other words, tp and AS(tp) are equivalent. We use
the notation AS(rp) to denote the annotated representation of a probabilis-
tic relation rp. In the following, we refer to this unique representation as
the annotated representation of a probabilistic relation (database).

Example 2.4 The annotated representation of the probabilistic relation
target of Example 2.1 is shown in Table III. In Table III the path
attributes correspond to the world-ids of Example 2.1. The lower and upper
bounds of the probabilities associated with worlds are computed using the
linear programming approach sketched earlier.

Example 2.5 A slightly different probabilistic relation, called thermal,
may be used to record thermal emissions classifications detected by ther-
mal sensors. The tuples in Table IV are in the thermal relation, where a
and b are two classifications of thermal emissions. The annotated represen-
tation of this relation is very simple and is shown in Table V. Later, we use
the relations thermal and target together in order to illustrate binary
algebraic operations such as Cartesian product and Join.

The operations of our algebra are defined in the next section. In view of
Theorem 2.2 and our remarks about the relative advantages of probabilistic
and annotated relations, we only consider annotated relations in the
following. Since annotated relations play a central role in our probabilistic
model, it is worth pointing out both the size of annotated representations
and the time needed to compute them.

THEOREM 2.3 (Complexity of annotated representations). Let tp be a
consistent probabilistic tuple. Then:

(1) The size of AS(tp) is polynomial in the size of tp, and
(2) AS(tp) is computable in time polynomial in the size of tp.

3. THE ALGEBRA

In this section, we define a set of operators that extend the relational
algebra to handle annotated tuples.

Table III. Annotated representation of target

LOC OBJ BAND LB UB PATH

site1 radar_type1 750 0.4 0.7 w1

site1 radar_type1 800 0.5 0.9 w2

site2 radar_type1 700 0.8 0.9 w3

site2 radar_type2 700 0.08 0.3 w4

site3 radar_type1 700 0 0.5 w5

site3 radar_type1 750 0 0.4 w6

site3 radar_type2 700 0.1 0.6 w7

site3 radar_type2 750 0 0.4 w8
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Convention. Let r be an annotated relation and a� be a data-tuple such
that a� does not appear in r. We implicitly assume that the annotated tuple
(a� , 0, 0, false) is in r for the purpose of our definitions.

3.1 Selection

Our first operation is selection. From a practical and expressive power
point of view, we can allow selection on data attributes as well as probabil-
ity attributes. For data selection, we allow any legal selection condition
that is allowed in classical relational algebra. Since these conditions
involve only the conventional (data) attributes of annotated relations, the
notion of an annotated tuple satisfying a selection condition is identical to
the classical case. By a data attribute of an annotated relation, we mean
any attribute other than one of PATH, LB, and UB. Probabilistic selection
requires a new definition.

Definition 3.1 (Selection). Let r be an annotated relation and � be any
legal selection condition over the data attributes of r. Then ��(r) � {ta �
r�ta satisfies �}.

For a probabilistic condition � and an annotated relation r, ��(r) � {ta �
r�ta satisfies �}, where � is a probabilistic selection condition as defined
below:

—every (data) selection condition � as previously defined is a (probabilistic
selection) condition.

—for a real number n � [0, 1], and � � {�, �, �, �, �, �}, LB � n and U B
� n are both conditions.

—whenever �1, �2 are conditions, so are (C1 Ù C2), (C1 Ú C2) and ØC1.

Example 3.1 Let us return to the target relation of Example 2.1,
shown in Example 2.4. Let r � AS(target) denote the annotated represen-
tation of the target relation, shown in Example 2.4. Then the query ��(r)

Table IV. Tuples in the thermal

LOC THERM

site1 {a, b}
h(a) � [0.4, 0.7]; h(b) � [0.3, 0.6]

site2 {a}
h�(a) � [1, 1].

Table V. Annotation representation

LOC THERM LB UB PATH

site1 a 0.4 0.7 w9

site1 b 0.3 0.6 w10

site2 a 1 1 w11
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where

� � �OBJ � radar_type1 Ù LB � 0.75)

says: find all tuples that identify objects to be Type 1 radars with over 75%
probability. The result of this query is shown in Table VI. Note that the
definition of selection on annotated relations is identical to classical selec-
tion.

3.2 Projection

We now turn to projection. Let ta be an annotated tuple over R and let X �
R. Then the restriction of ta to X, denoted ta[X], is obtained by deleting all
components of ta not corresponding to one of the attributes in X or to one of
LB, UB, PATH. Notice that as a consequence of this criterion, the at-
tributes LB, UB, PATH of an annotated tuple (a� , �, u, p) are carried
through projection; that is, these attributes are “inherited” by the resulting
relation after the projection is performed.

Definition 3.2 (Projection). Let r be an annotated relation over the
scheme R and let X � R. Then �X(r) � {ta[X]�ta � r}.

Although the definition of projection looks similar to classical projection,
there is a subtle difference: the result of a probabilistic projection may
contain tuples that are data-identical although there may be differences in
the PATH (and perhaps even the LB and UB) attributes. Thus, probabilis-
tic projection can be thought of as classical projection “without duplicate
elimination.”)

Example 3.2 Let r denote the annotated representation of the target
relation of Example 2.1, shown in Example 2.4. Then, the projection of r on
the BAND attribute yields Table VII. Note that in ordinary relational
DBMSs, we would have had only one column and three tuples (correspond-
ing to the BAND values 700, 750, and 800, respectively), if duplicates are
eliminated. In contrast, in our probabilistic framework, the probabilistic
attributes and the path attributes are carried through.

3.3 Cartesian Product

Unlike selection and projection, operations such as Cartesian product and
join are not straightforward extensions of their classical counterparts, as
they must take into account the strategies for combining probabilistic
tuples. This is because, in general, if we know that tuple t1 (resp., t2) is in
relation R1 (resp., R2) with probability range [p1, q1] (resp., [p2, q2]), then
the tuple t1t2 is in the Cartesian product (R1 � R2) with a probability that

Table VI. Type 1 radars

LOC OBJ BAND LB UB PATH

site2 radar_type1 700 0.8 0.9 w3
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depends upon the known relationship among tuples R1, R2 (and the tuples
involved). In our framework, when performing a Cartesian product, the
user has the opportunity to specify this information. To this end, we define
a generic concatenation operation on tuples. The user can specify any
probabilistic strategy to compute the Cartesian product, as long as the
strategy satisfies the following postulates on the structure and semantics of
computing concatenations of tuples (conjunctions of events).

Let [�1, �1], [�2, �2] be any two probability intervals associated with
events e1, e2, respectively. Suppose we want to compute the probability
range associated with the compound event e1 Ù e2. We use the symbol R to
denote some function that computes the probability range of e1 Ù e2 given
the probability ranges for e1 and e2, respectively. More precisely, we define
a generic probabilistic conjunction as a function R : � � �[0, 1] � � �
�[0, 1] 3 �[0, 1]. Any such generic conjunction function must satisfy the
following postulates.

Postulates for Probabilistic Conjunction. In the following, [�i, �i] are
arbitrary elements of �[0, 1] and p, q, r are arbitrary elements of �. Recall
that � is the set of all paths (i.e., Boolean expressions over world ids) over
a probabilistic database �.

(C1) (Bottomline) It is always the case that (p, [�1, �1]) R (q, [�2, �2]) �
[min(�1, �2), min(�1, �2)]. Here, [a, b] � [a�, b�] iff a � a� and b � b�.

(C2) (Ignorance) When nothing is known about the interdependence be-
tween the events, (p, [�1, �1]) R (q, [�2, �2]) � (p, [�1, �1]) Rig (q, [�2,
�2]) � [max(0, �1 � �2 � 1), min(�1, �2)] which is the formula for
conjunction under total ignorance and under no independence as-
sumptions whatsoever [Ng and Subrahmanian 1993, 1995]. Here Rig
refers to this specific combination strategy. In general, we require
that any conjunction strategy R satisfy the constraint that: (p, [�1,
�1]) R (q, [�2, �2]) � (p, [�1, �1]) Rig (q, [�2, �2]); that is, any
probabilistic strategy assumes at least as much knowledge as being
totally ignorant.

(C3) (Identity) (p, [�, �]) R (q, [1, 1]) � [�, �], as long as p Ù q is
consistent.

(C4) (Annihilator) (p, [�, �]) R (q, [0, 0]) � [0, 0].

Table VII. Projection of r on the BAND

BAND LB UB PATH

750 0.4 0.7 w1

800 0.5 0.9 w2

700 0.8 0.9 w3

700 0.08 0.03 w4

700 0 0.5 w5

750 0 0.4 w6

700 0.1 0.6 w7

750 0 0.4 w8
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(C5) (Commutativity) (p, [�1, �1]) R (q, [�2, �2]) � (q, [�2, �2]) R (p, [�1,
�1]).

(C6) (Associativity) ((p, [�1, �1]) R (q, [�2, �2])) R (r, [�3, �3]) � (p, [�1, �1])
R ((q, [�2, �2]) R (r, [�3, �3])).

(C7) (Monotonicity) (p, [�1, �1]) R (q, [�, �]) � (p, [�2, �2]) R (q, [�, �]) if
[�1, �1] � [�2, �2].

Postulate (C1) expresses the intuition that the confidence associated with
the conjunction of two events can be no more than that associated with the
events themselves. Postulate (C2) says that under total ignorance about
the interdependency of events, the probabilistic bounds on the conjunction
are those given by Fenstad [1980]. Postulates (C3) and (C4) have an
obvious intuition. Postulates (C5) and (C6) are imposed mainly with query
optimization in mind. Indeed, in the absence of these postulates, no
nontrivial optimization opportunities for the algebraic expressions may
exist. Postulate (C7) specifies that conjunction is monotonic. Many conjunc-
tion strategies used in practice tend to satisfy these postulates. Note that
these postulates are not intended to be exhaustive. They are a minimal set
of postulates that any probabilistic conjunction operator must satisfy.
Specific applications may require the addition of new axioms. However, any
results derivable from the preceding set of postulates will also apply to
expanded sets of postulates.

We now define generic concatenation of tuples.

Definition 3.3 (Generic concatenation). Let R be any conjunction strat-
egy that satisfies the postulates (C1)–(C7). Let tr � (a1, . . . , am, �1, �2, p1)
� r and ts � (b1, . . . , bn, �3, �4, p2) � s, where r, s are any annotated
relations. Then the generic concatenation of tr, ts, denoted tr J ts, is defined
as tr J ts � (a1, . . . , am, b1, . . . , bn, �, �, p), where [�, �] � (p1, [�1, �2]) R
(p2, [�3, �4]), and p � p1 Ù p2.

The intuition is that generic concatenation extends ordinary concatena-
tion by accounting for an appropriate strategy to combine the probability
intervals associated with the operand tuples. In addition, it computes the
path associated with the output as the (logical) conjunction of the input
paths. The preceding postulates ensure that the strategies used respect the
laws of probability. We are now ready to define Cartesian product.

Definition 3.4 (Cartesian product). Let J be any generic notion of
concatenation of annotated tuples. Let r and s be two annotated relations.
Then the Cartesian product of r and s induced by J is defined as r � s �
{tr J ts � tr � r, ts � s}.

Observe that since Cartesian product is defined in terms of J, which in
turn could reflect different possible strategies for combining probability
intervals, this definition is robust and facilitates a wide variety of probabi-
listic combinations. We next give some examples of some specific strategies
for conjunction and hence concatenation.
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Example 3.3 Let tr � (a� , �1, �1, p1), ts � (b� , �2, �2, p2) be annotated
tuples as previously. Let ta � tr J ts and let [�, �] be the probability
interval associated with ta. Here are some examples for computing J.

(1) (Ignorance) The conjunction can be performed by ignoring the path
information and computing under total ignorance. This gives rise to

��, �� � � p1, ��1, �1�� � ig� p2, ��2, �2��,

where Rig is defined in the postulate (C2) for probabilistic conjunction.
(2) (Positive Correlation) The conjunction can be performed, again ignor-

ing the path information, but computing under the conservative as-
sumption that the overlap3 between the two events is maximal, to the
point where one of them implies the other. This leads to

��, �� � �p1, ��1, �1�� � pc�p2, ��2, �2�� � def�min��1, �2�, min��1, �2��,

where Rpc stands for probabilistic conjunction under the assumption of
positive correlation, previously explained.

(3) (Path-based) We can take the path information into account while
computing probabilistic conjunction. This leads to

��, ��

� � �0, 0�, if p1 Ù p2 is inconsistent.
�p1, ��1, �1�� � ig�p2, ��2, �2��, if p1 Ù p2 and p1 Ù Øp2 are consistent.
�p1, ��1, �1�� � pc�p2, ��2, �2��, otherwise.

The rationale behind this last strategy is that when the two events are
conflicting (as indicated by the inconsistency of p1 Ù p2), the bounds
associated with the conjunction are set to [0, 0]. When there is no overlap
between the paths associated with the two tuples (as indicated by the
consistency of p1 Ù p2 and p1 Ù Øp2), the associated probability intervals are
combined in the sense of total ignorance. This amounts to not assuming any
a priori relationships among the basic wids. However, when there is some
overlap between the two paths, the strategy is maximally conservative
about their conjunction. It assumes the worst case, where one of the paths
may (logically) imply the other and hence assigns the min of the probability
intervals to the conjunction. There could be other viable strategies as well.
In principle, it is possible to set up a system of linear constraints and solve
them from first principles to obtain exact bounds for the conjunction.
Although this can serve as the basis for the correctness of a strategy, this is
clearly not an attractive strategy from the complexity viewpoint.

3We say two paths p1, p2 overlap if (p1 Ù p2) is consistent. Additional conditions may be added
to describe different kinds of overlaps, but we do not describe these here.
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Example 3.4 Consider the annotated version of the probabilistic relation
thermal (cf. Example 2.5) and consider taking the Cartesian product of
this relation with �BAND (AS(target)), the relation shown in Example 3.5.
The result of the Cartesian product is shown in the following. Note that the
conjunction strategy being used in the example is that of positive correla-
tion. Had we chosen to use an alternative strategy (e.g., Ignorance, Inde-
pendence, Negative Correlation, or Path-Based methods), then the proba-
bility intervals shown in Table VIII would be somewhat different.

Before concluding this example, we observe that several tuples in it are
data-identical; that is, they coincide on all data attributes. Later, in Section
3.5.2, we show how we can summarize/compress these seemingly redun-
dant tuples.

The reader will easily notice that the join of two annotated relations can
be easily expressed in terms of the operators defined thus far (as is also the
case in the classical relational algebra).

3.4 Union

Two annotated relations are union compatible exactly when their underly-
ing classical relations are.

Definition 3.4 (Union). Let r, s be any union compatible annotated
relations. Then r � s � {t�t � r, or t � s}.

Table VIII. Probability intervals

LOC THERM BAND LB UB PATH

site1 a 750 0.4 0.7 (w9 Ù w1)
site1 a 800 0.4 0.7 (w9 Ù w2)
site1 a 700 0.4 0.7 (w9 Ù w3)
site1 a 700 0.08 0.03 (w9 Ù w4)
site1 a 700 0 0.5 (w9 Ù w5)
site1 a 750 0 0.4 (w9 Ù w6)
site1 a 700 0.1 0.6 (w9 Ù w7)
site1 a 800 0 0.4 (w9 Ù w8)
site1 b 750 0.3 0.6 (w10 Ù w1)
site1 b 800 0.3 0.6 (w10 Ù w2)
site1 b 700 0.3 0.6 (w10 Ù w3)
site1 b 700 0.08 0.03 (w10 Ù w4)
site1 b 700 0 0.5 (w10 Ù w5)
site1 b 750 0 0.4 (w10 Ù w6)
site1 b 700 0.1 0.6 (w10 Ù w7)
site1 b 800 0 0.4 (w10 Ù w8)
site2 a 750 0.4 0.7 (w11 Ù w1)
site2 a 800 0.5 0.9 (w11 Ù w2)
site2 a 700 0.8 0.9 (w11 Ù w3)
site2 a 700 0.08 0.03 (w11 Ù w4)
site2 a 700 0 0.5 (w11 Ù w5)
site2 a 750 0 0.4 (w11 Ù w6)
site2 a 700 0.1 0.6 (w11 Ù w7)
site2 a 800 0 0.4 (w11 Ù w8)
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Union is analogous to classical union. Again, just as with projection, the
subtlety is that the union of two annotated relations might well contain
distinct tuples that are data-identical (and differ in the path component).

3.5 Compaction

Our final operation, called compaction, is the probabilistic counterpart of
duplicate elimination. As already seen, union and projection can result in
relations that contain data-identical tuples. Sometimes, it may be desirable
to find out the overall probability that a certain data-tuple belongs to the
underlying classical relation. For example, a given data-tuple may occur
many times in an annotated relation with different paths justifying each
such occurrence. In order to combine these different paths, as well as the
probability bounds associated with each such derivation of a data-tuple, we
need a generic disjunction between tuples, which we denote Q. Generic
disjunction may then be used to define the compaction operation.

3.5.1 Generic Disjunction. Formally, generic disjunction is a function
Q:(� � �[0, 1]) � (� � �[0, 1]) 3 �[0, 1]. As in the case of probabilistic
conjunction, we need specific axioms governing the use of such a disjunctive
combination strategy. The following postulates capture these requirements.

Postulates for Generic Disjunction

In the following, [�i, �i] are arbitrary elements of �[0, 1] and p, q, r are
arbitrary elements of �.

(D1) (Bottomline) It is always the case that (p, [�1, �1]) Q (q, [�2, �2]) �
[max(�1, �2), max(�1, �2)]. Here [a, b] � [a�, b�] iff a � a� and b � b�.

(D2): (Ignorance) When nothing is known about the interdependence be-
tween the events, (p, [�1, �1]) Q (q, [�2, �2]) � (p, [�1, �1]) Qig (q, [�2,
�2]) � [max(�1, �2), min(1, �1 � �2)] which is the formula for
disjunction under total ignorance and under no independence as-
sumptions whatsoever [Ng and Subrahmanian 1993, 1995]. Here Qig
refers to this specific disjunction strategy. In general, we require that
any disjunction strategy R satisfy the constraint that: (p, [�1, �1]) Q
(q, [�2, �2]) � (p, [�1, �1]) Qig (q, [�2, �2]), that is, any probabilistic
strategy assumes at least as much knowledge as being totally igno-
rant.

(D3) (Identity) (p, [�, �] Q (q, [0, 0]) � [�, �].
(D4) (Annihilator) (p, [�, �]) Q (q, [1, 1]) � [1, 1].
(D5) (Commutativity) (p, [�1, �1]) Q (q, [�2, �2]) � (q, [�2, �2]) Q (p, [�1,

�1]).
(D6) (Associativity) ((p, [�1, �1]) Q (q, [�2, �2])) Q (r, [�3, �3]) � (p, [�1,

�1]) Q ((q, [�2, �2]) Q (r, [�3, �3])).
(D7) (Monotonicity) (p, [�1, �1]) Q (q, [�, �]) � (p, [�2, �2]) Q (q, [�, �]) if

[�1, �1] � [�2, �2].
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Let Q be any strategy for computing the probability of the disjunction of
events, which satisfies the preceding postulates. We can extend Q to
annotated tuples as follows. Let (a� , �1, �1, p1) and (a� , �2, �2, p2) be
annotated tuples. Then (a� , �1, �1, p1) Q (a� , �2, �2, p2) � (a� , �, �, p), where
[�, �] � (p1, [�1, �1]) Q (p2, [�2, �2]), and p � p1 Ú p2.

We now give some example strategies for computing probabilistic dis-
junction. These strategies can be viewed as “duals” of those given for
conjunction in Example 3.3.

Example 3.5 Let tr � (a� , �1, �1, p1), ts � (b� , �2, �2, p2) be any annotated
tuples. Let ta � tr Q ts and let [�, �] be the probability interval associated
with ta. Here are some examples for computing Q.

(1) (Ignorance) The disjunction can be performed by ignoring the path
information and computing under total ignorance. This gives rise to

��, �� � � p1, ��1, �1�� � ig� p2, ��2, �2��,

where Qig is defined in the postulate (D2) for probabilistic disjunction.
(2) (Positive Correlation) The disjunction can be performed, again ignor-

ing the path information, but computing under the conservative as-
sumption that the overlap between the two events is maximal, to the
point where one of them implies the other. This leads to

��, �� � � p1, ��1, �1�� � pc� p2, ��2, �2�� � def�max��1, �2�, max��1, �2��,

where Qpc stands for probabilistic disjunction under the assumption of
positive correlation, previously explained.

(3) (Path-Based) We can take the path information into account while
computing probabilistic disjunction. This leads to

��,��

� �
�p1, ��1, �1�� � nc�p2, ��2, �2�� � def�min�1, �1 � �2�, min�1,�1 � �2��,

if p1 Ù p2 is inconsistent.
�p1, ��1, �1�� � ig�p2, ��2, �2��, if p1 Ù p2 and

p1 Ù Øp2 are consistent.
�p1, ��1, �1�� � pc�p2, ��2, �2��, otherwise.

The first two strategies are self-explanatory. The rationale for the last
strategy is fairly similar to that for strategy 3 for conjunction in Example
3.3. The only difference is that when the paths are inconsistent, we deduce
that the overlap between the events is minimal and apply the formula for
negative correlation (Qnc).

3.5.2 Compaction. Now that we have laid down the postulates for
disjunctive combination of probabilities of data-identical tuples with vari-
ous associated paths, we are in a position to “merge” data-identical tuples.
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This merge operation is called compaction and is formally defined later in
this section. However, before proceeding any further, we give a quick
example.

Example 3.6 Let us consider the relation �BAND(AS(target)) shown in
Example 3.2. Table VII contains several data-identical tuples. The aim of
the compaction operation is to compactly represent the content of such
data-identical tuples.

For example, there are two tuples in �BAND(AS(target)) that have the
value BAND�750. These two tuples can be “merged” into a new tuple whose
path field is (w1 Ú w6) and whose BAND field is 750. The probability of this
merged tuple is obtained from the two original tuples by applying the
desired generic disjunction operator. Thus, if we wish to use positive
correlation as the desired disjunction strategy, then this procedure, when
applied to Table VII, �BAND(AS(target)), shown in Example 3.2, yields
Table IX.

As the reader will notice, compaction summarizes the reasons to believe
that a particular data tuple is in a relation. In the preceding example, the
“reasons” for the BAND identified by the sensors being 750 KHz is that this
is the case if either worlds w1 or w6 hold, and the probability of this, as
computed by the desired disjunction strategy, is 40 to 70%.

It is also important to observe that one cannot reconstruct the original
�BANDAS(target)) relation (cf. preceding) from the compacted Table 9.
Thus, in our framework, we leave the option of whether to compact to the
discretion of the user. To facilitate this, we develop a special compaction
operator �. If the user wishes to compact the result of a query that he or
she poses, then this must be explicitly stated by the user. (In our system,
the user can set up compaction as the default if so desired.)

Definition 3.6 (Compaction). Let r be an annotated relation. Then its
compaction, denoted �(r), is defined as �(r) � {t�{t1, . . . , tk} � r is a maximal
subset of tuples in r that are data-identical and t � Q{t1, . . . , tk}}.

Intuitively, compaction works as follows.

(1) Partition the relation r into blocks of tuples that are data identical.
(2) For each block, compute the generic disjunction of the tuples in the

block.
(3) Output the result.

Table IX. Positive correlation

BAND LB UB PATH

750 0.4 0.7 (w1 Ú w6 Ú w8)
800 0.5 0.9 w2

700 0.8 0.9 (w3 Ú w4 Ú w5 Ú w7)

442 • L. V. S. Lakshmanan et al.

ACM Transactions on Database Systems, Vol. 22, No. 3, September 1997.



From this intuition, it can be seen that the computation associated with
compaction is very similar to aggregate computation in conventional rela-
tional databases.

3.6 Difference

Our last operation is difference. Just as with conjunction, we need to pay
attention to the way the probability intervals of the operand tuples are
combined. To this end, we let C be a generic difference strategy on
annotated tuples. In other words, depending upon the precise interdepen-
dence between two events e1, e2, we may compute the probabilities of the
compound event (e1 Ù Øe2) corresponding to difference, using one of a
number of strategies. Our approach is based on the following intuitions: (i)
whenever the probability of an event is Prob(e) � [�, �], the probability
associated with its complement Øe is given by Prob(Øe) � [1 � �, 1 � �],
and (ii) Prob(e1) C Prob(e2) � Prob(e1) R Prob(Øe2). The idea for
difference r1 � r2, then, is to regard the tuples in the relations as events
and appeal to the preceding intuitions. A complication arises when there
are annotated tuples in r1, r2 that are data-identical. In the classical case,
any tuple that belongs to both relations, by definition, does not belong to
their difference. In the probabilistic case, the subtlety is that the effect of
one tuple in r1 can be captured by a set of tuples in r2. For example,
consider r � {(a, �1, �1, p)} and s � {(a, �2, �2, p Ù q), (a, �3, �3, p Ù Øq)}.
Notice that: (i) the tuples in r and s are data-identical, and (ii) the path
associated with the tuple in r logically implies the disjunction of the paths
associated with the two tuples in s. In general, we capture this phenome-
non using the notion of path-subsumption, defined in the following way.

Definition 3.7 (Path subsumption). Let t1 � (t�, �1, u1, p1) and t2 � (t�, �2,
u2, p2) be data-identical annotated tuples.

An annotated tuple ta � (a� , �, �, p) is path-subsumed by a set of
annotated tuples S � {(a� , �i, �i, pi)�1 � i � n}, provided that (i) ta is
data-identical to every tuple in S, and (ii) p logically implies p1 Ú . . . Ú pn.

It is important to note that probability intervals do not play any role in
the definition of path-subsumption. The reason is that path-subsumption is
used mainly as a means for determining which tuples should get into the
output of the difference between two annotated relations. When defining
the difference operator, we use these phases: in the first, we determine
which tuples in relation r are not path-subsumed by any (sub)set of tuples
in relation s, and in the second, we determine the probabilities associated
with the output tuples.

Intuition behind Definition 3.7. We can regard each wid wi as a propo-
sition. Let w1, . . . , wk be all the tuple-worlds associated with a database.
With each truth assignment on these propositions we can identify a
database-world. For example, w.r.t. Example 2.4, the truth assignment d:
w1 � true, w2 � false, w3 � true, wi � false, 4 � i � 8 corresponds to a
database-world where the tuple-worlds w1 and w3 (and hence the associ-
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ated data-tuples; see Example 2.4) hold and all other tuple-worlds do not.
Concretely, this corresponds to a classical database where exactly the
data-tuples associated with w1 and w3 are true and all other data-tuples
are false. In this perspective, the path p associated with a tuple ta � (a� , �,
u, p) asserts that the data-tuple a� holds in every database-world satisfying
p, whereas the set of tuples S in the preceding definition says a� is true in
every database-world that satisfies p1 Ú . . . Ú pn. Since p logically implies
p1 Ú . . . Ú pn, we see that the set of database-worlds in which a� is true
according to S, includes the worlds where it is true according to ta.

We are now ready to define the difference operator.

Definition 3.8 (Difference). Let r, s be any union-compatible annotated
relations, and let Q and R be any generic probabilistic disjunction and
conjunction strategies, respectively. Then

r � s � ��a� , �, �, p� � � tr � �a� , ��, ��, p�� � r such that: � �Sa�

� �a� , ��, ��, p�� and tr is not path-subsumed by Sa and ��, ��

� � p�, ���, ���� � �Øp�, �1 � ��, 1 � ���� and p � p�ÙØp��,

where Sa� denotes the set of tuples in s that are data-identical to a� (i.e., the
selection of s on a� ).

The idea is that a tuple in r gets into the result of the difference operator,
provided it is not path-subsumed by any set of tuples in s. Clearly, tr is not
path-subsumed by any set of tuples in s exactly when it is not path-
subsumed by the set of all tuples in s that are data-identical to tr. This
explains the preceding definition. In general, testing path-subsumption can
be expensive. This is reflected in our complexity results later.

Note that for each specific strategy chosen for probabilistic conjunction,
we get a different strategy for difference. By definition, an empty disjunc-
tion corresponds to false. As a special case, when there is a tuple tr � r
such that no tuple in s is data-identical to tr, we trivially have that tr � r �
s, showing that the classical difference operator is a special case of
probabilistic difference.

3.7 Queries and Views

Definition 3.9 Suppose r1, . . . , rn are the annotated relations in an
annotated database. An elementary query is any legal algebraic expression
constructed solely using the operators of selection, projection, difference,
Cartesian product, and union on r1, . . . , rn. An elementary view definition
is any elementary query.

A (general) view definition is defined as follows.

(1) Any elementary view definition is a view definition.
(2) If E is a view definition, then �(E) is a view definition.
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As in classical relational databases, the difference between queries and
views is that queries can be ad hoc, whereas views are relatively perma-
nent. In classical database applications, views were not materialized and
only their definitions were stored (relatively) permanently. However, mate-
rialized views are popular in many newer database applications (e.g., see
Gupta et al. [1993]).

Given a view definition VD, the materialization of this view definition is
simply the set of all tuples obtained by executing the algebraic expression
defining the view.

We conclude this section with an analysis of the data complexity of query
computation and view materialization. Intuitively, data-complexity mea-
sures the complexity of evaluating a view (or query) E as a function of the
size of the database D (see Vardi [1985]).

THEOREM 3.1 (Complexity of positive queries and views). Let E be a
query or view definition over an annotated database D. Then:

(1) if E involves only selection, projection, and union operators, then it can
be computed in time polynomial in the database size �D�.

(2) In general, whenever E is an expression in the positive fragment of the
algebra (i.e., it does not involve the difference operator), it can be
computed in time polynomial in the database size �D�, as long as the
adopted strategies for generic concatenation and generic disjunction are
computable in time polynomial in �D�.

Thus, the data-complexity of the positive fragment of probabilistic rela-
tional algebra is essentially the same as classical relational algebra,
provided that polynomial time strategies for generic concatenation and
disjunction are adopted. Observe that a relevant class of these strategies
are polynomial time computable. For instance, both strategies (1) and (2)
for generic concatenation described in Example 3.3 are polynomial time
computable. Similarly, strategies (1) and (2) for generic disjunction of
Example 3.5 are tractable.

Clearly, a probabilistic operator cannot be polynomial time computable if
the underlying generic strategy is intractable. For instance, if we adopt
strategy (3) of Example 3.3 for generic concatenation (which requires a
consistency check), then the resulting Cartesian product operator is not
tractable (unless P � NP). The same holds for compaction if we use
strategy (3) of Example 3.5 for generic disjunction.

Whereas Theorem 3.1 shows that under reasonable assumptions on the
strategies for generic conjunction and disjunction, queries expressible in
positive probabilistic algebra are computable in polynomial time, our next
theorem shows that when queries involve the difference operator, the
complexity is higher, even when all strategies used are polynomial. This
situation is similar to query processing with null values, where as long as
queries do not involve difference, the complexity remains polynomial; when
difference is involved, even testing membership of a tuple in a query is
co-NP-complete [Vardi 1985].

ProbView • 445

ACM Transactions on Database Systems, Vol. 22, No. 3, September 1997.



THEOREM 3.2 (Complexity of difference). Let r and s be two union-
compatible annotated relations.

(1) Recognizing whether an annotated tuple t belongs to r � s, is NP-hard
(even if compaction is not allowed).

(2) If polynomial strategies for generic disjunction and conjunction are
adopted, then recognizing whether an annotated tuple t belongs to r � s,
is NP-complete.

The complexity results are interesting for the following reasons. (1) They
apply to a broad range of strategies for the individual operations, where the
only assumptions made are those made explicit by the postulates. As
already discussed, these postulates are necessary for the operations to
respect probability theory. (2) The results show that under the assumption
that the combination strategies chosen are polynomial time computable,
the positive algebra is tractable. This assumption is reasonable since many
well-known strategies (e.g., positive correlation, negative correlation, inde-
pendence, ignorance, etc.) are constant time computable. On the other
hand, the expressive power of our algebra can be increased by “tuning” the
strategies to be more sophisticated ones, which may, for example, test the
consistency of path expressions. (3) Although the difference operator incurs
a higher complexity, it should be noted that this is quite analogous to the
higher complexity associated with difference in relational databases with
null values. Indeed, both incompleteness and uncertainty are very impor-
tant aspects of practical database applications. It is interesting that the
computational complexity associated with these apparently different as-
pects is similar.

The preceding remarks show that our design of probabilistic algebra
provides a nice balance between tractability and expressive power.

3.8 Query Equivalences and Containments

We now develop various kinds of algebraic identities involving containment
and equivalence, with the motivation that they will be helpful in optimizing
queries. The most important thing about these algebraic identities is that
they will apply to any probabilistic conjunction, disjunction, and difference
strategies as long as these strategies satisfy the postulates described
earlier. Before proceeding, note that in classical algebra, two expressions
E1, E2 are equivalent, provided for all input databases D, the relations
E1(D) and E2(D) are identical. For any two expressions E1, E2 in our
probabilistic algebra, we say E1 is contained in E2, denoted E1 � E2,
provided that for all input databases D, E1(D) � �(E2(D)), where the
containment is classical set-theoretic. In principle, we could define contain-
ment based on compacting both E1(D) and E2(D). The reason we define as
in the preceding is two-fold: compaction is a costly operation, and the
notion of containment/equivalence and the identities derived w.r.t. it
should be useful in query optimization; and a definition of containment
based on compacting both the preceding relations would not be very useful
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in this respect. We say E1 and E2 are equivalent, E1 � E2, provided E1 � E2
and E2 � E1. The following result is easy to prove by manipulating the
definitions.

THEOREM 3.3 Suppose r1, r2 are annotated relations and Q, J, and C are
any arbitrary generic disjunction, concatenation, and difference strategies
satisfying the postulates for disjunction, concatenation, and difference listed
earlier. Then:

��r1 � r2� � ��r1� � ��r2�. (1)

��r1 � r2� � ����r1� � ��r2��. (2)

��r1 � r2� � ��r1� � ��r2�. (3)

��r1 � r2� � ����r1� � ��r2��. (4)

�����r�� � �����r��. (5)

���X�r�� � ���X���r���. (6)

In Equation (5) we assume that the selection condition � does not involve
probabilistic attributes.

In order to investigate the relative efficiencies of evaluating queries
using the algebraic identities of Theorem 3.3, we ran a number of experi-
ments which we describe later in Section 5.

3.9 Presenting Answers as Probabilistic Relations

We have seen (Section 1) that probabilistic relations constitute an intuitive
“front end” to the user, whereas annotated relations, which faithfully
represent the former, are more convenient for algebraic manipulation.
Thus, answers to queries are essentially annotated relations. A natural
question, then, is whether query answers can be presented in the form of
probabilistic relations to the user. The answer to this question is “yes.”

In our model, unlike that of Barbara et al. [1992], we do not pin down
attributes as deterministic or probabilistic a priori. The user has the
flexibility of seeing attributes in different perspectives. Let r be an anno-
tated relation, which could be the result of a query. By a user perspective,
we mean an assignment of one of the two statuses—deterministic or
probabilistic—to each of the attributes of r. Let A1, . . . , An be the
deterministic attributes and B1, . . . , Bm be the probabilistic ones, accord-
ing to the user perspective. Then, this perspective induces a probabilistic
view of the annotated relation, defined as follows. For tuples ta

1, ta
2 � r,

define ta
1 � ta

2 iff (i) ta
1, ta

2 have equivalent path fields and (ii) ta
1.Ai � ta

2.Ai for
all 1 � i � n. Let [ta

1], . . . , [ta
k] be the set of all equivalence classes so

generated. With each equivalence class [t a
j ], we associate a single probabi-

listic tuple Tj, defined as follows.
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(1) Tj.Ai � (Vi, hi), where Vi � {t a
j .Ai} and h(t a

j .Ai) � [1, 1] for all 1 � i � n;
(2) Tj.Bi � (Vi, hi), where Vi � {t.Bi�t � [t a

j ]} and @v � Vi:hi(v) � �{[�, u]�t �
[t a

j ] and t.Bi � v and t.LB � � and t.UB � u}, 1 � i � m.

Finally, the probabilistic view of r induced by the preceding perspective
is the set of all probabilistic tuples associated with the equivalence classes
of tuples from r¡ as defined. It is easy to verify that r � �i�1

k AS(Ti). Thus,
we can see that it is feasible to present answers to queries using the
intuitive interface of probabilistic relations. The previous method finds one
probabilistic relation that can generate the annotated answer relation
associated with query Q. Note that there could, in general, be other
alternative, but equivalent representations.

4. MAINTENANCE OF MATERIALIZED VIEWS

In the preceding section, we formally defined the concept of a view. Even
though views and queries have the same form, they serve different pur-
poses. Views are generally materialized; that is, the query defining a view
is computed and stored. In other words, a view is persistent, whereas the
answer to a query disappears once the user has seen it. In traditional
databases, view maintenance has been studied extensively in the context of
relational databases [Blakeley et al. 1989; Gupta et al. 1993], deductive
databases [Harrison and Dietrich 1992], and object-oriented databases
[Kemper et al. 1994; Dayal 1989]. More recently, attempts have been made
to build views on top of heterogeneous information sources [Dayal and
Hwang 1984; Lu et al. 1995] leading to the emerging area of data ware-
housing.

One of the fundamental problems that arises when materialized views
are created is that the base relations “on top” of which these views are
defined may be updated from time to time. This, in turn, may cause the
answer to the query defining the view to change, thus requiring that the
materialized view be updated correspondingly. In contrast to relational,
object-oriented, and deductive databases, the problem of view maintenance
in a probabilistic database system such as ours raises fundamentally new
types of updates which we discuss in the following.

4.1 What’s New About Updating Probabilistic Databases?

As the reader would have observed by now, in our proposed framework, the
user will “see” probabilistic tuples. These probabilistic tuples will be
“internally” represented as annotated tuples (or sets of annotated tuples)
that are then manipulated appropriately by the ProbView system. When
an update is made to the probabilistic relation seen by the user, this update
must be transformed to a corresponding set of updates on the annotated
relations that represent that probabilistic relation. Such updates are fun-
damentally different from those encountered in ordinary relational data-
bases. This is best illustrated through an example.
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Example 4.1 Let us return to the face database mentioned in the
Introduction and consider the tuple relating to the file im1.gif (recall that
this is a surveillance image). Suppose now that the mugshot database is
updated by the insertion of a new face, viz. that of someone called Tony.
Table X(a) shows the initial table, and Table X(b) shows the situation
desired after this update. As can easily be seen by the reader, the new
“replacement” probabilistic tuple is quite different from the original tuple.
Not only is its “data” content different (e.g., Tony is introduced, and John
has disappeared) but the probabilities have changed as well.

The change of probabilities also has profound implications. For example,
suppose a user U had defined a view called suspect(X) which holds if
there exists a surveillance image in which X and Jim both appear with
certainty 40% or more. In the scenario described in the Introduction, no
such X existed because both tuples (tp

1 and tp
2) associated with the file

im1.gif had Jim identified with LB � 0.4. However, after the aforemen-
tioned update, the change in the probabilities causes Tony to be one such
suspect.

The preceding example shows that insertions into a probabilistic relation
can have a significant impact on the annotated representations of those
probabilistic relations as well as on the views defined on top of those
annotated relations.

4.2 Allowed Updates on Probabilistic Relations

We allow three kinds of updates to be made to probabilistic relations. These
are as follows.

(1) Probabilistic Tuple Insertion (PT-Insertion): A user wishes to insert a
probabilistic tuple tp � (v1, . . . , vn) into a probabilistic relation R
where each vi � �Vi, hi�. Handling the insertion of a probabilistic tuple
into relation R requires two steps:
(a) Converting tp into AS(tp) and adding AS(tp) into the annotated

representation of relation R. This can be done using the technique
specified in the proof of Theorem 2.2.

(b) If V is a view that accesses relation R, then V’s materialization
must be updated to reflect the update to R. Algorithms to do this
are developed in Section 4.4.

Table X(a).

im1.gif 5 10 35 40 john 0.2 0.25
jim 0.35 0.4
tom 0.4 0.45

Table X(b).

im1.gif 5 10 35 40 tony 0.4 0.65
jim 0.45 0.50
tom 0.1 0.15
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(2) Probabilistic Tuple Deletion (PT-Deletion): A user wishes to delete a
probabilistic tuple tp � (v1, . . . , vn) from probabilistic relation R where
each vi � �Vi, hi�. In this case, only Step (1b) needs to be performed
after initially deleting AS(tp) from the annotated representation of R.

(3) Probabilistic Tuple Modification (PT-Modification): Three kinds of mod-
ifications may be performed to a probabilistic tuple tp � (v1, . . . , vn)
where each vi � �Vi, hi�.
(a) Plain Component Addition: Vi may be expanded to V*i � Vi and hi is

extended to a new function h*i in such a way that for all x � Vi, h*i(x)
� hi(x).

(b) Component Addition with Probability Update: Vi may be expanded
to V*i � Vi and hi is replaced by a new function h*i.

(c) Plain Component Deletion: Vi may be diminished to V*i � Vi and h*i
is the restriction of hi to V*i; that is, for all x � V*i, h*i(x) � hi(x).

(d) Component Deletion with Probability Update: Vi may be diminished
to V*i � Vi and h*i is any probability assignment to V*i.

The case where Vi � V*i, but a probability update is made is subsumed by
the cases listed. As stated earlier, we assume that the user expresses his or
her update on probabilistic relations, rather than on annotated relations.
Suppose t*p represents the probabilistic tuple tp after the preceding modifi-
cations have been made. Then, in each of the preceding cases, we need to do
the following.

(a) Convert t*p into its annotated representation AS(t*p); we study incremen-
tal algorithms to do this in Section 4.3, and

(b) If V is a view that accesses relation R, then V’s materialization must be
updated to reflect the content of t*p. Algorithms to do this are developed
in Section 4.4.

4.3 Converting Updates on Probabilistic Relations to Updates on Annotated
Relations

In this section, we show how the annotated version of a probabilistic
relation may be easily updated when the probabilistic relation is updated.

In the case of PT-insertion and PT-deletion operations, the answer is
easy: we merely append AS(tp) or delete AS(tp) from the annotated version
of the relation to/from which tp is being added/deleted.

The situation is somewhat different in the case of probabilistic tuple
modification and we now consider this.

4.3.1 PT-Modification: Plain Component Addition. Let tp � (v1, . . . ,
vn) where each vi � �Vi, hi� and suppose t*p is given by (v*1, . . . , v*n) where
each v*i � �V*i, h*i �. Furthermore, suppose V*i � Vi for all 1 � i � n and
suppose that for all x � Vi, h*i(x) � hi(x).

Algorithm NAIVE-INS:

(1) Compute the set W* of all t*p-worlds.
(2) Construct LP(t*p).

450 • L. V. S. Lakshmanan et al.

ACM Transactions on Database Systems, Vol. 22, No. 3, September 1997.



(3) For each world wi � W*, minimize and maximize zi w.r.t. LP(t*p) where
zi is the linear programming variable associated with world wi as
specified in the Proof of Theorem 2.2. AS(t*p) � {(a� , �i, ui, wi)�wi � W*
and �i, ui are obtained by minimizing/maximizing zi w.r.t. LP(t*p)}.

The preceding algorithm is nonincremental in the sense that it completely
recomputes AS(t*p) without ever using any of the information in AS(tp). The
question facing us is: How should we compute AS(t*p) from AS(tp) without
re-doing the whole linear program computation described in the proof of
Theorem 2.2?
First, we assume without loss of generality that exactly one Vi is increased
by exactly one added element. In other words, there is some 1 � i � n such
that V*i � Vi � {e} and for all j � i, V*j � Vj. Hence, e is the element being
added in this case. We may now proceed as follows.

Incremental Annotated Representation Algorithm (IARA)

(1) Let W � {w1, . . . , wm} be the set of all tp-worlds. Clearly, m � card(V1)
� . . . � card(Vn). Let m� � card(V1) � . . . � card(Vi�1) � card(Vi�1) �
. . . � card(Vn). Let e0 � Vi be any arbitrary, but fixed element of Vi. Let
W0 � {w1, . . . , wm�} be the set of all worlds in W having the ith
component of the world equal to e0.

(2) For each 1 � j � m�, construct a twin world wj
b which is exactly like wj

except that its ith component is e (the plain component being modified)
instead of e0. Let W* � W � {w1

b, w2
b, . . . , wm�

b }.
(3) If h*i(e) � [�, �], then construct a set LP* of constraints by editing LP(tp)

in the following way.

(a) For each constraint of the form �0 � �r�� Zr � �0 generated by Vj
and v in Step (1) of the proof of Theorem 2.2, where j � i, replace
the preceding constraint by the constraint:

�0 � � �
r��

� zj� � � �
ws

b’s jth component is v

zs
b� � � �0 .

(Recall that � varies over world-ids.) Note that in this step,
constraints generated in Step (1) of the proof of Theorem 2.2 are not
placed in LP* if they are generated by elements of Vi, the component
being updated.

(b) Add the constraint: � � �j�1
m� zj

b � �.
(c) Finally, replace the constraint generated in Step (3) of the construc-

tion of LP(tp) in the proof of Theorem 2.2 by the constraint: (�j�1
m zj)

� (�j�1
m� zj

b) � 1.
(d) All other constraints in LP(tp) remain unchanged. (These include

the constraints specifying for instance, that zj
b � 1, etc.)

(4) For each 1 � j � m�: minimize zj
b and maximize zj

b w.r.t. the
constraints in LP* to get the lower and upper bounds associated with
the annotated type wj

b.
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(5) For each wj � W, minimize zj and maximize zj w.r.t. the constraints
in LP* to get the bounds on the annotated tuple wj.

The IARA algorithm is an improvement on the NAIVE-INS algorithm in
a number of ways, as follows.

(1) First, instead of recomputing the set of worlds, IARA makes effective
use of the existing worlds in W and merely modifies some of those
worlds by substituting their ith data component by the new element e.
This occurs in Steps 1 and 2 of the IARA algorithm.

(2) Second, we do not construct LP(t*p) from scratch. Instead, in Step 3 of
the IARA algorithm, the existing linear program LP(tp) is edited into a
new linear program LP*.

(3) Third, the structure of the linear program LP* is hierarchical—one can
first optimize the variables zj

b using the constraints defined in Steps
3(b)–(c) and then optimize the variables zj using the constraint defined
in Step 3(a). It is well known (cf. Hiller and Liebermann [1974]) that
computing linear programming problems with hierarchical structure is
usually easier than those linear programs where the linear program
cannot be broken up into hierarchies. The reason for this is that one
subset of the linear program may “fix” or “determine” the values of
certain variables, and those variables may then be eliminated from
other constraints at higher levels. This is called “monotone variable
elimination” and has proved very effective in linear programming
computations of deductive databases [Bell et al. 1994].

We now present a simple example showing how the IARA algorithm
works.

Example 4.2 Consider the simple probabilistic tuple t1 shown in Table
XI. Initially, W � {w1, w2} is the set of t1-worlds and they are defined as
follows: w1 � (a, c), w2 � (b, c). AS(t1) is given in Table XII. Suppose we now
want to add an extra possibility; that is, the second argument of tuple t1
could be either c (with probability [0.3, 0.6]) or d (with probability [0.2,
0.3]). Thus, t*1 is given in Table XIII. In this case, we have four worlds
altogether, including one twin for each of w1, w2. Note that these four
worlds are not computed from scratch, just by modifying w1, w2. Here, w1

b �
(a, d) and w2

b � (b, d).
In this case, LP* constructed by the IARA algorithm is as follows.

(a) Step 3(a) places the following constraints in LP*.

0.1 � z1 � z1
b � 0.5 0.4 � z2 � z2

b � 0.8

Table XI. Simple probabilistic tuple t1

a: [0.1, 0.5] c: [0.3, 0.6]
b: [0.4, 0.8]
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(b) Step 3(b) places the following constraints in LP*.

0.2 � � z1
b � z2

b� � 0.3.

(c) Step 3(c) places the following constraints in LP*.

z1 � z1
b � z2 � z2

b � 1.

(d) Note that in addition to the preceding LP* contains the constraint 0.3 �
z1 � z2 � 0.6. This constraint was present in LP(tp) and is left
unchanged; that is, it is not modified when the IARA algorithm per-
forms its editing.

We now minimize and maximize z1, z2, z1
b, and z2

b to get the final result.
The IARA algorithm basically edits the linear program LP(tp) into a new

linear program LP* that is identical to LP(t*p) where t*p is the tuple obtained
by plain component addition of a single component to the (old) tuple tp. As a
consequence of this identity, it follows immediately that:

(1) If w is the wid of a world tw in W* and IARA assigns [�, u] to w, then
the annotated tuple (tw, �, u, w) is in AS(t*p).

(2) If the annotated tuple (t, �, u, w) is in AS(t*p), then w is a world in W*
and IARA assigns [�, u] to w.

Before proceeding to develop techniques to handle other kinds of proba-
bilistic updates (e.g., component addition/deletion with probability updates,
plain component deletion, etc.), we revisit our assumption at the beginning
of the section on plain component addition. We had assumed that exactly
one Vi is increased by exactly one added element. In other words, there is
some 1 � i � n such that V*i � Vi � {e} and for all j � i, V*j � Vj. If more
than one Vi is expanded, or more than one component is added to Vi, then
this situation can be easily handled by calling the IARA algorithm itera-
tively, one at a time.

4.3.2 PT-Modification: Component Addition with Probability Update.
As in the case of plain component addition, we assume, without loss of
generality, that exactly one Vi is increased by exactly one added element.

Table XII. t1-worlds

Arg1 Arg2 � u path

a c 0.1 0.2 w1

b c 0.4 0.5 w2

Table XIII. t*1

a: [0.1, 0.5] c: [0.3, 0.6]
b: [0.4, 0.8] d: [0.2, 0.3]
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However, unlike the situation with plain component addition, the probabil-
ity assignments to the old elements of Vi may change.

Example 4.3 Let us return to the case of Example 4.2. Suppose we add
the component d to the second field of the relation (as we did in Example
4.2) but, in addition, we change the probability of c (the one other element
in this field) from [0.3, 0.6] to [0.4, 0.5]. Thus, the new probabilistic tuple in
question is as shown in Table XIV. Suppose w1 � (a, c), w2 � (a, d), w3 � (b,
c), and w4 � (b, d). In Step (1) in the construction of LP(tp), V2 � {c, d} and
c generated a constraint, viz. 0.4 � w1 � w3 � 0.5. All that needs to be done
is to edit this constraint to the new constraint: 0.3 � w1 � w3 � 0.6 and
re-optimize. Experimental evidence (Bell et al. [1994]) suggests that such
algorithms are extremely efficient.

The observant reader will notice that now in order to handle the
simultaneous insertion of a tuple and the adjustment of probabilities, we
basically need to execute two steps:

—modify LP(t*p) to first incorporate all probability updates, and
—subsequently invoke the IARA algorithm to handle the plain component

additions, working on the modified version of LP(t*p).

Modified IARA Algorithm (m-IARA).

(1) Let affected be the set of all elements e� in Vi such that h(e�) � h*(e�).
(2) If e� � affected causes the constraint � � �j�� zj � � to be added by

Step (1) of the proof of Theorem 2.2, then edit this constraint to: �� �
�j�� zj � ��, where h*(e�) � [��, ��].

(3) Iteratively execute the IARA algorithm to handle all plain component
insertions.

Like IARA, the m-IARA algorithm judiciously edits the affected parts of
LP(tp) so that:

(1) if tw is a world in W* with wid w, and m-IARA assigns [�, u] to w, then
the annotated tuple (tw, �, u, w) is in AS(t*p);

(2) if the annotated tuple (tw, �, u, w) is in AS(t*p), then w is the id of a
world in W* and m-IARA assigns [�, u] to w.

4.3.3 Plain Component Deletion. Plain component deletion corre-
sponds to the situation where a component in a probabilistic relation is
being deleted, but the probability assignments associated with the “dimin-
ished” probabilistic tuple remain unaffected by this deletion. In this sec-
tion, we show how plain component deletions may be neatly implemented.
We first provide a NAIVE-DEL algorithm, followed by a more sophisti-

Table XIV

a: [0.1, 0.5] c: [0.4, 0.5]
b: [0.4, 0.8] d: [0.2, 0.3]
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cated Incremental Annotated Representation Deletion Algorithm (IARD
Algorithm).

Suppose tp � (v1, . . . , vn) is a probabilistic tuple where each vi � �Vi, hi�.
Let tp

· be the tuple defined as tp
· � (v1

· , . . . , vn
· ), where vj

· � �Vj
·, hj

·�. As in
the case of plain component addition, we assume, without loss of general-
ity, that there exists exactly one Vi such that Vi

· � Vi � {e} for some e � Vi;
for all j � i, Vj � Vj

·. Furthermore, for all j, and for all x � Vj
·, hj(x) � hj

·(x).
Thus, the only case where one of the hj

· assignment differs from that of jj is
when j � i and the component in question is e.

NAIVE-DEL Algorithm: This algorithm is identical to the NAIVE-INS
algorithm, the only difference being that they are called with different
arguments. In the NAIVE-INS algorithm, t*p reflected a component inser-
tion, whereas now, tp

· reflects a component deletion.
The NAIVE-DEL algorithm corresponds to full recomputation of the

annotated representation of tp
· without using the existing annotated repre-

sentation of tp. However, making effective use of the current annotated
representation of tp may significantly speed up the computation of the
annotated representation of tp

· .

The Incremental Annotated Representation Deletion (IARD) Algorithm.

(1) Let W � {w1, . . . , wm} be the set of all tp-worlds. Clearly, m � card(V1)
� . . . � card(Vm). Let W0 � {wr�1, . . . , wm} be the set of all worlds in W
having the ith component equal to e, the component being deleted.

(2) Let LP· be the linear program obtained from LP(tp) by:
(a) deleting all constraints in LP(tp) that were placed there when Step

(1) in the proof of Theorem 2.2 was applied to Vi and the element e;
(b) eliminating all occurrences of wj for j � (r � 1), . . . , m from the

remaining constraints.
(3) For each 1 � j � r: minimize and maximize zj subject to LP·.

Unlike the case of insertion, deletion affords fewer possibilities for
optimization. The reason for this is that the deletion of a constraint opens
up possibilities for solutions, thus both further decreasing lower bounds as
well as increasing upper bounds. The IARD algorithm may be extended to
handle deletions combined with modifications in probability assignments in
the obvious way.

4.4 Algorithms for View Maintenance on Annotated Relations

Suppose a probabilistic tuple tp in probabilistic relation R is modified to t*p.
Then we replace AS(tp) by AS(t*p). This replacement may cause drastic
changes in the views developed on top of AS(tp).

Example 4.4 Consider the view V defined by the query: Find the
locations and bands of all records associated with radars of type 1. This can
be expressed as:

�LOC,BAND(�Obj�radar_type1(target)).
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Table XV(a) shows the materialization of this query. Now suppose that the
original relation target was updated so that band of 750 KHz was deleted
from the third tuple (denoted t3) in the probabilistic relation, target,
associated with Site 3. Table XV(b) shows the new annotated relation
resulting from this deletion. It is very significant to note that the probabil-
ity ranges associated with the tuple having wid w5 has changed as a result
of the update.

Suppose Ins is a set of annotated tuples being inserted into an annotated
relation R, and Del is a set of annotated tuples being simultaneously
deleted from the annotated relation R. Without loss of generality, we will
assume that no two tuples in Ins (resp., Del) are data-identical. Let V be a
view defined and �old(V) be the materialization of that view prior to the
update. The Full Annotated View Maintenance (FAVM) Algorithm provides
a way of handling such updates. Before defining the full algorithm, we
define two simpler algorithms. The first algorithm deals only with views of
the form �Cond(R); such views are called selection-views and the resulting
algorithm is called the Annotated Selection View Maintenance Algorithm.
The second algorithm deals with views of the form �(�Cond(R)). These views
are termed selection-compaction views.

Annotated Selection View Maintenance (ASVM) Algorithm.

(1) �new(V) � �old(V).
(2) Deletion Step: For each annotated tuple ta � Del, find all tuples t�a �

�new(V) that are data-identical to ta. Replace t�a in �new(V) by (t�a � ta)
where “�” denotes the generic difference between the relation contain-
ing the single tuple ta and the relation containing the single tuple t�a. In
the future, when we apply the generic difference operator—to tuples,
we do so with this interpretation.

Table XV(a)

LOC BAND LB UB PATH

site1 750 0.4 0.7 w1

site1 800 0.5 0.9 w2

site2 700 0.8 0.9 w3

site3 700 0 0.5 w5

site3 750 0 0.4 w6

Table XV(b)

LOC BAND LB UB PATH

site1 750 0.4 0.7 w1

site1 800 0.5 0.9 w2

site2 700 0.8 0.9 w3

site3 700 0.4 0.7 w5

456 • L. V. S. Lakshmanan et al.

ACM Transactions on Database Systems, Vol. 22, No. 3, September 1997.



(3) Addition Step: For each annotated tuple ta � Ins do: If ta satisfies the
query V, then add it to Mnew, else do nothing.

(4) Return: �new(V) as the new materialized view.

Annotated Selection Compaction View Maintenance (ASCVM) Algorithm.

(1) �new(V) � �old(V).
(2) Deletion Step: For each annotated tuple ta � Del, find all tuples t�a �

�new(V) that are data-identical to ta. Replace t�a in �new(V) by (t�a � ta).
(3) Addition Step: For each annotated tuple ta � Ins do:

(a) If ta satisfies the query V, then:
i. Replace all tuples t�a � �new(V) that are data-identical to ta by (ta

Q t�a).
ii. If no such data identical tuples exist, then �new(V) :� �new(V) �

{ta}.
(b) Otherwise, do nothing.

(4) Return: �new(V) as the new materialized view.

The ASCVM algorithm is incremental in many ways (similar comments
apply to the ASVM algorithm).

(1) When a deletion is performed, there is no need to explicitly check to see
whether the tuples being deleted are in the view or if they satisfy the
view criteria. Instead, deletions are incorporated by applying the ge-
neric difference operator to data-identical tuples in the materialization
of the view.

(2) The query V is never re-evaluated against all relations; instead, we
merely check if the annotated tuple being inserted satisfies the view
definition.

(3) In cases when the preceding test succeeds, the materialized view is
directly manipulated, using the Q operator.

(4) The entire algorithm runs in time O((card(Ins) � card(Del)) �
card(�old(V))), that is, in time proportional to the product of the
materialized view size and the number of insertions/deletions.

The ASVM algorithm efficiently handles insertions, deletions, and modifi-
cations in a sound and complete manner.

In particular, suppose tp is a probabilistic tuple in (probabilistic) relation
R, and t*p is an updated version of tp that we wish to construct. Suppose V is
an annotated “selection” view defined on AS(R) and �old(V) is its material-
ization. Then the materialized view, �new(V), defined by the ASVM algo-
rithm, coincides with the materialization of V with respect to ((AS(R) �
AS(tp)) � AS(t*p).

Table XVI shows how we may extend the ASVM algorithm to view
maintenance when the views are not just defined by Cartesian product
operations. In each case, we have a relation of the form (R op S) where op is
either �, U, �. In each case (as indicated by the second column) one of
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these two relations is being updated by the insertion of a set Ins of tuples,
and the deletion of a set Del of tuples.

We have now defined how to maintain materialized views, for each
possible algebraic operator that is the leading connective in the view
definition.

5. IMPLEMENTATION AND EXPERIMENTS

ProbView is built on top of DBASE V.0, and is implemented on the
PC/Windows platform in C and comprises approximately 5100 lines of C
code. Figure 1 shows one ProbView window where a user may select a
table, select an operation, and then perform further operations depending
on the choices made so far. For example, if the table Y1 is selected, and if
the user subsequently clicks on union, he would be expected to select
another table. The result is a materialized view that is stored in a
temporary table that the user may rename. On the other hand, instead of a
union, suppose the user wishes to perform a SELECT. Figure 2 shows the
selection query window in which the user expresses her selection condition
(in this case, Salary � 400. Various other options exist in the implementa-
tion. The user can see these options in Figures 1 and 2. We are currently
preparing documentation for the ProbView software and expect to make it
available through the WWW soon.

We report on a number of experiments that we carried out. Unless
explicitly mentioned otherwise, in all experiments the sizes of the relations
were varied from 500 to 5,000 tuples. As the evaluation of traditional
database operations is not the main focus of this experiment, we assumed
(for the purposes of experimentation) that all tuples are of the form (d, �, u,
p), where d is a randomly generated integer. Note that the ProbView
system itself supports arbitrary tuples (i.e., d can be any ordinary tuple).
This allows us to focus on the unique aspects of the ProbView system, viz.
its probabilistic components. When conducting experiments, we randomly
generated the value of d from between 1 to 20,000. As d gets larger, the
“duplication factor” (number of data-identical tuples) gets smaller.

Table XVI.

View Relation Updated Algorithm

R � S R 1. �� � Ins � S.
2. �� � Del � S.
3. Return �new(V) � (�old(V) � ��) � ��.

(R � S) R 1. �� � Ins � S.
2. Return �new(V) � (�old(V) � ��) � Del.

(R � S) S 1. �new(V) � (�old(V) � Ins) � Del.
(R � S) R 1. �new(V) � �old(V) � Ins.

2. Temp � S � Del.
3. �new � (�new � Del) � Temp.
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5.1 Experiment: Interaction of Compaction and Union

We first attempted to evaluate the effect of increased duplication factors on
the interaction of compaction and union. The graphs in Figure 3 show the
computation of the queries in Table XVII when the data values range from
[1, . . . , 10] to [1, . . . , 200]. The number of tuples in relations r1 and r2 are
varied from 500 to 5000 each. Table XVII shows the legend used in the
graphs of Figure 3. The indexing referred to is due to the fact that Dbase
V.0 allows relations to be stored either in indexed or nonindexed form. In
the former, we have options as to which attributes to index. The reader will
easily observe the following points:

(1) In all cases, �(r1 � r2) took significantly longer to compute than the
equivalent expression, �(�(r1) � �(r2)).

Figure 1

Figure 2
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(2) The approximation �(r1) � �(r2), in all cases, took the least time, but
performing an extra round of compaction to compute the expression
�(�(r1) � �(r2)) seemed to only take marginally longer.

Fig. 3. Union compaction.

Table XVII

Expression Legend without Indexing Legend with Indexing

�(r1 � r2) A D
�(r1) � �(r2) B E
�(�(r1) � �(r2)) C F
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(3) As the space of data values increased (and hence the duplication of
data-identical tuples in the relations decreased), the time taken to
compute �(r1 � r2) increased in an exponential fashion. In contrast, the
graphs of both �(�(r1) � �(r2)) and the approximation �(r1 � r2) rose in
a linear fashion with the number of tuples.

Conclusion. We conclude that any query of the form �(r1 � r2) should be
rewritten to the equivalent query �(�(r1) � �(r2)) because (a) this appears
to be computationally much more efficient to compute, and (b) the fact that
it is equivalent to the original query �(r1 � r2) seems to offset the minor
efficiency gains realized by computing the approximation �(r1) � �(r2)
instead.

5.2 Experiment: Interaction of Compaction and Selection

In this experiment, we studied the effects of pushing selections through
compaction. As in the previous case, we studied two query algebraic
expressions, �F(�(r)) and �(�F(r)) where F is a selection condition. We
studied the time taken to compute these expressions when three parame-
ters were varied:

—The space of data values ranged from [1, . . . , 10] to [1, . . . , 200] and
—the selectivity of the selection criterion varied to return more and more

tuples. Figure 4 shows the graphs associated with this experiment. The
number T at the top of these graphs indicates the selection condition. For
instance, T � 10 indicates that we selected all tuples where the data field
was greater than 10. Similarly, if T � 20, then this means that we
selected all tuples where the data field was greater than 20. Thus, as T is
increased, the number of tuples returned by the selection monotonically
decreases.

—Once the set of data values and the number T were fixed, the number of
tuples in relation r was varied from 500 to 5,000 in each experimental
run.

The legend used in the graph of Figure 4 is shown in Table XVIII. The
graphs in Figure 4 indicate that when the data value space is held fixed
and the selectivity is decreased (i.e., T is increased) �(�(r)) takes signifi-
cantly more time to compute than �(�(r)); that is, as selectivity decreases,
pushing selection inside compaction seems to be a good idea.

Conclusions. Pushing selection inside compaction seems to enhance the
performance of the system. Thus, rewriting the query �(�(r)) into the
equivalent query �(�(r)) seems to lead to performance improvements.

5.3 Experiment: Interaction of Compaction and Cartesian Product

In our third experiment, we attempted to study Cartesian products and
their interaction with compaction. Cartesian product is a very important
operation because as is well known, the all-important join operation can be
defined in terms of Cartesian product and selection. In this experiment, we
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evaluated the three expressions listed in Table XIX. the graphs in Figure 5
use these legends. Furthermore, recall that the first and third expressions
in the table are equivalent, whereas the second approximates the first and
third. The graphs in Figure 5 clearly indicate the following trends.

Fig. 4(a). Selection compaction for data values � 1 . . . 30.

Table XVIII

Expression Legend without Indexing Legend with Indexing

�(�(r)) G I
�F(�(r)) H J
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(1) Indexing reduces the cost of computing each and every one of these
expressions, and

(2) When the degree of duplication is higher (i.e., as the range of data
values is “smaller”), �(r1) � �(r2) and �(�(r1) � �(r2)) significantly
outperform �(r1 � r2). Furthermore, the difference between �(r1 � r2)
and �(�(r1) � �(r2)) seems to stay relatively small.

(3) However, as the degree of duplication decreases (see the graphs where
Data Values � [1, . . . , 5,000] and bigger), the situation is flipped
around and �(r1 � r2) significantly outperforms both �(r1) � �(r2) and
�(�(r1) � �(r2)).

Fig. 4(b). Selection compaction for data values � 1 . . . 50.
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Conclusion. We conclude that any query of the form �(r1 � r2) should be
rewritten to the equivalent query �(�(r1) � �(r2)) when the duplication
factor in the relations r1, r2 is relatively high. However, when this is not
the case, then we should not do so.

Before closing this section, we remark that we also experimented on the
interaction of compaction and difference. The conclusion of the experiment
is that performing compaction before computing difference leads to substan-
tial performance gains. The full details of the experiment can be found in
Lakshmanan et al. [1996].

6. RELATED WORK

Though there has been extensive work on probabilities in the AI commu-
nity, relatively little work has been done on probabilistic databases.

Kiessling and his group [Kiessling et al. 1992; Thone et al. 1995; Schmidt
et al. 1987] have developed a framework called DUCK for reasoning with
uncertainty. They provide an elegant logical axiomatic theory for uncertain
reasoning in the presence of rules. In the same spirit as Kiessling et al., Ng
and Subrahmanian [1993, 1995] have provided a probabilistic semantics for
deductive databases; they assume absolute ignorance, and furthermore,
assume that rules are present in the system. In contrast, in our framework,
rules are not present, rather our interest is in extending the relational
algebra to capture probabilistic information. In addition, our approach
provides a single unified way of handling multiple probabilistic combina-
tion strategies, whereas their work assumes either probabilistic indepen-
dence [Kiessling et al. 1992, p. 421]4 or total ignorance [Ng and Subrahma-
nian 1993, 1995]. Lakshmanan and Sadri [1994a] show how a few selected
probabilistic strategies extend the previous probabilistic models. In con-
trast, in this article, we only specify axioms that such strategies should
satisfy—the user may then pick strategies that accurately reflect the
application domain. Furthermore, we treat difference, an operation not
treated in Lakshmanan and Sadri [1994a], and introduce a unique notion of
path. All our query equivalences, and view maintenance results are new.
Finally, our ProbView system is the first of its kind.

Barbara et al. [1992] develop a probabilistic data model and propose
probabilistic operators. Their work is based on the following assumptions,
none of which is needed by us.

4To be precise, some deduction rules of the DUCK calculus rely on independence, whereas
others do not.

Table XIX.

Expression Legend without Indexing Legend with Indexing

�(r1 � r2) K N
�(r1) � �(r2) L O
�(�(r1) � �(r2)) M P
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(1) A central premise in their model is that every probabilistic relation has
a set of deterministic attributes forming the key of the relation. By
contrast, we make no such assumption, although it can be realized as a
special case of our framework.

(2) They use only discrete probabilities, which in effect amounts to assum-
ing that probabilities of compound events can always be precisely
determined, an assumption valid for few combination strategies. In
contrast, we allow interval probabilities, allowing for margins of error
in the probability data.

Fig. 5. Join compaction.
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(3) When performing joins, they assume that Bayes’ rule applies (and
hence, as they admit up front, they make the assumption that all
events are independent).

Also, as they point out, unfortunately their definition leads to a “lossy” join.
In contrast, as we have demonstrated, we have removed unnecessary
assumptions, supported a wide class of combination strategies for conjunc-
tion (and disjunction and negation), while avoiding the problem of lossy
joins.

Cavallo and Pittarelli [1987] propose a model for probabilistic relational
databases. In their model, tuples in a probabilistic relation are interpreted
using an exclusive or, meaning at most one, data-tuple is assumed to be
present in the underlying classical relation. This is a rather restrictive
assumption, and we make no such assumptions.

Several other authors have handled uncertainty in databases through
the use of fuzzy sets [Dubois and Prade 1988; Kifer and Li 1988; Raju and
Majumdar 1988]; as the differences between probabilities and fuzzy sets
are well known, we do not address these works extensively here.

Finally, the idea of compaction is similar in spirit to some analogous
operations defined in quite different settings. First, in the context of
relational databases with null values, Imielinski and Lipski [1984] consider
a number of alternate representation systems for databases with nulls.
Among others, they introduce C-tables. C-tables have an extra attribute
named Con representing conditions associated with nulls. Each tuple in a
C-table can have entries corresponding to marked nulls, and its value
under column Con represents conditions associated with that tuple. The
possibility of “collapsing” several tuples which are “data-identical” by
taking the disjunction of their Con-value has been noticed by the authors.
They also show that under closed world assumption, C-tables lead to a
faithful representation system for the complete relational algebra. There
are several important differences (1) the algebraic operators are fixed, not
generic as in our framework; (2) whereas the algebra defined in Imielinski
and Lipski [1984] does not manipulate any numerical measures, our
algebra manipulates probabilities associated with tuples; and (3) as the
authors themselves point out, the framework of C-tables is mainly of
theoretical interest owing to the high complexity associated with it. By
contrast, we have proposed a practical framework for probabilistic data-
bases, established that the complexity of query processing is tractable
under most practical circumstances, and also established the practicality of
our framework with a concrete implementation and with performance
results. Second, in the area of temporal databases (e.g., Gadia [1988]), we
may often want to merge multiple tuples, for instance, if we have one tuple
t1 valid (at all times) during the interval Jan.–June 1995, and another
data-identical tuple t2 valid from July–Dec. 1995, then we may want to
merge these tuples into a single tuple labeled with the interval 1995. Our
framework is obviously very different from this.
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7. CONCLUSIONS

In conclusion, we reiterate a simple point: probabilities are very complex,
but very powerful and useful for modeling uncertainty. Computing the
probabilities of complex events from the probabilities of elementary events
depends critically on the interdependencies between the events, leading to
a variety of combination strategies. Past treatments of probabilities in
databases have, by and large, made the optimistic assumption that all
events are independent—something that is rarely true in the real world
and even more rarely so in databases where the presence of various
integrity constraints may explicitly encode interdependencies between at-
tributes and hence tuples.

Towards this end, we have proposed a single unified framework within
which probabilities occurring in databases can be combined according to
the known interdependencies between those events. We have proposed
axioms characterizing reasonable probabilistic conjunction and disjunction
(and hence negation) strategies. The ProbView system we have developed
allows the user to pick a different strategy for each operator, per session, or
even per query. The default choice is the strategy based on the principle of
ignorance. Once specific conjunction and disjunction (and hence negation)
strategies are chosen by the user, this automatically induces a probabilistic
select, project, Cartesian product, difference, and union and intersection
operators (and hence join as well, in terms of Cartesian product and select).
The user may construct queries, secure in the knowledge that these queries
will be processed according to the semantics of the strategies chosen for
conjunction and disjunction (and hence negation). In addition, we have
proved equivalence/containment results that hold for any probabilistic
conjunction and disjunction (and hence negation) strategies that the user
might choose, as long as those strategies satisfy our postulates. Conse-
quently, the resulting system is very flexible and robust, and can accu-
rately capture the probabilities in the context of complex queries without
making unnecessary assumptions about independence and the like.

Finally, our previous querying operators have been implemented within
the ProbView system that has been built on top of Dbase V.0, with the
help of CodeBase to access the underlying functions in Dbase. Based on
this, we have conducted experiments and have established that certain
queries may be optimized substantially by rewriting them to a different,
although equivalent, form.

ACKNOWLEDGMENTS

We are very grateful to Laura Drake for converting all the graphs to
Postscript form. Thanks are due to Rick Snodgrass for pointing out the
applicability of probabilistic reasoning for handling temporal indetermi-
nacy.

ProbView • 467

ACM Transactions on Database Systems, Vol. 22, No. 3, September 1997.



REFERENCES

BARBARA, D., GARCIA-MOLINA, H., AND PORTER, D. 1992. The management of probabilistic
data. IEEE Trans. Knowl. Data Eng. 4, 487–502.

BELL, C., NERODE, A., NG, R., AND SUBRAHMANIAN, V. S. 1994. Mixed integer programming
methods for computing non-monotonic deductive databases. J. ACM 41, 6 (Nov.), 1178–
1215.

BLAKELEY, J., COBURN, N., AND LARSON, P.-A. 1989. Updating derived relations: Detecting
irrelevant and autonomously computable updates. ACM Trans. Database Syst. 14, 3,
369–400.

BOOLE, G. 1854. The Laws of Thought. Macmillan, London.
CAVALLO, R. AND PITTARELLI, M. 1987. The theory of probabilistic databases. In Proceedings

of the Conference on Very Large Data Bases (Brighton, England, Sept. 1–4), 71–81.
DAYAL, U. 1989. Queries and views in a object-oriented databases. In International Work-

shop on Database Programming Languages (Glenden Beach, OR, June 4–8), 80–102.
DAYAL, U. AND HWANG, H. 1984. View definition and generalization for database integration

in a multi-database system. IEEE Trans. Softw. Eng. SE-10, 6, 628–644.
DUBOIS, D. AND PRADE, H. 1988. Default reasoning and possibility theory. Artif. Intell. 35,

243–257.
DUMAIS, S. 1993. LSI meets TREC: A status report. In Proceedings First Text Retrieval

Conference (Gaithersburg, MD), NIST Special Publication 500-207, 137–152.
DYRESON, C. E. AND SNODGRASS, R. T. 1993. Valid-time indeterminacy. In Proceedings of the

International Conference on Data Engineering (Vienna, April), 335–343.
FENSTAD, J. E. 1980. The structure of probabilities defined on first-order languages. In

Studies in Inductive Logic and Probabilities, Vol. 2, R. C. Jeffrey, Ed. University of
California Press, Berkeley, CA, 251–262.

GADIA, S. 1988. A homogeneous relational model and query languages for temporal data-
bases. ACM Trans. Database Syst. 13, 4, 418–448.

GAREY, M. R. AND JOHNSON, D. S. 1979. A Guide to the Theory of NP-Completeness. W. H.
Freeman and Company, New York.

GUNTZER, U., KIESLING, W., AND THONE, H. 1991. New directions for uncertainty reasoning
in deductive databases. In Proceedings 1991 ACM SIGMOD (Denver, CO, May), 178–187.

GUPTA, A., MUMICK, I. S., AND SUBRAHMANIAN, V. S. 1993. Maintaining views incrementally.
In Proceedings 1993 ACM SIGMOD Conference on Management of Data (Washington, DC),
157–166.

HILLIER, F. AND LIEBERMAN, G. 1974. Operations Research. Holden-Day, San Francisco, CA.
IMIELINSKI, T. AND LIPSKI, W. 1984. Incomplete information in relational databases. J. ACM

31, 4 (Oct.).
IYENGAR, S. S., PRASAD, L., AND MIN, H. 1995. Advances in Distributed Sensor Technology.

Prentice-Hall, Englewood Cliffs, NJ.
HAN, J., CAI, Y., AND CERCONE, N. 1992. Knowledge discovery in databases: An attribute-

oriented approach. In Proceedings of the 18th Conference on Very Large Data Bases
(Vancouver, Canada, Aug. 23–27), 547–559.

HARRISON, J. V. AND DIETRICH, S. 1992. Maintenance of materialized views in a deductive
database: An update propagation approach. In Workshop on Deductive Databases, JICSLP
(Washington, D.C., Nov. 1992).

KEMPER, A., KILGER, C., AND MOERKOTTE, G. 1994. Function materialization in object bases:
Design, realization, and evaluation. IEEE Trans. Knowl. Data Eng. 6, 4 (Aug.).

KIESSLING, W., THONE, H., AND GUNTZER, U. 1992. Database support for problematic knowl-
edge. In Proceedings EDBT-92 (Vienna), Springer LNCS Vol. 580, 421–436.

KIFER, M. AND LI, A. 1988. On the semantics of rule-based expert systems with uncertainty.
In Second International Conference on Database Theory, M. Gyssens, J. Paredaens, D. Van
Gucht, Eds., Springer Verlag, (LNCS 326), 102–117.

KOLMOGOROV, A. N. 1956. Foundations of the Theory of Probability. Chelsea Publishing Co.,
New York.

468 • L. V. S. Lakshmanan et al.

ACM Transactions on Database Systems, Vol. 22, No. 3, September 1997.



LAKSHMANAN, L. V. S. 1994. An epistemic foundation for logic programming with uncer-
tainty. In Proceedings of the 14th Conference on the Foundations of Software Technology and
Theoretical Computer Science (Madras, India, Dec. 1994).

LAKSHMANAN, L. V. S. AND SADRI, F. 1994a. Probabilistic deductive databases. In Proceed-
ings of the International Logic Programming Symposium, (Ithaca, NY, Nov.), MIT Press,
Cambridge, MA, 254–268.

LAKSHMANAN, L. V. S. AND SADRI, F. 1994b. Modeling uncertainty in deductive databases. In
Proceedings International Conference on Database Expert Systems and Applications (DEXA
’94) (Athens, Greece, Sept.), LNCS 856, Springer-Verlag.

LAKSHMANAN, L. V. S., LEONE, N., ROSS, R., AND SUBRAHMANIAN, V. S. 1996. ProbView: A
flexible probabilistic database system. Tech. Rep. Concordia University and University of
Maryland, Dec. (Available by http://www.cs.umd.edu/users/vs/papers/probpaper-
s.html.).

LU, J., MOERKOTTE, G., SCHUE, J., AND SUBRAHMANIAN, V. S. 1995. Efficient maintenance of
materialized mediated views. In Proceedings 1995 ACM SIGMOD Conference on Manage-
ment of Data (San Jose, CA, May).

NG, R. AND SUBRAHMANIAN, V. S. 1993. Probabilistic logic programming. Inf. Comput. 101, 2,
150–201.

NG, R. AND SUBRAHMANIAN, V. S. 1995. Stable semantics for probabilistic deductive data-
bases. Inf. Comput. 110, 1, 42–83.

RAJU, K. S. V. S. V. N. AND MAJUMDAR, A. 1988. Fuzzy functional dependencies and lossless
join decomposition of fuzzy relational database systems. ACM Trans. Database Syst. 13, 2
(June).

SCHMIDT, H., KIESSLING, W., GUNTZER, U., AND BAYER, R. 1987. Combining deduction by
uncertainty with the power of magic. In Proceedings DOOD-89 (Kyoto, Japan), 205–224.

SILBERSCHATZ, A., STONEBRAKER, M., AND ULLMAN, J. D. 1991. Database systems: Achieve-
ments and opportunities. Commun. ACM 34, 10, 110–119.

THONE, H., KIESSLING, W., AND GUNTZER, U. 1995. On cautious probabilistic inference and
default detachment. Ann. Oper. Res. 55, 195–224.

VARDI, M. Y. 1985. Querying logical databases. In Proceedings of the Fourth ACM SIGACT-
SIGMOD Symposium on Principles of Database Systems, 57–65.

Received May 1996; revised January 1997; accepted January 1997

ProbView • 469

ACM Transactions on Database Systems, Vol. 22, No. 3, September 1997.


